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Comparison of Mantel–Haenszel with IRT 
procedures for DIF detection and effect size 

estimation for dichotomous items
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The article compares two methods used to detect differential item functioning (DIF) of dichotomously scored 
items: a nonparametric solution based on the Mantel–Haenszel procedure (MH) and a parametric IRT ap-
proach with a likelihood ratio test. A Monte Carlo experiment was performed in order to evaluate performance 
of both statistics in various conditions of DIF uniformity. Results confirmed the theoretical prediction that the 
MH test has greater statistical power in detecting uniform DIF than the likelihood ratio test and less power than 
the LR test in cases of non-uniform DIF. Apart of examining statistical power of the test, specific measures of 
DIF effect size were compared: MH D–DIF and three measures of P–DIF expressed on the item easiness scale.
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Differential item functioning (DIF) is a sta-
tistical term that describes a condition 

when the item response is dependent not only 
on the ability level of the subject but also on the 
value of some additional group membership 
variable. If DIF is present verification plays an 
important role in psychometric analysis of a test 
and is closely related to the problem of validity.

Let Ui denote response to item i, θ be the 
level of ability that the test measures and 

G be the group membership variable, then 
the general equation defining DIF with re-
gard to group membership will be of the form 
(c.f. Penfield and Camilli, 2007):

which states that conditional distribution of 
the response is not explained solely by the 
ability variable (θ) of the examinee but is 
additionally related to which group (G) the 
examinee belongs to. In the case of dichoto-
mously scored item it can be rewritten as:

which means that the probability of correct 
response to the item is dependent not only 
on the ability θ, but also on the group mem-
bership G. If G is two valued, G ∈ {f, r}, then 
differential item functioning of item i can be 
also expressed as:

(1)
meaning that the probability of correct re-
sponse of an examinee with ability θ in group 
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f differs from the probability of correct re-
sponse of an examinee with the same level of 
ability in group r.

Figure 1 collects three examples of differ-
ential item functioning as defined by eq. (1) 
by means of curves that depict the probabili-
ty of correct response conditional on θ (item 
characteristic curve, ICC). The left-hand 
graph shows the uniform DIF – the ICC in 
one group is shifted parallel to the ICC for 
the same item in the other group. All other 
cases of DIF will be a non-uniform DIF. In the 
middle graph the item i is easer in group r at 
all levels of θ, just like in the leftmost graph, 
however the magnitude of discrepancy in 
difficulty conditional on θ is different at dif-
ferent levels of θ. The rightmost graph pres-
ents an interesting case of non-uniform DIF, 
namely, for examinees of ability θ < 0 the item 
is easier for group r, however for examinees of 
ability θ > 0 the same item is easier for group f. 

Pioneering work regarding DIF analysis 
dates back to the 1960s in the USA, when the 
need to identify test items biased with regard 
to minorities became acute. Hence in DIF 
analysis a classical unsymmetrical division 
into two groups is present: the focal minor-
ity group and the reference majority group. In 
this article group membership indexes f and 
r will be used in order to comply with this 
tradition however it is worth noting that DIF 
analysis in educational studies is often per-
formed when the grouping variable divides 
examinees more evenly and without any ob-
vious indication of which group is more likely 
to be measured unfairly by the test – gender 
is probably the best example.

The term item bias refers to the situation 
when one group is being favoured over an-
other group as a consequence of item con-
tent unrelated to the ability intended to be 
measured by the test. Item bias is a specific 
distortion of validity of the test and is not 
equivalent to the presence of DIF. Differential 
item functioning states that the item response 
is related to some additional factor that at the 
same time is unrelated to the ability mea
sured by the test as a whole but is correlated 
with group membership. DIF is a necessary 
condition for item bias, but is not a sufficient 
condition for item bias. Flagging an item as 
biased requires an expert analysis of the item 
content in the context of possible causes of 
DIF. It is possible, that the item-specific fac-
tor causing DIF is actually an important part 
of test’s content domain which is not repre-
sented in other items of the test, thus inclu-
sion of such an item presents no hazard to 
validity and will not discriminate against any 
of the groups (see Zieky, 1993).

It is also worth mentioning the difference 
between DIF and between-group differences in 
ability. The very essence of the concept of DIF 
is to distinguish the actual differences in the 
ability level between groups from differences 
in the way the item behaves because of factors 
other than the ability measured by the test as 
a whole. Conditioning over θ, which is present 
in the definition of DIF, indicates that the anal-
ysis is performed under control of differences 
in distribution of ability between groups.

According to what was stated above it can 
be concluded that DIF detection for dichoto-
mously scored items will require analysis of 
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Figure 1. Examples of DIF (continuous line depicts  for: G = r, dashed line for: G = f).
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item difficulty conditional on group member-
ship G with statistical control over the ability 
variable θ. Operationally the level of ability is 
usually defined within the test as some form 
of score obtained from the whole test. The first 
and natural solution for the problem stated 
above was to employ the Mantel–Haenszel 
(MH) test. Very popular in the setting of clini-
cal trial data analysis, the MH test allows analy-
sis of statistical significance of differences in the 
distribution of a dichotomous outcome variable 
between two groups stratified on some addi-
tional variable that is significantly related to the 
outcome. The MH test is also called Cochran– 
–Mantel–Haenszel test, to credit Cochran 
who proposed a very similar procedure earlier 
(Agresti, 2002). An alternative approach to DIF 
analysis, to be covered in the article arose with 
the rapid development of item response theory 
(IRT) in the last decades of the 20th century. 
In IRT the relationship between item response 
and the ability level is modelled explicitly.

