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Contributions to the theory o f transpiration , diffusion a n d  

therm al conduction in rarefied g a se s .

Memoire

de M. MARYAN SMOLUCHOWSKI m. c.,
pr^sent^ dans la stance du 4 Juillet 1910.

I.

The phenomena of viscosity and of therm al transpiration in ra 
refied gases, which had aroused general in terest th irty  years ago 
and which partly  had inspired M a x w e l l 1) for his famous paper 
«On Stresses in Rarefied Gases*, have been entirely  neglected since 
that time, although there rem ained enough to be done; only recently  
some im portant researches on this subject have been published by 
Mr. K n u d  s e n 2), advancing our knowledge to the range of lowest 
pressures, hitherto not investigated  so exactly. W ithout entering in 
a discussion of the experim ental part of these researches, I  should 
like to offer here some theoretical rem arks, as the theoretical trea t
ment of the problem in Mr. K n u d s e n ’s papers, although ra ther 
elaborate, seems to me to lack clearness and rigour.

The method employed by him is the old method used by 
M a x w e l l  in his first researches, by C l a u s i u s ,  0 .  E. M e y e r  
and m any others; it is based on the supposition of molecules acting 
like elastic spheres, on the notion of the mean length  of free path 
and on the assum ption that M a x w e l l ' s  law of distribution of 
velocities can be applied in its ord inary  form.

Now it is well know n 3) that all such calculations — as far as 
viscosity7 therm al conductivity  and diffusion are concerned — are

*) Ma x w e l l ,  Scientific Papers II p. 681; Phil. Trans. 170, 231, 1879.
2) Knu ds e n ,  Ann. d. Phys. 28, 75, 1909; 31, 205, 633, 1910.
3) B o l t z ma n n ,  Wien. Sitzgsber. 8 ) , 117, 1880; 84, 40, 1230, 1881.

1
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defective. M a x w e l l  and B o l t z m a n n  have shown that the law 
of distribution of velocities is modified when the above phenomena 
are going on. and that the neglection of this factor — as involved 
in these calculations — implies errors of the same order of m agni
tude as the final results. No one has succeeded hitherto in carry ing  
out such calculations, on the elastic sphere hypothesis, in a tolerably 
correct m a n n e r1); in the present state of knowledge, the best we 
can do is to follow M a x w e l l ' s  method, explained in his later pa
pers (especially the one referred  to above), where, availing him self 
of the celebrated inverse-fifth-pow er hypothesis, he is able in a 
com paratively easy m anner to take account of the altered form of 
the law of distribution. E xperim ental evidence shows that the mole
cules of a gas are som ething interm ediate between what is assumed 
in both theories, but M a x w e l l ' s  assum ption has the advantage 
that a theory can be built on its foundation tha t is free from in
heren t contradiction.

I  would not desire to go so far as to deny any value to cal
culations based on the old defective method, provided they are 
considered only as heuristic means for deriving em pirical formulae; 
and provided one does not expect to find any quantitative agreem ent 
between calculation and experim ental results. But the objections to 
some of Mr. K n u d s e n ’s calculations in his second paper, relative 
to therm al transpiration, are of a more serious character, since the 
reasoning there is based on a foundation w hich is the very  point 
of failure of the old method.

The author im agines a gas contained in a tube whose tem pera
ture varies in the direction from one end to the other in linear 
progression. He evaluates the quantity of tangential momentum 
com m unicated to the wall by the m olecular impacts, assum ing as 
usually  equal probability of molecular motion in any direction; he 
finds it to be different from zero, as the molecules coming from 
the hotter parts carry  w ith them greater momentum; whence the 
conclusion is draw n that the gas must exercise a tangential pres
sure on the wall, or it m ust have an inverse tangential motion to

*) Except for diffusion, where exact general formulae have been given by 
L a n g e  vin:  C. R. 140, 35, 1905; Ann. chirn. phys. 5, 245, 1905. An interesting, 
although insufficient, attempt at settling the difficulty has been made by Je a n s :
Phif. Mag. 8, 670, 1904
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begin with. Now, an-analogous calculation would show the mo
m entum  carried through any cross section of the gas to be different 
from zero (to be proportional to

N m l Q  d%  , 
al

in Mr. K n u d s e n ’s notation), which in the same way would prove 
the existence of a grad ien t of pressure along the axis of the tube, 
quite independent of its radius and of the density of the gas.

