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Contributions to the theory of transpiration, diffusion and
thermal conduction in rarefied gases.

Memoire

de M. MARYAN SMOLUCHOWSKI m. c.,
prisent dans la stance du 4 Juillet 1910.

The phenomena of viscosity and of thermal transpiration in ra-
refied gases, which had aroused general interest thirty years ago
and which partly had inspired Maxwelll) for his famous paper
«On Stresses in Rarefied Gases*, have been entirely neglected since
that time, although there remained enough to be done; only recently
some important researches on this subject have been published by
Mr. Knud sen 2, advancing our knowledge to the range of lowest
pressures, hitherto not investigated so exactly. Without entering in
a discussion of the experimental part of these researches, | should
like to offer here some theoretical remarks, as the theoretical treat-
ment of the problem in Mr. Knudsen’s papers, although rather
elaborate, seems to me to lack clearness and rigour.

The method employed by him is the old method used by
Maxwell in his first researches, by Clausius, 0. E. Meyer
and many others; it is based on the supposition of molecules acting
like elastic spheres, on the notion of the mean length of free path
and on the assumption that Maxwell's law of distribution of
velocities can be applied in its ordinary form.

Now it is well known 3) that all such calculations — as far as
viscosityz thermal conductivity and diffusion are concerned — are

#®» Maxwell, Scientific Papers Il p. 681; Phil. Trans. 170, 231, 1879.
2 Knudsen, Ann. d. Phys. 28, 75, 1909; 31, 205, 633, 1910.
3 Boltzmann, Wien. Sitzgsber. 8), 117, 1880; 84, 40, 1230, 1881.
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defective. Maxwell and Boltzmann have shown that the law
of distribution of velocities is modified when the above phenomena
are going on. and that the neglection of this factor — as involved
in these calculations — implies errors of the same order of magni-
tude as the final results. No one has succeeded hitherto in carrying
out such calculations, on the elastic sphere hypothesis, in a tolerably
correct mannerl); in the present state of knowledge, the best we
can do is to follow Maxwell's method, explained in his later pa-
pers (especially the one referred to above), where, availing himself
of the celebrated inverse-fifth-power hypothesis, he is able in a
comparatively easy manner to take account of the altered form of
the law of distribution. Experimental evidence shows that the mole-
cules of a gas are something intermediate between what is assumed
in both theories, but Maxwell's assumption has the advantage
that a theory can be built on its foundation that is free from in-
herent contradiction.

I would not desire to go so far as to deny any value to cal-
culations based on the old defective method, provided they are
considered only as heuristic means for deriving empirical formulae;
and provided one does not expect to find any quantitative agreement
between calculation and experimental results. But the objections to
some of Mr. Knudsen’s calculations in his second paper, relative
to thermal transpiration, are of a more serious character, since the
reasoning there is based on a foundation which is the very point
of failure of the old method.

The author imagines a gas contained in a tube whose tempera-
ture varies in the direction from one end to the other in linear
progression. He evaluates the quantity of tangential momentum
communicated to the wall by the molecular impacts, assuming as
usually equal probability of molecular motion in any direction; he
finds it to be different from zero, as the molecules coming from
the hotter parts carry with them greater momentum; whence the
conclusion is drawn that the gas must exercise a tangential pres-
sure on the wall, or it must have an inverse tangential motion to

* Except for diffusion, where exact general formulae have been given by
Lange vin: C. R. 140, 35, 1905; Ann. chirn. phys. 5, 245, 1905. An interesting,
although insufficient, attempt at settling the difficulty has been made by Jeans:
Phif. Mag. 8, 670, 1904
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begin with. Now, an-analogous calculation would show the mo-
mentum carried through any cross section of the gas to be different
from zero (to be proportional to

NmlQ d% |,
al

in Mr. Knudsen’s notation), which in the same way would prove
the existence of a gradient of pressure along the axis of the tube,
quite independent of its radius and of the density of the gas.

Here we perceive the fallacy of this method. It is the same
point which is emphasized in Kirch ho ff's Lectures on Heat p.
210 and in Boltzmann's Gastheorie | p. 93 —97: if for a gas
with linear slope of temperature the change in the law of distribution
of velocities is neglected, either the pressure comes out unequal or
the gas cannot be at rest. By following Maxwell’s (loc. cit) and
Boltzmann's method (Gastheorie I p. 185) one can easily show
indeed that the ordinary form of the law of distribution of velo-
cities is changed in this case and becomes

(1)ees J(E>*hE)dEdrjdE =
= A C'in | ag+ b|(|*+ + ?2)}dedr, d$

where the coefficient a can be chosen so as to make the motion in
the direction of X disappear, while the coefficient b is connected
with the gradient of temperature and accordingly with the conduc-
tion of heat. Here the normal pressure or momentum carried
through any plane:
+°0 r r
/ £l dr\dC = m [/ r2fd”rdrjd”® = m [/ £2 dt; dr\ dt,

is found to be equal everywhere and identical with the constant
gas pressure.