The article begins with a brief introduc-
tion to both methods of DIF analysis together 
with specific DIF effect-size measures that 
can be constructed in each of the approaches. 
Determining the actual magnitude of DIF is 
of no less practical importance than signifi-
cance analysis, hence the effect-size topic will 
organise the logic of presentation of the meth-
ods. Afterwards, a Monte Carlo experiment 
comparing the performance of both methods 
under various conditions is presented. 

Mantel–Haenszel test DIF analysis

In the MH approach responses to a dichot-
omous item analysed for DIF between two 
groups are stratified on the number of sum 
score points obtained in the test. A contin-
gency table of size 2 × 2 × M is thus obtained, 
where M is the total number of sum score 
points. Probabilities of observing a particu-
lar response to the item conditional on group 
membership and sum score category m are 
denoted in the following manner:

Group
Item response

Total
1 0

f p1fm p0fm pfm

r p1rm p0rm prm

Total p1m p0m pm

The MH test is constructed in terms of odds 
ratios. The odds of a correct response are the 
probability of correct response divided by the 
probability of incorrect response. Hence the 
ratio of such odds for examinees from groups 
r and f within score category m is given as:

Following the above designations the null 
hypothesis and the alternative hypothesis of 
MH test can be stated as (c.f. Dorans and 
Holland, 1993):

The null hypothesis states that the odds of 
correct response to the item are the same in 
both groups in every score category m. It can 
be equivalently rewritten in the manner that 
DIF was defined in eq. (1):

This means that probability of correct 
response to the item is not related to group 
membership as long as the test score m is tak-
en into account. What is unique to the MH test 
is the way the alternative hypothesis is stated. 
The H1 of the MH test states that the difference 
of these conditional-on-the-score category 
probabilities will be nonzero in a constant di-
rection. Moreover, according to H1 all the odds 
ratios αm will equal one common odds ratio α. 
The number of observations can be indexed 
analogously as the earlier probabilities:

Group
Item response

Total
0 1

r N0rm N1rm Nrm

f N0fm N1fm Nfm

Total N0m N1m Nm
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The MH statistic with correction for con-
tinuity can be expressed as:

(2)

where E(N1fm) and D2(N1fm) are the expected 
value and the variance of observations N1fm 
under H0. Under H0 the MHχ

2 statistic is as-
ymptotically χ2 distributed with one degree of 
freedom (Dorans and Holland, 1993).

It was proven (Radhakrishna, 1965) that 
the MH test is a uniformly most powerful test 
of a null hypothesis of conditional indepen-
dence of proportions between groups, if the 
hypothesis of constant odds ratio is valid. If 
the hypothesis of constant odds ratio is not 
valid the MH test reduces in power. It means 
that the MH test will perform less well in de-
tecting non-uniform DIF in comparison to 
procedures that allow for interaction between 
DIF magnitude (defined as odds ratio) and 
the ability level (Swaminathan and Rogers, 
1990). From eq. (2) it can be deducted that 
in the extreme situation when αm are related 
to m in such a way, that some of αm are above 
1 and some αm are below 1, the respective dis-
crepancies of N1fm from their expected values 
will cancel out. Owing to such dependence of 
performance of the MH test on the assump-
tion of constant odds ratio, some additional 
procedures testing for violation of this hy-
pothesis are often performed, i.e. the Wolf 
test (1955).

Mantel and Haenszel (1959) also proposed 
an estimator of the common odds ratio of the 
form:

(3)

in which more weight is applied to cells with 
higher marginal totals Nm. For an item that 
is easier (conditioned on ability) for group 
r we would obtain αMH > 1 and αMH < 1 in the 
opposite case.

IRT likelihood ratio test DIF analysis

Discussion of DIF analysis in IRT will be 
limited in this article to the case of the two-
-parameter logistic model (2PLM), however 
the ideas presented could be easily extended 
to other models, in particular in the case of 
politomously scored items. Thissen, Stein-
berg and Wainer (1993) provided a general 
presentation of DIF testing within IRT mod-
elling (to learn about other methods of DIF 
analysis see Penfield and Camilli, 2007).

In IRT the relationship between the prob-
ability of observing a correct response to the 
item n and the level of examinee’s ability θ, 
that appears in definition of DIF (1), is mod-
elled explicitly. In 2PLM such probability is 
given by a logistic function that depends on 
two item parameters bn and an:

(4)

Parameter bn (item difficulty) shifts the 
logistic function along θ scale and param-
eter an (item discrimination) is responsible 
for the steepness of the function at the point 
of θ = bn. These two item parameters make 
2PLM sensitive to the cases of both uniform 
and non-uniform DIF (Figure 1).

The full IRT model describes the prob-
ability of observing the whole vector of test 
item responses U = (U1, …, Un, …, UN), not 
only of the item being analysed for DIF. To 
abbreviate the notation, assume that pn(θ) 
stands for ICC of item n and all items have 
ICC of the form of (4) with parameters (an, 
bn) and that ψG(θ) denote the ability distri-
bution in group G ∈ {f, r}. A situation when 
no DIF is present will be described by an IRT 
model in which probability of observing par-
ticular U = u response vector is given by:

(5)
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The product in the square brackets (under 
condition of local independence of items1) is 
a conditional likelihood function that de-
scribes the probability of observing the re-
sponse vector U = u conditional on level of 
ability θ and on the parameters that charac-
terise functions pn. As one can observe, the 
conditional likelihood does not depend on 
the group membership, the only group-varied 
element of the model (5) is ability distribu-
tion, ψG, over which the conditional likeli-
hood is integrated.