H ere we perceive the fallacy of this method. I t  is the same 
point which is emphasized in K i r c h  h o  f f 's  Lectures on Heat  p. 
210 and in B o l t z m a n n ' s  Gastheorie I  p. 93 — 97: if  for a gas 
with linear slope of tem perature the change in the law of distribution 
of velocities is neglected, either the pressure comes out unequal or 
the gas cannot be at rest. By following M a x w e l l ’s (loc. cit.) and 
B o l t z m a n n ' s  method (Gastheorie I  p. 185) one can easily show 
indeed that the ordinary  form of the law of distribution of velo
cities is changed in this case and becomes

( ! ) • • •  /(£>*h £ ) d £ d r j d £  =
=  A C* [1  _|_ a  £ +  b | ( |*  +  +  ?)} d£ dr, d$

where the coefficient a can be chosen so as to m ake the motion in 
the direction of X  disappear, while the coefficient b is connected 
with the gradient of tem perature and accordingly with the conduc
tion of heat. Here the normal pressure or mom entum  carried  
through any plane:

/
+°o r  r
£2/ dr\ dC, =  m  /  rj2f d ^ d r j d ^  =  m  /  £2/ dt; dr\ dt,

is found to be equal everyw here and identical with the constant 
gas pressure.

According to M a x w e l l ,  stresses in the in terior of a gas exist 
only in the case when the gradient of tem perature is not constant; 
in the case above considered there m ust also exist a tangential 
current along the surface of the wall of the tube, but it is caused 
only by the fact that such a wall acts like an incom pletely re
flecting m irror. As M a x w e l l  puts it, the fraction ( 1 — f )  of the 
incident molecules is reflected with unchanged velocity (reversed 
normal component only), while the fraction f  is absorbed by the

1*
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wall and em itted again in accordance with the norm al law of dis
tribution. Thus the partial restoration of the ordinary  law  of distri
bution. instead of ( 1), at the surface is the real cause of the tang
ential cu rren t along the wall.

K n u d  s e n  appears not to have been acquainted with M a x w e l l ' s  
and R e y n o l d s ’ researches, when he published his first two papers, 
but his hypothesis as to the nature of the wall is quite analogous 
to that of M a x w e l l ,  except that he puts a priori / =  1 , which 
seems to be near the truth, but is perhaps an unnecessary lim itation 
of generality. For the rest, the result obtained by him, concerning 
the gradient of pressure produced in a capillary  tube by therm al 
surface-currents, happens to be of the righ t order of m agnitude; 
nevertheless, as has been said, we cannot consider the dem onstra
tion satisfactory. H itherto only M a x w e l l ' s  form ula (77) loc. cit., 
connecting the effects of slipping and of therm al transpiration, can 
be accepted as established in a satisfactory m anner and even this 
probably is not quite exact, as it rests on sim plifying suppositions 
as to the behaviour of the gaseous surface layer. Certainly it does 
not hold for high rarefactions, w here other laws set in which will 
be explained la ter on.

I  may be allowed to insert here some rem arks relating to a 
necessary consequence of these phenomena, viz. the increase of heat 
transferring  power of gases, as produced by the m olecular surface 
currents. The question arises w hether any observable effects m ay 
possibly result from that source.