According to Maxwell, stresses in the interior of a gas exist
only in the case when the gradient of temperature is not constant;
in the case above considered there must also exist a tangential
current along the surface of the wall of the tube, but it is caused
only by the fact that such a wall acts like an incompletely re-
flecting mirror. As Maxwell puts it, the fraction (1 —f) of the
incident molecules is reflected with unchanged velocity (reversed
normal component only), while the fraction f is absorbed by the

1*
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wall and emitted again in accordance with the normal law of dis-
tribution. Thus the partial restoration of the ordinary law of distri-
bution. instead of (1), at the surface is the real cause of the tang-
ential current along the wall.

Knud sen appears not to have been acquainted with Maxwell's
and Reynolds’ researches, when he published his first two papers,
but his hypothesis as to the nature of the wall is quite analogous
to that of Maxwell, except that he puts a priori /= 1, which
seems to be near the truth, but is perhaps an unnecessary limitation
of generality. For the rest, the result obtained by him, concerning
the gradient of pressure produced in a capillary tube by thermal
surface-currents, happens to be of the right order of magnitude;
nevertheless, as has been said, we cannot consider the demonstra-
tion satisfactory. Hitherto only Maxwell's formula (77) loc. cit,
connecting the effects of slipping and of thermal transpiration, can
be accepted as established in a satisfactory manner and even this
probably is not quite exact, as it rests on simplifying suppositions
as to the behaviour of the gaseous surface layer. Certainly it does
not hold for high rarefactions, where other laws set in which will
be explained later on.

I may be allowed to insert here some remarks relating to a
necessary consequence of these phenomena, viz. the increase of heat
transferring power of gases, as produced by the molecular surface
currents. The question arises whether any observable effects may
possibly result from that source.

In order to get an approximate idea of the order of magnitude
of this effect, let us consider a gas contained between two infinite
parallel plates whose distance be 1 and whose temperature varies
in linear progression with y. Then if the axis X is normal to the
plates, the surface effects are defined according to Maxwell’s
formula (s8) (loc. cit.) by the equation:

() .. o- QA =at 96- 3G-m— -
! dx 4 qOdy 2 qgQdydx

where v is the velocity of the gas in the direction of Y, [i the
coefficient of viscosity, and G the coefficient of slipping:

@®)

e=W rA?-")
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For the interior of the gas we have the approximate hydrodynamical
equation:
dp d*Vv

and the condition of thermal equilibrium is:

m tire + OO\ 36 A
(6)" " i,(s*>+ 5?2)+ '<s% = o
where x denotes the conductibility, s the specific heat.
Equation (4) and the surface conditions (2) for both plates are
fulfilled if we take

2p x2— Ix— IG
<6)" T= 4 s, ¥fj e

where e denotes the right-hand member of equation (2).
If the space occupied by the gas is closed, the whole quantity
passing through a cross section

Jvd x
must be zero, whence:
m 3£ = 12efl
{} -~ dy 2+ 61G

In order to obtain an approximate solution of (5), let us sup-
pose the dimensions of the space in the direction of the axis Y to
be large in comparison with the X dimensions, so that the tem-
perature can be taken as:

0= ay-\-<p(x),
where a is constant and o will be found by means of (5). Thus
we get:
, A Xa — 2Ix3+ . I12x2
(33,.. e:a,,+-24 |,+XGJg
if we denote by A the quantity gsea'x.

Now the total quantity of heat carried by the molecular con-
vective currents will be

gs / vOdx,
(0]
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whereas the quantity transmitted by conduction is

The evaluation of this integral shows that the molecular currents
will increase the heat transmission by a fraction amounting to

We see this effect is also present at high pressures and in wide
vessels, whereas the other stress effects as a rule are vanishing
except at low pressures and in capillary tubes; its amount however
must be very small under ordinary circumstances and to demon-
strate experimentally its existence will not be an easy task.

As mentioned before, Maxwell's calculation cannot be applied
in the case of great rarefaction, when the mean free path is comparable
with the diameter of the tube, since it involves the supposition that
the state of the gas does not change appreciably in such lengths.
In this case the degree of approximation to which we have gone in
accounting for the behaviour of the surface layer of the gas is not
sufficient and our calculations would require profound modifications
which we will not endeavour to effect. Mr. Knud sen's calcula-
tions of course are far from applying exactly to this case; they ne-
cessitate the introduction of rough approximations and of empirical
assumptions.