In eq. (5) it is assumed that item parame-
ters for all items are the same in both groups. 
A situation when there exists DIF for one item 
is constructed by introduction of a different 
sets of parameters for this item for examinees 
from groups f and r – (af

i, bf
i) and (ar

i, br
i) respec-

tively. A model that is allowing for DIF for 
item i will, therefore, be of the following form:

(6)

In this framework the null hypothesis 
and the alternative hypothesis that it is tested 
against can be stated as:

The null hypothesis is verified by likeli-
hood ratio test (LR test), by using the fact that 
model (5) is nested within model (6). The test 
statistic has the form:

1	 The assumption of local (conditional) independence of 
item responses states that when the value of ability parame-
ter θ is known item responses become statistically independ-
ent. This assumption is of profound significance not only in 
the technical context of parameter estimation by maximum 
likelihood methods but has an important theoretical inter-
pretation. Namely, the notion that level of ability explains all 
observable interdependence between items mean that the 
test is unidimensional (Lord and Novick, 1968).

(7)

where L0 is the likelihood function computed 
on the basis of estimates of model (5) and L1 is 
the analogous likelihood function for model 
(6). Degrees of freedom for the LR statistic is 
equal to the difference between number of pa-
rameters being estimated in the two models, 
which is 2 in the case under consideration 
(one additional difficulty parameter and one 
additional discrimination parameter).

What may be noticed is that in order to 
test for DIF within IRT modelling frame-
work, software that estimates a different 
ability distribution for the focal and the refer-
ence group is needed. An IRT model without 
the multi-group feature would not properly 
separate the differences in behaviour of item 
between groups from the differences in abil-
ity distribution between groups, which, is the 
essence of DIF analysis.

Measures of DIF effect size and 
item DIF classification

The common odds ratio of the MH statistic 
(3) is a measure of DIF effect size which is 
difficult to interpret. In order to facilitate the 
interpretation the value of αMH is transformed 
in various ways. One of these transformations 
is  obtained in the following 
manner:

(8)

Such transformation of αMH produces an 
estimator of DIF effect size with symmetrical 
distribution, values ranging from -∞ to +∞. 

 has value of 0 when no DIF is 
present.

The Educational Testing Service (ETS) 
developed a classification system of DIF ef-
fect size that is based on the significance of 
MHχ

2 (standard significance level of α = 0,05 
is assumed) and the value of  
measure. Items are divided into three disjoint 
categories: A, B and C (Dorans and Holland, 
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1993; Zieky, 2003) according to the following 
rules:

■■ Category A – if MH test result was negati-
ve or if MH test result was positive, but the 
absolute value of MH D – DIF is less than 1;

■■ Category B – if MH test result was positive 
and absolute value of MH D – DIF is be-
tween 1 and 1.5 or if MH test was positive 
and 95% confidence interval around MH 
D – DIF is disjunctive with interval [-1;1];

■■ Category C – if 95% confidence interval 
around MH D – DIF is disjunctive with 
interval [-1;1] and absolute value of MH D 
– DIF is above 1.5 (in particular this me-
ans positive MH test result).

The above rules are shown in form of a deci-
sion tree in Figure 2 which also includes val-
ues of αMH that correspond to MH D – DIF. 
Inclusion of αMH in the graph is motivated by 
the fact, that most statistical packages report 
the results of MH test on the scale of “raw” 
odds ratio αMH.

Items in category C require special atten-
tion for the test developer with regard to po-
tential bias. Information on the category of 
given item is supplemented with information 
about whether the item is more difficult for 
the focal group (items marked with “-“) or 
more difficult for the reference group (items 
marked with “+”).

MH D – DIF transforms αMH into a more 
symmetric distribution and facilitates con-
structing rules for item DIF effect size clas-
sification, however it still does not provide 
a clear interpretation of actual size of the DIF 
effect. What seems to be a natural choice for 
measuring DIF effect is to perform it on the 
scale if item easiness. The question is of how 
much easier (or more difficult) the item i is for 
group f would it function in group f the same 
way as it does in group r. A family of DIF ef-
fect size measures that aim at answering such 
a question are suffixed P – DIF in this article.

In order to have some insight into how 
does the ETS DIF categorisation relate to the 
magnitude of difference in item easiness be-
tween groups when ability is controlled, let 
us note that for each score category m, the 
probability of observing the correct response 
p1rm can be expressed in terms of αm and p1fm:

On condition of the validity of the as-
sumption of common odds ratio αm we can 
estimate the probability that examinees from 
group f respond correctly to the analysed item 
in a hypothetical situation that this item func-
tions in group f the way it does in group r:

Figure 2. Decision tree for item classification with respect do their DIF based on MH D – DIF.

AND
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Finally, the pursued difference in easiness 
of item for group f on the basis of MH statistic 
is (c.f. Dorans and Holland, 1993):

(9)

Figure 3 shows how the difference of easi-
ness of an item that results from differential 
item functioning described by  (9) 
relates to easiness of an item in the focal group 
p1f and to boundary values of αMH that can be 
found DIF effect size classification in Figure 
2. It can be commented that firstly, bounda-
ries of 95% CI around αMH that define transi-
tion between categories A, B and C, depend 
on how easy the item is in group f – items of 
moderate easiness require larger absolute val-
ue of difference of easiness resulted from DIF 
in order to shift between classification catego-
ries than items exhibiting more extreme easi-
ness in group f. Secondly the procedure for 
categorizing DIF size is not symmetric with 

respect to group membership, group f is fa-
voured when  is positive and group 
r is favored when  is negative. This 
lack of symmetry is a consequence of adopt-
ing symmetric criteria ±1 or ±1.5 around MH 
D – DIF (Figure 2) in order to define classi-
fication boundaries where MH D – DIF is in 
fact a nonlinear transformation of αMH (eq. 
(8)). If we assume that the expected difference 
of easiness of items between groups due to 
DIF is an adequate measure of DIF effect size, 
these two remarks point to a clear drawback 
of the classification described above. How-
ever it should be noted that in the range of 
easiness p1f between 0.25 and 0.75, in which 
most items of a well-constructed test should 
fall, the thresholds for passing between cat-
egories A, B and C, are at a similar level to 
MH P – DIF.