In  order to get an approxim ate idea of the order of m agnitude 
of this effect, let us consider a gas contained between two infinite 
parallel plates whose distance be I and whose tem perature varies 
in linear progression with y. Then if  the axis X  is normal to the 
plates, the surface effects are defined according to M a x w e l l ’s 
form ula (6 8 ) (loc. cit.) by the equation:

(2 ) . . o -  Q ^  =  a  t  96  -  3 G -?■ — -
'  ' d x  4 q O dy  2 q Q d y d x

w here v is the velocity of the gas in the direction of Y ,  [i the 
coefficient of viscosity, and G the coefficient of slipping:

(3)
e = W r A ? - ' )



299

For the in terior of the gas we have the approxim ate hydrodynam ical 
equation:
, d p  d*V

and the condition of therm al equilibrium  is:

™  td '16  i d26\ i 3 6  A
( 6 ) ' "  i , (s*> +  5 ? ) + ' <’s %  =  0

where x denotes the conductibility, s the specific heat.
Equation (4) and the surface conditions (2) for both plates are 

fulfilled if  we take

. 2p x2 —  Ix  —  IG  
< 6 ) "  ’  =  ‘  +  s ,  ¥fi--------

where e denotes the righ t-hand  m em ber of equation (2 ).
I f  the space occupied by the gas is closed, the whole quantity  

passing through a cross section

J v d x

m ust be zero, whence:

m  SJ£  =  1 2 e fl
{ } * ' * dy 12 +  61G

In  order to obtain an approxim ate solution of (5), let us sup
pose the dim ensions of the space in the direction of the axis Y  to 
be large in comparison with the X  dimensions, so that the tem 
perature can be taken as:

0 =  ay-\-<p(x),
where a is constant and cp will be found by means of (5). Thus 
we get:
, Qx . A  X4 —  2 l x 3 +  l2x 2
(8 ) , . .  e = a „ + - 2 i , +  6 j g

if  we denote by A  the quantity  qsea'x.
Now the total quantity  of heat carried by the m olecular con

vective currents will be

qs /  vOdx,
J  o
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w hereas the quantity  transm itted by conduction is

The evaluation of this integral shows that the m olecular cu rren ts  
will increase the heat transm ission by a fraction am ounting to

W e see this effect is also present at high pressures and in wide 
vessels, whereas the other stress effects as a rule are vanishing 
except at low pressures and in capillary tubes; its amount however 
must be very  small under ordinary  circum stances and to demon
strate experim entally its existence will not be an easy task.

As m entioned before, M a x w e l l ' s  calculation cannot be applied 
in the case of great rarefaction, when the mean free path is com parable 
with the diam eter of the tube, since it involves the supposition that 
the state of the gas does not change appreciably  in such lengths. 
In  this case the degree of approxim ation to which we have gone in 
accounting for the behaviour of the surface layer of the gas is not 
sufficient and our calculations would require profound modifications 
which we will not endeavour to effect. Mr. K n u d  s e n 's  calcula
tions of course are far from applying exactly to this case; they n e 
cessitate the introduction of rough approxim ations and of em pirical 
assumptions.

II.
Things are getting again plain and intelligible when the ra re 

faction is so great tha t the bore of the tube can be considered 
small com pared w ith the mean free path; in this case the influence 
of the m utual encounters of the molecules can be altogether ne
glected in comparison w ith the im pacts on the walls of the tube, 
and a simple law of distribution will prevail. The state of the gas 
in this case is analogous to the radiation in a closed vessel. This 
case which for the first tim e has been treated theoretically by 
R e y n o l d s ,  has been investigated in detail by Mr. K n u d  s e n  
and has been called by him  „M olekularstr(3mungu, as contrasted 
with the „innere R eibungsstrom unga, going on at higher pressures. 
I t  will be analysed more fully in w hat follows, by  use of a sim pler
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and more exact .analysis which will lead to sim ilar but somewhat 
modified results.