Things are getting again plain and intelligible when the rare-
faction is so great that the bore of the tube can be considered
small compared with the mean free path; in this case the influence
of the mutual encounters of the molecules can be altogether ne-
glected in comparison with the impacts on the walls of the tube,
and a simple law of distribution will prevail. The state of the gas
in this case is analogous to the radiation in a closed vessel. This
case which for the first time has been treated theoretically by
Reynolds, has been investigated in detail by Mr. Knud sen
and has been called by him ,Molekularstr(3mungu, as contrasted
with the ,innere Reibungsstromunga, going on at higher pressures.
It will be analysed more fully in what follows, by use of a simpler
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and more exact .analysis which will lead to similar but somewhat
modified results.

Let us consider the case of ordinary transpiration through a
tube of any form of cross section, at uniform temperature; let us
first admit with Knud sen that: f~ 1, or that the walls act
wholly as diffuse reflectors. Then a surface element dS' of the wall
of the tube will emit a quantity of incident molecules equal to
vdS", as if they were entering through an aperture dS' from an
outer space filled with gas in state of rest and thermal equilibrium.

Thus, as Knudsen rightly observes, the quantity

;]/—cosQlNr)7dS' do)

will be emitted in the solid angle da> in strict analogy with
Lambert’s Cosine-law. The number of impacts v is connected
with the number of molecules in unit volume n of the fictitious
gas by the known relation:

r < r r+°° nc
GO " - J " v J " w - nm

where /is Maxwell’ probability function
f —n "~y 2er"PC2+"2+"2

and c is the square root of the mean square of velocities.

If the density of the gas is increasing (towards the right hand
side) along the axis of the tube, which henceforth will be supposed
to be the X axis, then the quantity v will be variable and we shall
get the number of molecules passing from the right to the left,
through an element dS, by forming the integral

/
(1D ... /= el dk():

where r is the radius vector between the elements dS and dS', x'
its component along the axis, (nr) and (n'r) the angles between this
radius vector and the normals to these elements.

Now we have evidently
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where dco is the solid angle under which dS' is seen from the
point dS. This can be put equal to sincpdcpde, if @ is the angle
designed before by (nr), and e the angle between two planes laid
through the normal to dS, a fixed one and a variable one, con-
taining r. Thus we have, expanding v(x/):

7 dS C o \ (W “3v \ X'2S* \ dcp de =
(12) 1= ~nj sm(p™S(pf (X)+ * s»i+ -2 T* + eoo

= v(xX) dS -{- ~ J'X" singp coscp dtp de -f-...

This expression may be used, first, to find the condition which
obtains for a steady state. In this case the number of molecules
impinging on an element of this wall must be equal to the number
of emitted molecules. Therefore, if we identify dS with an element
of surface of the wall, we must have

I = v(x)dS
for any value of #, which evidently will be fulfilled if v is a li-
near function of #, as the integral belonging to S‘)’( containing equal

positive and negative values of x', must vanish. Thus we see that
the density and the pressure in the stationary state must be linear
functions of x.

Now by means of formula (12) let us calculate the number of
molecules which are passing through an element of the cross section,
from right to left. Then < is the angle between r and X , and we
have x' = i?ctg<p, if R is the projection of r on the plane of the
cross section, and thus (12) reduces to

i1dv r r
I=dS v+ JI9x I R cos2mpdcp de

where the integration of c,os2cpdcp “between the limits o and

can be effected. A corresponding quantity with negative sign ot
% is to be taken for the molecules crossing from left to right and
the resultant flux of molecules passing from right to left will be:

v n_F
= %dS5 [/ Rde
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The mass of gas passing through the whole cross section is by
use of (10)

14)... =\ f fdS fRde = - ~ A A =
(14) Q=% 3y SfdsfrRde =2 ~nd

Q@Pz Pi
2\2n\ Po

where A is an abbreviation for the triple integral and pi;~2 denote
the pressures at the ends of the tube.

In order to evaluate A. let us first suppose a tube with circular
bore of radius a. Then A (which is the mean distance between the

point dS and the periphery, multiplied by 2n) is easily trans-
formed [see fig. (1)] into

K+E»«KE»
J J J o \al-(-b2-{- 2abcos0

We see that, contrary to Knudsen's opinion, the molecular
current has different intensity in different points of the cross section.
The greatest value

corresponds to the middle (for b— o), the smallest value
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to the surface of the wall (for b= a).

The integral could be reduced to elliptic integrals, but if we
only wish to know the whole flux Q, we better transform it by
considering that Rde (in the general case of any form of cross
section) can be put

Rde = ds cos(nR)

where ds is an element of the periphery. Now we may divide the
cross section into triangular sectors, corresponding to infinitesimal
increments of the angle (nR) which may be called a for brevity. Their
area will he dS = ~E2da, if R denotes now the whole length of
the chord belonging to the angle a. Thus we get

(15)

By applying this expression to the circle we get

16 a3Ji

(a6) . .. A — an 3

and the whole mass streaming through a circular tube will be:

arn . . .