Classical test sum scores can be utilised 
to derive another estimator for difference 
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in easiness of item due to DIF that, in com-
parison to , does not resort to the 
common odds ratio:

(10)

Analysing the RHS of (10), we see that 
 is an average of differences be-

tween easiness of item between groups f and 
r in each score category m, weighted by Nfm 
– the number of observations for score catego-
ry m for group f. Dorans and Holland (1993) 
compared  and  and 
concluded that while both of them estimated 
the same parameter, i.e. conditional difference 
of easinesses, they differed in the manner that 
cases were weighted.  utilises the 
common odds ratio statistic (3) in which 
the weights are computed to be optimal in the 
context of test power. Consequently values 
computed by  and  
will slightly differ (Dorans and Holland, 1993).

Equation (10) is only a step away from 
deriving a measure of DIF effect size ex-
pressed on the item easiness scale that would 
incorporate an IRT model. Let pf

i, designate 
the item characteristic function of item i for 
group f and pr

i, its counterpart for group r, 
which in case of 2PLM stands for eq. (4) with 
parameters (af

i, bf
i) and (ar

i, br
i) respectively. 

A straightforward measure of DIF effect size 
for IRT, which we denote IRT P – DIF (c.f. 
Wainer’s equation T(1), 1993), is:

(11)

Equation (11) explicitly expresses the dif-
ference between actual easiness of the item 
i in population f and the easiness of the same 
item in f would it function according with pa-
rameters that characterise it in population r. 
It may be noticed that  given by 
(10) can be interpreted as an nonparametric 
version of  (10) – in the former 
integration is performed over discrete sum 
score divided into categories  
and in the latter integration is over the con-
tinuous latent ability variable θ.

Acknowledging earlier criticism of DIF 
item classification based on the magnitude of 

 (Figure 2), one can construct an 
alternative classification utilizing  effect 
size measures. Adopting threshold values of Mo-
nahan, McHorney, Stump and Perkins (2007):

■■ Category A – if result of test to verify the 
hypothesis of no DIF was negative or po-
sitive, but with absolute value of  
less than 0.05;

■■ Category B – if result of test to verify the hy-
pothesis of no DIF was positive and abso-
lute value of  between 0.05 and 0.1;

Figure 4. Decision tree for item classification with respect do their DIF based on P – DIF.
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■■ Category C – if result of test to verify the 
hypothesis of no DIF was positive and ab-
solute value  is above 0.1.

A decision tree for  governed DIF 
item classification is shown in Figure 4. The 
first noticeable feature is that this classifi-
cation is defined in a general manner, i.e. 
without referring to any specific test that 
could be used to test for statistical signifi-
cance of DIF. Hence, such a classification 
could be applied either after performing 
MH test and calculating MH P – DIF (9) or 
STD P – DIF (10), or after performing LR test 
and calculating IRT P – DIF (11). The sec-
ond important feature of this classification 
is that it does not mention the precision of 
estimating P – DIF, compared to analysis of 
95% CI around MH D – DIF in the previous 
classification. Not including information on 
precision of estimation of P – DIF is a disad-
vantage of this decision tree, which could be 
easily overcome by inclusion of the magni-
tude of standard error of a given estimator of 
P – DIF into the procedure. The expression 
for standard error of STD P – DIF estimator 
can be found in Dorans and Holland (1993), 
however estimating standard error for the 
IRT P – DIF estimator appears to be more 
troublesome, potentially requiring a Monte 
Carlo approach.

Monte Carlo Experiment

In order to compare performance of the MH 
method for DIF analysis and another based 
on an IRT model, a Monte Carlo experiment 
was performed. Data were generated accord-
ing to an IRT model (6) for a test contain-
ing N = 20 items and each item had an item 
characteristic curve belonging to the family 
of 2PLM (4). The first 19 items of the test had 
equal parameters in both populations f and r, 
i.e. these items did not exhibit any DIF. Dif-
ficulty parameters bn of these no-DIF items 
were spaced symmetrically around 0 and 
their values corresponded to the 5th, 10th, …, 
95th centiles of the standard normal distribu-
tion N(0;1) and discrimination parameters bn 
of these items alternately had values 1 and 1.5. 
This part of the test did not exhibit any DIF, 
consequence had an information function 
tuned for optimal measurement of ability of 
examinees sampled form population N(0;1). 
Parameters of mentioned 19 items are col-
lected in Table 1.

Distribution of ability in the focal group 
was standard normal ψf = N(0;1). Distribu-
tion of ability in the reference group was 
of the same shape but shifted to the right 
with the value 0.253, ψr = N(0.253;1), which 
corresponds to a situation when the mean 
level of ability in group r is at the 60th centile 

Table 1
Parameters of 19 items not exhibiting DIF used for simulating data

N bn an n bn an n bn an

1 -1.65 1 10 0 1.5 11 1.65 1
2 -1.28 1.5 12 1.28 1.5
3 -1.04 1 13 1.04 1
4 -0.84 1.5 14 0.84 1.5
5 -0.68 1 15 0.68 1
6 -0.52 1.5 16 0.52 1.5
7 -0.39 1 17 0.39 1
8 -0.25 1.5 18 0.25 1.5
9 -0.13 1 19 0.13 1
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of ability distribution in group f. The task of 
DIF verification was thus conducted under 
circumstances of significant difference in 
mean ability level between groups, in favour 
of the reference group.