Let us consider the case of o rd inary  transpiration  through a 
tube of any form of cross section, at uniform  tem perature; let us 
first adm it with K n u d  s e n  that: f ~  1 , or tha t the walls act 
wholly as diffuse reflectors. Then a surface elem ent d S '  of the wall 
of the tube will em it a quantity of incident molecules equal to 
v d S ", as if they were entering through an aperture d S '  from an 
outer space filled with gas in state of rest and therm al equilibrium .

Thus, as K n u d s e n  righ tly  observes, the quantity

v
— cos(wr) d S '  do)
n v 7

will be em itted in the solid angle da>, in stric t analogy with 
L a m b e r t ’s Cosine-law. The num ber of im pacts v  is connected 
with the num ber of molecules in unit volume n of the fictitious 
gas by the know n relation:

r  °° r  r+ ° °  nc

(,0) " •  — J ' v J ' w - m

where / i s  M a x w e l l ’s probability function

f  —  n ^—y 2 e ^ hĈ 2+^2+^2J

and c is the square root of the mean square of velocities.
I f  the density of the gas is increasing (towards the rig h t hand 

side) along the axis of the tube, which henceforth will be supposed 
to be the X  axis, then the quantity  v  will be variable and we shall 
get the num ber of molecules passing from the rig h t to the left, 
through an elem ent d S ,  by form ing the in tegral

( I D . . .  /  =
v(x')  cos (n'r) cos (nr) , c/

---------r-------------  d b

where r  is the radius vector betw een the elements d S  and d S ' , x '  
its component along the axis, (nr) and (n'r) the angles between this 
radius vector and the norm als to these elements.

Now we have evidently
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where dco is the solid angle under which d S '  is seen from the 
point dS.  This can be put equal to s in cpdcpde,  if  cp is the angle 
designed before by  (nr), and e the angle between two planes laid 
through the norm al to d S , a fixed one and a variable one, con
taining r. Thus we have, expanding v (x /):

7 d S  C  • \  ( \ \  ‘ 3 v  \ X'2 S*V \
(12) 1  =  ~ n j  sm(p ™S(p f (x) +  * s»i +  - 2  T *  +  • • •

=  v(x) dS  - { -  ~  J 'x '  sinqp coscp dtp de - f - . . .

dcp de =

This expression may be used, first, to find the condition which 
obtains for a steady state. In  this case the num ber of molecules 
im pinging on an elem ent of this wall m ust be equal to the num ber 
of em itted molecules. Therefore, if  we identify d S  with an elem ent 
of surface of the wall, we m ust have

I  =  v(x)  d S

for any value of # , which evidently  will be fulfilled if  v  is a li-
d vnear function of # , as the in tegral belonging to -  , containing equal
c X

positive and negative values of x ' , m ust vanish. Thus we see th a t 
the density and the pressure in  the stationary state m ust be linear 
functions of x.

Now by means of form ula (1 2 ) let us calculate the num ber of 
molecules which are passing through an element of the cross section, 
from righ t to left. Then <jp is the angle between r  and X , and we 
have x'  =  i?ctg<p, if  R  is the projection of r  on the plane of the 
cross section, and thus ( 1 2 ) reduces to

I = d S
1 dv  r  r

v (x) +  J l 9 x  I R  cos2cp dcp de

where the integration of c,os2cpdcp ^between the lim its 0  and

can be effected. A corresponding quantity  with negative sign ot 
dv
—  is to be taken  for the molecules crossing from  left to righ t and
d x
the resu ltan t flux of molecules passing from righ t to left will be:

=  % d S 5~  /  R d e
v  n T-
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The mass of gas passing through the whole cross section is by 
use of (1 0 )

( 1 4 ) . . .  Q =  v! 3v f  f d S  f R d e  =  - ~ 3A  
2 9xJ J  J  2|/6nSx

2 \ 2 n \  Po

A  =

Qo Pz  Pi

w here A  is an abbreviation for the trip le in tegral and p 1 ; ^ 2 denote 
the pressures at the ends of the tube.

In  order to evaluate A.  let us first suppose a tube with circu lar 
bore of radius a. Then A  (which is the mean distance between the

point d S  and the periphery, m ultiplied by 2n)  is easily trans
formed [see fig. ( 1 )] into

« + » « ■ »  . . .
J  J  J  o \ a 1 -(- b2 -{- 2abcos0

W e see that, contrary  to K n u d s e n ' s  opinion, the molecular 
curren t has different in tensity  in different points of the cross section. 
The greatest value

S v
q =  a n  -dX

corresponds to the middle (for b —  0 ), the sm allest value
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to the surface of the wall (for b =  a).
The in tegral could be reduced to elliptic integrals, but if  we 

only wish to know the whole flux Q , we better transform  it by 
considering that R d e  (in the general case of any form of cross 
section) can be put

where ds  is an elem ent of the periphery. Now we may divide the 
cross section into triangu lar sectors, corresponding to infinitesimal 
increm ents of the angle (nR)  which may be called a  for brevity. Their 
area will he d S  =  ^ E 2d a , if  R  denotes now the whole length of 
the chord belonging to the angle a . Thus we get

and the whole mass stream ing through a c ircu lar tube will be:

is partia lly  reflecting, partially  absorbing and radiating, it will emit 
only f v d S '  molecules in the m anner above described; the rest, 
(1 — f ) v d S \  are molecules that have been reflected at the point 
d S f and in reality  are coming from a greater distance. The fraction 
/  of them  have been rad iated  from the point of intersection of the 
wall w ith the reflected direction of the ray  r , the rest originate at 
still g reater distance. By com bining them w ith the corresponding 
molecules w hich approach the elem ent d S  from the other side, we 
easily see tha t molecules having undergone one reflection contribute 
to the flux Q three times as much as those molecules that have 
undergone no reflection; indeed the distance (in x) of the correspon
ding points of emission is three tim es as great. Molecules which

R d e  =  ds  cos (nR)

(15) . . .

By applying this expression to the circle we get

(16) . . . A  —  a n
16 a3Ji

3

(17) . . .

In  the general case, when the surface elem ent of the wall d S'
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were twice reflected, act five tim es as intensively. A dding them  all 
we get, if we denote by Q0 the am ount calculated before (17)

Q = / [  1 +  3(1 - / )  +  5(1 _ / ) » +  . . . ] Q 0

The value of this expression is found by putting 1 — j  —  6 :

Q —  1 + J -  —  2
1 —  <5 /

and we have finally:

( , 8 ) . . . Q =  * ^ * y ^ a * \ / ? o P » - P i
f  Tf  3 \  p 0 L

I t is satisfactory to learn that K n u d  s en ' s  formula, found by 
him to be in good agreem ent with experim ents, is identical with 
(17), but his methods of dem onstrating it (loc. cit., p. 105 —114) 
seem to me both ra ther m islead in g 1).

The difference in the general resu lt (14) and (15) and K n u d  s e n 's  
form ula p. 108 appears, when we calculate Q for tubes of other 
forms of cross section. For a rectangle w ith sides a ,  /? we get:

(19) . . .  A  =  2
2 \

+

+  a p  l „ g ( ?  +  | / l  +  ( | ) “) -  

which for a quadratic  cross section takes the sim pler form :

(20) . . .  A  =  4«s log ( l  +  J/2) +  — — ^
3

whereas according to K n u d s e n  we should have

'Vo Pi —  Pi

=  2-973 a s;

- W \ Po L

which corresponds to a value A  =  %a3.

4) Thus for instance the momentum parallel to X  carried through unit surface 
of the plane X Z  by a gas which is streaming with velocity v in the direction 
X , is not the quantity B  calculated p. 106, but: \ n m v Q .  On the other hand, 
the stream v is not the same in all points of the cross section and M a x w e l l ’s 
law is true for the emitted molecules, but not for the incident ones.
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K n u d s e n ’s result, im plying inverse proportionality of Q to the 
circum ference for a given area of cross section, appears im probable 
a. priori as in this case Q could be indefinitely dim inished by 
cutting  narrow  rad ial gaps in infinite num ber in the walls of the 
tube.