In the Monte Carlo experiment parame-
ters of item indexed with the number 20 were 
manipulated – this was the item for which 
performance of the two methods of DIF 
analysis were compared. In group f only two 
sets of parameters (af

20, bf
20) were considered:

■■ af
20 = 1.5 and bf

20 = 0, a condition under 
which easiness of the 20th item in popula-
tion f equals 0.50;

■■ af
20 = 1.5 and bf

20 = -0.79163, a condition un-
der which the 20th item is easier than above, 
with its easiness equal 0.70 in population f.

Parameters of the 20th item in the reference 
group varied to a larger extend so as to allow 
a vast potential range of DIF conditions when 
crossed with the two aforementioned cases of 
parameter values of the 20th item in the fo-
cal group. The discrimination parameter ar

20 
took three different values:

■■ ar
20 = 1, a condition of non-uniform DIF 

due to flatter item characteristic curve in 
group r than in group f;

■■ ar
20 = 1.5, a condition of uniform DIF;

■■ ar
20 = 2, a condition of non-uniform DIF, 

due to steeper item characteristic curve in 
group r than in group f.

Difficulty parameters were chosen in such 
a manner so as to achieve a set of predefined 
easiness values with the pair of parameters 
(ar

20, br
20) in population f, in order to obtain 

specific “true” values of the IRT P – DIF (11) 
effect. Specifically, a bisection method with 
Monte Carlo integration was employed in 
solving the integral (compare to eq. (11)):

with respect to br
20 in order to obtain nine 

values of  that ranged equally-
-spaced from -0,150 up to 0,050.

Finally, a set of 2 × 3 × 9 experimental 
conditions were analysed which are collected 
in Table 2. Each condition listed in Table 2 
was independently replicated 10 000 times 
and in each replication a set of 1000 exami-
nee response vectors were simulated for each 
of the groups f and r. After every replication:

■■ The MH test verifying DIF for the 20th item 
was performed with item response being 
stratified with respect to sum score com-
puted from responses to all 20 items of the 
test. The estimator  and its 95% CI were 

Table 2
Complete set of experimental conditions in the study; “nu” – non-uniform DIF, “u” – uniform DIF, (-) 
– group f is disadvantaged by the item, (+) – group f is favoured by the item, (0) – non-uniform DIF 
resulting in null IRT P – DIF effect

IRT P – DIF
Easiness of the 20th item in f: 0.5 Easiness of the 20th item in f: 0.7

ar
20 = 1 ar

20 = 1.5 ar
20 = 2 ar

20 = 1 ar
20 = 1.5 ar

20 = 2
-0.15 nu(-) u(-) nu(-) nu(-) u(-) nu(-)
-0.125 nu(-) u(-) nu(-) nu(-) u(-) nu(-)
-0.1 nu(-) u(-) nu(-) nu(-) u(-) nu(-)
-0.075 nu(-) u(-) nu(-) nu(-) u(-) nu(-)
-0.05 nu(-) u(-) nu(-) nu(-) u(-) nu(-)
-0.025 nu(-) u(-) nu(-) nu(-) u(-) nu(-)
0 nu(0) no DIF nu(0) nu(0) no DIF nu(0)
0.025 nu(+) u(+) nu(+) nu(+) u(+) nu(+)
0.05 nu(+) u(+) nu(+) nu(+) u(+) nu(+)
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computed. STATA’s cc (case-control) pro-
cedure was employed to perform the task.

■■ The LR test verifying DIF for the 20th item 
was performed. Fitting of an IRT model 
without DIF (5) and with DIF (6) was done 
with MIRT software (Glas, 2010);

■■ Three  effect measures were esti-
mated:  (9),  (10) 
and  (11);

■■ DIF classification into three categories 
according to the two schemes depicted 
in Figures 2 and 3 was done, in the latter 
case  and LR test results were 
utilised.

The main goals of the research were to:
■■ compare the sensitivity of MH and LR 
tests in detecting DIF under different 

conditions of DIF effect size and DIF type 
(uniform vs. non-uniform);

■■ compare the properties (bias and standard 
error) of three estimators of P – DIF effect 
size (MH, STD, IRT) under the suppo-
sition that the true P – DIF effect size is the 
IRT P – DIF condition according to which 
the data were simulated (Table 2);

■■ compare the two classification schemes of 
DIF effect size into categories A, B, C.

Results

The primary goal of the experiment was to 
compare the sensitivity of MH and LR tests 
in different conditions. Table 3 presents per-
centage of cases in which the two methods 

Table 3
Percentage of replications in which statistically significant result was observed from Mantel–Haenszel 
and from likelihood ratio test

IRT P – DIF Statistic
Easiness of the 20th item in f : 0.5 Easiness of the 20th item in f: 0.7

ar
20 = 1 ar

20 = 1.5 ar
20 = 2 ar

20 = 1 ar
20 = 1.5 ar

20 = 2

-0.15
MH 100 100 100 100 100 100

LR 100 100 100 100 100 100

-0.125
MH 100 100 100 100 100 100

LR 100 100 100 100 100 100

-0.1
MH 99 100 100 100 100 100

LR 100 100 100 100 100 100

-0.075
MH 91 97 99 95 99 100

LR 99 94 100 99 96 100

-0.05
MH 54 75 86 60 80 90

LR 94 62 93 92 68 94

-0.025
MH 14 28 40 14 30 44

LR 86 19 74 80 21 71

 0
MH 7 5 7 7 5 8

LR 83 5 60 77 5 54

 0.025
MH 35 22 14 40 23 15

LR 90 18 67 89 20 61

 0.05
MH 81 68 59 84 71 61

LR 98 61 87 97 65 86
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resulted in statistically significant values of 
their respective test statistics over all condi-
tions under study. These values are also visu-
alised in Figure 5.