I t is worth noticing that the velocities of the molecules in a 
certain  elem ent of volume are not d istributed according to M a x 
w e l l ’s law. The probability  of velocities £, £ at the point

z  is defined by the value of the density function v(x'),  where
x ' is the distance (along the axis X )  of the point of intersection
between the direction — £, — 77, — £ and the wall of the tube. 
W e have:

y'  —  y   z'  — z  x '

V ~  £ ~ i

and in the case of a c ircu lar tube: y'* z ' 2 =  a 2, wherefrom  we
find x'\  thus the probability  of 77, £ will be proportional to:

(21) . . . +  +

V £ y y - \ - U *
v 2 +  £2

where 1 ^ - 1  is constant.
Sx)

W e satisfy ourselves easily that this fulfills the well known 
M a x w e l l - B o l t z m a n n  condition for a stationary state of the gas:

(22) . . . ^ l  +  v s/- +  ^ g = f J i f f  - A A ) g b d b d e  

when we neglect the in tegral accounting for the influence of theo O H
m utual encounters, as we are entitled to do in our case.

The law expressed by (14) can easily be generalized for a
vessel of any form, provided its dim ensions are  small in compar
ison with the m ean free path.

In  this case, the only distinctive quality  of different kinds of
molecules being their mass, the method of dynam ical sim ilarity can
be applied, w hich easily shows that the volume passing through 
the vessel, for given values of the pressure a t both ends, m ust be 
inversely  proportional to the m olecular weight of the gas and d ir
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ectly  proportional to the square root of the tem perature. The pro
cess is thus quite analogous to that of effusion through a small hole, 
as has been dem onstrated long ago by G r a h a m ' s  and R e y n o l d s ’ 
experim ents on diffusion of gases through porous m aterials, which 
proved the valid ity  of that density  relation, for porous bodies of 
sufficiently fine texture.

Besides, as m utual encounters are neglected, every constituent 
in a m ixture of gases m ust move quite independently  of the others; 
this gives rise to the phenomenon of «atmolysis» ( G r a h a m ,  C h r i 
s t i a n s e n ) .  Thus we see that the phenomena of interdiffusion of ga
ses are completely changed when the conditions of the present 
case are fulfilled. At h igher pressures the process of m utual diffu
sion of gases m ust also be modified in the neighbourhood of the 
walls of the vessel, nam ely by the friction against the wall, and 
there m ust exist a surface effect, analogous to the discontinuity of 
tem perature in conduction of heat, but its theory is much more 
com plicated and its experim ental demonstration, like all experim ents 
on diffusion, w ill offer g rea ter difficulties.

Let us consider now the case when the tem perature of the walls 
o f the tube is v ary ing  with x. By applying exactly  the same rea
soning as before, we again get the form ula:

Now. if  the tube is closed at both ends, or if  in any w ay the 
passage of the gas is prevented, we m ust have $  =  0  and v  =  const., 
w hich im plies according to (1 0 ) that the pressure will increase to
w ards the hotter end, in proportion to the square root of the tem 
perature. This relation is characteristic of therm al transp iration  at 
low pressures in narrow  channels, while in the other extrem e case, 
when the diam eter of the channel is large compared w ith the free 
path, M a x w e l l ’s form ula (77) or a relation of sim ilar form must 
be applied.

The same result has been deduced in a different way by 
K n u d  s e n  on pp. 222— 223, and has been verified to some degree 
of approxim ation by his experim ents; on a la rger scale it has been 
confirmed by R e y n o l d s ’ researches on therm al transpiration 
through M eerschaum-plates etc., in 1879.

In such porous m aterials of course the channels cannot be con
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sidered as cylindrical tubes; but if the analogy of a rarefied gas 
with the phenomenon of radiation is considered, the above result 
can easily be generalized so as to apply to a vessel of any form. 
In  a closed vessel of any shape radiation is known to be in therm al 
equilibrium  when the density of incident (or emitted) radiation is 
everyw here the same. In  our case the quantity  of incident rad ia
tion corresponds to the num ber of incident molecules per unit time 
and unit surface, em itted radiation to the em itted molecules which, 
if  the walls allow no passage, are both identical with v. The condi
tion of stationary state requires therefore v  =  const, everyw here, which 
with the aid of (10) proves the above proposition. This will hold not 
only on the assum ption tha t f —  1 , but also for any reflective or ab
sorptive power of the surface.

III.
The apparent decrease of therm al conductivity  of gases when 

rarefied is due, as I  have shown in a series of p a p e rs1), to a su r
face phenomenon, analogous to the slipping of gases discovered by 
K u n d t  and W a r b u r g .  The kinetic  theory of gases shows be
s id e s2) that at very  low pressures, when the mean free path is 
much g reater than the dim ensions of the vessel in which con
duction is going on, another law m ust come into action, the trans
mitted heat being proportional then to the gas pressure and i nde 
pendent of the thickness of the layer of gas.

Some experim ental evidence in support of this law has been 
given by Mr. B r u s h  and recently  much am pler m aterial is avail
able, owing to a careful investigation by Messrs. S o d d y  and 
B e r r y  3).

The form of this law being established, the question arises as 
to the value of the factor of proportionality, or, as the last-nam ed 
authors put it: of the quantity  of heat. Q , reduced to unit of hot 
surface, one degree of difference of tem perature, and 0 0 1  mm of 
m ercury pressure.

*) Ann. d. Phys. 64, 101, 1898; Wien. Sitzgsber. 107, 304, 1898; 108, 5, 
1899; Phil. Mag. 46, 199, 1898.

See also Ge hr c ke ,  Ann. d. Phys. 2, 102, 1900.
*) Wien. Sitzgsber. 107, 328, 1898.
s) Brush,  Phil. Mag. 45, 31, 1898.

Soddy  and Berry,  Proc. Roy. Soc. 83 A , 254, 1910.
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By a roughly approxim ative reasoning (assum ing tha t the mole
cules can be divided in three classes, moving parallel to the axes) 
I  had found that the flux of conducted heat (for 1 ° and 1 cm 2) 
ought to be of the order of m agnitude: ^Qsc  w here q is the den
sity, s the specific heat at constant volume, c the mean velocity. 
This expression corresponds to the case when every  molecule, by its 
im pact on the solid wall, assumes the vis viva corresponding to the 
tem perature of the latter, but it is to be m ultiplied by

\ _ - j
i + / ?

if  only a partial equalisation of tem perature is tak ing  place, accord
ing to the form ula:

$ - d o =  iS(0m- 0 o)

w here 0O: 6m. & denote the tem perature of the wall, of the im pin
ging, and of the em itted molecules.

Messrs. S o d d y  and B e r r y  use the same form ula w ith a slight 
difference of notation, putting

where n is the num ber of molecules per cm 3 at 0 * 0 1  mm pressure, 
N  the num ber contained in one gram . H  the m olecular heat at 
constant volume, G the m ean velocity.

Their experim ents enabled them to determ ine the ratio of the 
observed transport of heat K  to the calculated value Q for eleven 
gases, and from these num bers, ranging between 109  and 0 ’25, 
they intend to draw  conclusions relating  to the factor /?. Now these 
results appeared to be of a somewhat unexpected character, since 
only values inferior to unity  were supposed to be adm issible. But 
as soon as exact num bers are in question, such a rough estim ate 
as that referred  to above is evidently insufficient and an exact 
calculation ought to be made.