In cases of a large DIF effect size defined 
on the item easiness metric (IRT P – DIF), 
ranging from -0.15 to -0.10 both methods 
concordantly reported significant DIF with 
probability approaching 1.

The MH test detects more DIF cases that 
LR under all conditions with ar

20 = 1.5 (uni-
form DIF) and the relation reverses for con-
ditions ar

20 = 1 and ar
20 = 2. Thus, results of 

the study illustrate the previously mentioned 
property of the MH test to be uniformly the 
most powerful test in the case of validity of 
the constant odds ratio assumption and con-
firm the hypothesis that the LR test would 
be more sensitive in detecting cases of non-
-uniform DIF.

When DIF is not uniform, sensitivity of 
the MH test has an interactive dependence 
on the discrimination parameter and the 
direction of DIF. For negative values of true 
IRT P – DIF effect, the MH test was more 
powerful in the case of the higher value of 
item discrimination (ar

20 = 2) and for posi-
tive values of IRT P – DIF effect, the MH test 
was more powerful in the case of lower dis-
crimination (ar

20 = 1). Whereas, in almost all 
of analysed cases of true IRT P – DIF effect, 
the LR test was more powerful in detecting 
DIF under the condition of the item being 
less discriminative in the reference group 
(ar

20 = 1). The LR test was only slightly more 
powerful in detecting DIF in case of ar

20 = 2 
than in case of ar

20 = 1 when the IRT P – DIF 
effect was either 0.05 or -0.075.

Easiness of the 20th item in the focal group 
is another interesting factor that differentiates 
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104 Kondratek, Grudniewska

the sensitivity of the methods analysed. When 
DIF is uniform both tests are more sensitive 
in detecting DIF than when the item is easier 
in group f, i.e. when its easiness equals 0.7. 
However when DIF is not uniform this pat-
tern disappears. It is probable, that the rela-
tionship is moderated by IRT P – DIF effect 
size, yet closer examination of such interac-
tions would require increasing the number of 
levels of IRT P – DIF effect in the experiment.

The second problem to analyse was the 
quality of three different estimators of DIF 
effect size expressed on the scale of item eas-
iness:  (9), (10) and 

 (11). Properties of these estima-
tors were verified against a reference value 
of the true , which was known by 
virtue of the values of IRT model parameters 
used for generating the simulation data. By 
averaging the results obtained from 10 000 

replications the bias and the standard devia-
tion of the three estimators was assessed.

Figure 6 shows the bias of the three es-
timators for DIF effect conditional on the 
values of variables that were manipulated in 
the experiment. The estimator that is based 
on the common odds ratio αMH exhibits the 
highest bias which increases in size with an 
increase of discrimination of the 20th item 
in the reference group and with increase of 
the true  effect size. Direction of the 
bias of  results in overestima-
tion of the absolute value of . The 
estimator  is far less biased than 

 and its bias seems not to de-
pend on the value of ar

20 significantly, how-
ever, a clear relation between bias and the 
true value of  is observed. Direction 
of bias of  is such that it leads 
to underestimation of the absolute value of 
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 effect size –  shrinks the 
estimates towards zero which is opposite to 
the behaviour . The  
estimator did not reveal bias of any practi-
cal significance2 in any of the experimental 
conditions studied.

Figure 7 shows analogous information 
to Figure 6 but plots the standard deviation 
of  effect size estimators. Informa-
tion on standard deviations of  es-
timators is shown in Figure 7 and collected 
in Table 4. These standard deviations can 

2	 It is highly plausible that due to the fact that ML esti-
mators of parameters of an IRT model are biased (Lord, 
1983) also an estimator such as  will be biased 
because it is constructed by substitution of estimates of IRT 
model parameters into eq. (11). Kondratek (2012) presented 
examples of how IRT based estimates of observed score dis-
tribution “inherit” bias from estimators of IRT model pa-
rameters. The bias of  under conditions tested 
in the experiment was yet so small that can be viewed as 
negligible from practical point of view.

be seen as Monte Carlo estimations of the 
standard errors of  estimators. The 

 estimator is characterised by 
the largest standard error. Standard errors 
of  and  are compa-
rable, however, the first estimator under all 
conditions tested had a lower standard error 
that the second. Systematically lower stand-
ard error of  in comparison to 

 is probably a consequence of 
differences in bias of these two estimators 
(Figure 6) – the more an estimator shrinks 
towards zero the lower its variance.

It can be noticed that standard errors of 
 estimators increase when easiness 

of the 20th item in the focal group is smaller 
(0.5). Also a negative relation between the 
20th item discrimination in the focal group 
and value of the standard error can be consid-
ered for  and . Their 
standard errors increase when the discrimi-
nation parameter decreases. The relation 
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between discrimination of the item and 
magnitude of standard error of  
is not clear.

The final goal of the experiment was to 
compare the two DIF effect size classification 

systems described in the article. Presenta-
tion of the results starts from examining the 
behaviour of ETS’s classification based on 
MH D – DIF owing to its popularity. Later 
the two methods are directly compared.