Consider a gas contained between two parallel horizontal plates, 
the upper one at tem perature 02, the lower one at tem perature 0X 
(one degree lower). I t  is convenient then, instead of m aking the 
above supposition with respect to /?, to follow M a x w e l l ' s  assum p
tion as to the reflected and emitted molecules. The whole num ber 
of molecules in unit volume n  will now be composed of four parts:
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nx m olecules moving upw ards with mean velocity cx
n[ r „ dow nw ards „ n n c 1

nt „ „ upw ards „ „ „ c2

ri2 „ „ dow nw ards „ „ „ c2

where and c2 are the velocities corresponding to the tem peratures 
and 0 2.
These four k inds m ake together

(23) . . .  n =  nx -)- n2 -j- -|- w2 ;

they do not undergo any m utual influence, except at the im pacts 
on the plates, and each will move w ith velocities distributed accord
ing to M a x w e l l ’s law.

The num ber of im pinging molecules is given by (10); but here 
we denote by n  the num ber of molecules m oving in one direction 
only, and therefore we m ust take

2 nc
(2 4 )-  • •  *’ =  p f S

Now considering the process a t the low er plate, we see that the 
molecules nx are m ade up of the «reflected» fraction (1  — / )  of 
the incident molecules n[ and of the fraction /  of the whole num ber 
of molecules which are im pinging on the lower plate; w hence:

(25) . . .  =  (1 — f ) n \ c , + / K ci

and sim ilarly

(26) . . .  n2 c2 =  (1  — f ) n '2c2

By adding these two relations we get a solution expressing the 
fact that no one-sided curren t takes place:

(27) . . .  nt cx -j- n2 c2 =  n1c1 +  n2c2

This equation and (26) and a sim ilar one for the molecules 
m oving in reverse direction take the following form:

(«i —  K) Cj == (n<, —  ws) c2 
rc2 =  (1 —  f)ri2 
«; =  ( ! —  / )  nx
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whence follows:

n2 c2 —  n , c,
(28) • • ■ | n\cx =  w2c2 =  (1 — / ) WjCj

The quantity  of heat lost by  the -lower plate is:

2 VYt S 2 VYt s
Q z=z 17 f^2 (^2^2 ^2 ^2) “I-  ( W1 C1 ~ W1 Cl)] == |7- ” (®2 ®l) f  n \ C1

y b j i  y 071

Now relations (23) and (28) give

n« =
W (/2

2 — /  Ci +  C2

so that we have:

(29) . . .  Q =

I f  we put

2  f m n s  c2

11 §71 [2  ; / )  C1 C2

2  Cj c2
(

and f  =  1 — /? we finally get:

(30)' "  e  =  p S v ^ |
This is the exact value for conduction of heat in a highly  ra

refied gas; we see it is g reater than the value calculated before.

All the num bers given by Messrs S o d d y  and B e r r y  for ^  ought
V

to be m ultiplied by the factor - i ji =  07236 . They will range be
tween 0 79 for argon and 0*18 for hydrogen, which shows that the 
coefficient /? is never to be neglected; in other words, the inter
change of energy on im pact is alw ays imperfect. The order of gases: 
A , N e. N2, 0 2, C O , N20 ,  C2 H2, C 0 2, CH 4, H e, H 2, seems to 
suggest the following rule: the interchange of energy is worse for 
smaller m olecular weights and it is worse for polyatom ic and di
atomic molecules than for monatomic ones. The first part of this 
rule is easily intelligible; a simple m echanical reasoning show sx)

*) Wien. Sitzgsber. 107, 824, 1898.
2
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tha t the interchange of energy between colliding spheres is the 
more im perfect the greater the difference of their masses, and here 
the wall was composed of the heavy P t molecules.

The second part is also in accordance with other phenomena of 
conduction of heat, showing that in tram olecular energy is compar
atively leas disposed to equalisation by single im pacts than energy 
of progressive motion.
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