Table 4
Standard errors of  effect size estimators in relation to experimental conditions (values in the 
table need to be multiplied by 0.01)

IRT P – DIF Statistic
Easiness of the 20th item in f: 0.5 Easiness of the 20th item in f: 0.7

ar
20 = 1 ar

20 = 1.5 ar
20 = 2 ar

20 = 1 ar
20 = 1 ar

20 = 1.5

-0.15

MH 2.52 2.54 2.56 1.95 1.94 1.94

STD 1.98 1.88 1.82 1.72 1.68 1.67

IRT 2.06 1.99 1.95 1.76 1.75 1.76

-0.125

MH 2.52 2.62 2.66 2.02 2.04 2.02

STD 1.94 1.88 1.84 1.74 1.70 1.63

IRT 2.03 1.99 1.97 1.78 1.79 1.74

-0.1

MH 2.59 2.68 2.75 2.16 2.20 2.16

STD 1.96 1.89 1.85 1.79 1.74 1.68

IRT 2.06 2.01 1.98 1.86 1.85 1.80

-0.075

MH 2.58 2.70 2.74 2.25 2.29 2.28

STD 1.93 1.87 1.81 1.81 1.75 1.71

IRT 2.03 2.00 1.94 1.89 1.85 1.83

-0.05

MH 2.65 2.72 2.79 2.32 2.38 2.35

STD 1.97 1.86 1.81 1.82 1.76 1.67

IRT 2.07 1.99 1.95 1.90 1.87 1.81

-0.025

MH 2.62 2.73 2.84 2.43 2.48 2.49

STD 1.94 1.85 1.82 1.85 1.78 1.72

IRT 2.05 1.98 1.96 1.94 1.90 1.86

 0

MH 2.66 2.75 2.85 2.48 2.52 2.59

STD 1.96 1.86 1.81 1.86 1.75 1.72

IRT 2.06 1.98 1.95 1.95 1.87 1.86

 0.025

MH 2.61 2.76 2.83 2.54 2.65 2.71

STD 1.93 1.86 1.80 1.86 1.80 1.75

IRT 2.04 1.99 1.94 1.96 1.92 1.90

 0.05

MH 2.61 2.75 2.85 2.57 2.69 2.76

STD 1.93 1.86 1.82 1.86 1.79 1.74

IRT 2.03 1.98 1.96 1.96 1.91 1.89
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Results of DIF classification based on 
estimated MH D – DIF value (Figure 2) in 
relation to easiness of the 20th item in the fo-
cal group and in relation to discrimination 
of this item in the reference group are shown 
in Table 5. Special attention is required when 
inspecting the category labelled “C” since it 
is designed to signal items with the largest 
DIF between the focal and reference groups. 
There is a noticeable pattern in the number 

of cases labelled “C”, increasing with item dis-
crimination in the reference group or when 
its easiness increases in the focal group. Thus 
the classification results are strictly depend-
ent on the discrimination of the item in the 
reference group and easiness of the item in 
the focal group, which is probably a reflection 
of the pattern previously mentioned of the 
relationship between the statistical power of 
the MH test and the experimental conditions 
tested (Table 3 and Figure 5).

Table 6 summarises results of the 
MH D – DIF classification in more detail. The 
same information is plotted in Figure 8. 
The previous observation that category C is 
applicable more often when easiness of an 
item in the focal group is higher (0.7) is also 
valid when item discrimination is controlled 
for. If an item’s difficulty in the focal group is 
held constant, a general tendency is observed 
that when it is more discriminative for the ref-
erence group, it is more probable that it will be 
allocated a higher (with larger DIF) category.

In order to illustrate that ETS classifica-
tion more often results in a higher DIF cat-
egory with increase of item discrimination, 
cases when easiness in the focal group was 

Table 6
Percentage of replications in which item was classified A, B or C based on MH D – DIF in relation to 
experimental conditions

IRT  
P – DIF

Easiness of the 20th item in f: 0.5 Easiness of the 20th item in f: 0.7

ar
20 = 1 ar

20 = 1.5 ar
20 = 2 ar

20 = 1 ar
20 = 1.5 ar

20 = 2

A B C A B C A B C A B C A B C A B C

-0.15 0 14 85 0 3 98 0 0 100 0 0 100 0 0 100 0 0 100

-0.125 4 54 42 0 25 75 0 10 90 0 13 87 0 3 97 0 0 100

-0.1 30 63 7 9 63 28 3 49 48 6 60 33 1 35 64 0 17 83

-0.075 77 23 0 47 50 3 26 65 9 48 49 3 20 67 13 7 63 29

-0.05 97 3 0 89 11 0 76 24 0 90 10 0 72 27 1 53 45 2

-0.025 100 0 0 99 1 0 97 3 0 100 0 0 98 2 0 93 7 0

 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0

 0.025 99 1 0 100 0 0 100 0 0 98 2 0 99 1 0 99 1 0

 0.05 88 12 0 92 8 0 93 7 0 78 22 0 85 15 0 89 11 0

Table 5
Percentage of replications in which item was 
classified A, B or C based on MH D – DIF in rela-
tion to easiness of item in the focal group and 
discrimination of item in the reference group

Easiness of the 
20th item in f

Value of 
ar

20

MH D – DIF 
classification result

A B C

0.5

ar
20 = 1 66 19 15

ar
20 = 1.5 59 18 23

ar
20 = 2 55 18 27

0.7

ar
20 = 1 58 17 25

ar
20 = 1.5 53 17 31

ar
20 = 2 49 16 35



108 Kondratek, Grudniewska

0.7 should be considered. When the true 
P – DIF value is set to -0.05 most of the rep-
lications result in category A (72% marginal 
over ar

20) which is a category without DIF. 
However when inspecting relevant propor-
tions conditional over ar

20 we observe large 
variation with respect to cases in category 
B – for a discrimination of 1, only 10% of 
replications fell into this category and for 
discrimination of 2, as many as 45% repli-
cations resulted in B. When a true P – DIF 
value is -0.1, a similar relationship occurs for 
category C – for = 1, this category applies to 
33% of replications, while for ar

20 = 2 as many 
as 83% of cases are classified as C.

Graphs in Figure 8 clearly illustrate the 
previously mentioned (Figure 3) lack of 
symmetry in how the classification based on 
MH D – DIF treats cases of DIF of similar 

magnitude but opposite in direction. If the 
true P – DIF effect equals -0.05, the B cat-
egory is used more often than when its value 
is 0.05. The ETS classification based on 
MH D – DIF, is therefore more sensitive for 
cases when an item is easier for the reference 
group. It might be expected that a scheme for 
DIF classification should be as effective in 
detecting DIF in cases when an item favours 
the reference group as in case when the focal 
group is favoured.

In conclusion, the experiment showed 
that results of MH D – DIF based DIF effect 
classification depend on parameters of the 
item analysed for DIF and the true value of 
DIF effect size. The scheme was more sensi-
tive if easiness of item in the focal group was 
larger and if the discrimination of an item 
in the reference group was greater. Worth 
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Table 7
Percentage of replications in which item was classified A, B or C based on IRT P – DIF in relation to 
experimental conditions

IRT  
P – DIF

Easiness of the 20th item in f : 0.5 Easiness of the 20th item in f : 0.7

ar
20 = 1 ar

20 = 1.5 ar
20 = 2 ar

20 = 1 ar
20 = 1.5 ar

20 = 2

A B C A B C A B C A B C A B C A B C

-0.15 0 1 99 0 1 99 0 1 99 0 0 100 0 0 100 0 0 100

-0.125 0 11 89 0 11 89 0 10 90 0 8 92 0 8 92 0 8 92

-0.1 1 49 51 0 49 51 1 50 50 0 50 49 0 50 50 0 50 49

-0.075 11 78 11 11 79 10 9 80 10 9 82 9 9 82 9 8 83 9

-0.05 50 50 1 49 50 1 50 49 1 50 50 0 50 50 0 51 49 0

-0.025 89 11 0 89 11 0 90 10 0 90 10 0 91 9 0 91 9 0

0 98 2 0 99 1 0 99 1 0 99 1 0 99 1 0 99 1 0

0.025 89 11 0 90 10 0 90 10 0 90 10 0 90 10 0 90 10 0

0.05 49 50 1 50 49 0 50 49 1 50 50 1 50 49 0 50 50 0
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emphasizing is the lack of symmetry of the 
procedure: ETS classification is more effi-
cient in detecting DIF in cases of items that 
favour the reference group.

Figure 9 and Table 7 present the distri-
bution of A, B, C categories observed over 
all experimental conditions for DIF effect 
classification based on IRT P – DIF in an 
analogous manner as Figure 8 and Table 6 
did for MH D – DIF based classification, so 
allowing comparisons. Corresponding dis-
tributions of classifications are similar, how-
ever when inspected closer it appears that 
MH D – DIF classification fluctuates more 
following changes of an item’s easiness in fo-
cal group and an item’s discrimination in the 
reference group, whereas IRT P – DIF clas-
sification is very stable over all experimental 
conditions.

In Table 8 the two classification schemes 
are compared with respect to their consist-
ency. In most cases the two schemes classified 
items into the same categories and the per-
centage of consistent classifications was pos-
itively related to increased item discrimina-
tion in the reference group and to increase of 

easiness of item in the focal group. Inconsis
tent classifications were divided into the case 
when both schemes led to conclusions that 
DIF was present but differed with regard to its 
degree and the case when one of the schemes 
placed an item in category A while the other 
pointed to category B or C. It is worth noting 
that inconsistent classifications generally fol-
lowed the pattern that an item was more likely 
to be classified lower by the  than 
by  classification.

Conclusions

The article aimed to compare two tools applied 
to DIF detection: the Mantel–Haenszel test 
and an approach based on the likelihood ra-
tio test of parametric IRT models. The Monte 
Carlo experiment that was conducted, allowed 
for verification of performance of the two 
methods in various experimental conditions.

Results confirmed that Mantel–Haenszel 
test is more powerful in detecting uniform 
DIF, however it reduces in power when an in-
teraction between magnitude of DIF and abil-
ity level is present. In cases of non-uniform 

Table 8
Consistency between DIF effect classification schemes based on MH D – DIF and IRT P – DIF [%]

Experimental conditions
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 B

Easiness of the 
20th item in f : 0.5

ar
20 =1 64 36 0 0 0 23 13 0

ar
20 =1,5 78 22 0 0 0 16 5 0

ar
20 =2 87 13 0 0 0 12 1 1

Easiness of the 
20th item in f : 0.7

ar
20 =1 82 18 0 0 0 15 3 0

ar
20 =1,5 88 12 0 0 0 9 0 3

ar
20 =2 86 14 0 1 0 6 0 7
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DIF fitting a two-parameter logistic IRT 
model followed by conducting a likelihood 
ratio test was a more powerful approach, as 
the IRT model allowed for interaction be-
tween DIF magnitude and ability level ex-
plicitly.

It was discovered that DIF effect size esti-
mated on the scale of easiness of the item by 
IRT modelling resulted in bias that was negli-
gible from a practical point of view. Moreover 
standard errors for the classical  
estimator of the same parameter were com-
parable to standard errors of the  
estimator. This makes it possible to use esti-
mates of standard errors of , for 
which formulas are available (Dorans and 
Holland, 1993), as an approximation of stand-
ard errors of . Such a solution al-
lows augmentation of the  classi-
fication, adding information about precision 
of estimating  in an analogous 
manner to the  classification.
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