In the general case, when the surface element of the wall dS'
is partially reflecting, partially absorbing and radiating, it will emit
only fvdS*' molecules in the manner above described; the rest,
@ —f)vdS\ are molecules that have been reflected at the point
dSf and in reality are coming from a greater distance. The fraction
/ of them have been radiated from the point of intersection of the
wall with the reflected direction of the ray r, the rest originate at
still greater distance. By combining them with the corresponding
molecules which approach the element dS from the other side, we
easily see that molecules having undergone one reflection contribute
to the flux Q three times as much as those molecules that have
undergone no reflection; indeed the distance (in x) of the correspon-
ding points of emission is three times as great. Molecules which



305

were twice reflected, act five times as intensively. Adding them all
we get, if we denote by QO the amount calculated before (17)

Q=/[1+ 3(1-/) + 51 _/)»+ ...]1Q0

The value of this expression is found by putting 1 —j — 6:

Q— 1+J- — 2

1— % /
and we have finally:
(,8) ... Q= *~r*yra*\[/?20P »-Pi
f 3 F R0 L

It is satisfactory to learn that Knud sen's formula, found by
him to be in good agreement with experiments, is identical with
(17), but his methods of demonstrating it (loc. cit., p. 105—114)
seem to me both rather misleadingl.

The difference in the general result (14) and (15) and Knud sen's
formula p. 108 appears, when we calculate Q for tubes of other
forms of cross section. For a rectangle with sides a, /? we get:

2\
9) ... A= 2 N

+oap L,g(?+ [/1+ ()7 -

which for a quadratic cross section takes the simpler form:

(20) ... A= 4«s log (I + J2) + — N = 2-973 as;
whereas according to Knudsen we should have

Vo Pi — Pi
- W \ Po L

which corresponds to a value A = %a3.

4) Thus for instance the momentum parallel to X carried through unit surface
of the plane XZ by a gas which is streaming with velocity v in the direction
X, is not the quantity B calculated p. 106, but: \nmvQ. On the other hand,
the stream v is not the same in all points of the cross section and Maxwell’s
law is true for the emitted molecules, but not for the incident ones.
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Knudsen?’ result, implying inverse proportionality of Q to the
circumference for a given area of cross section, appears improbable
a priori as in this case Q could be indefinitely diminished by
cutting narrow radial gaps in infinite number in the walls of the
tube.

It is worth noticing that the velocities of the molecules in a
certain element of volume are not distributed according to Max-
well’s law. The probability of velocities £, £ at the point

z is defined by the value of the density function v(x'), where
x'is the distance (along the axis X) of the point of intersection
between the direction — £, — 77, — £ and the wall of the tube.
We have:

and in the case of a circular tube: y'* z'2= a2, wherefrom we
find x'\ thus the probability of 77, £ will be proportional to:

(21) . . . + +

£yy-\-U~*
v2+ £2
where 1~-1 is constant.
Sx)

We satisfy ourselves easily that this fulfills the well known
Maxwell-Boltzmann condition for a stationary state of the gas:

(22) ... A1 + vsl-+ A~ g= fJiff -AA)gbdbde

when we neglect the integral accountingy for the influence of the
mutual encounters, as we are entitled to do in our case.

The law expressed by (14) can easily begeneralized for a
vessel of any form, provided its dimensions are small in compar-
ison with the mean free path.

In this case, the only distinctive quality of different kinds of
molecules being their mass, the method of dynamical similarity can
be applied, which easily shows that the volume passing through
the vessel, for given values of the pressure at both ends, must be
inversely proportional to the molecular weight of the gas and dir-
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ectly proportional to the square root of the temperature. The pro-
cess is thus quite analogous to that of effusion through a small hole,
as has been demonstrated long ago by Graham's and Reynolds’
experiments on diffusion of gases through porous materials, which
proved the validity of that density relation, for porous bodies of
sufficiently fine texture.

Besides, as mutual encounters are neglected, every constituent
in a mixture of gases must move quite independently of the others;
this gives rise to the phenomenon of «atmolysis» (Graham, Chri-
stiansen). Thus we see that the phenomena of interdiffusion of ga-
ses are completely changed when the conditions of the present
case are fulfilled. At higher pressures the process of mutual diffu-
sion of gases must also be modified in the neighbourhood of the
walls of the vessel, namely by the friction against the wall, and
there must exist a surface effect, analogous to the discontinuity of
temperature in conduction of heat, but its theory is much more
complicated and its experimental demonstration, like all experiments
on diffusion, will offer greater difficulties.

Let us consider now the case when the temperature of the walls
of the tube is varying with x. By applying exactly the same rea-
soning as before, we again get the formula:

Now. if the tube is closed at both ends, or if in any way the
passage of the gas is prevented, we must have $= o and v = const.,
which implies according to (10) that the pressure will increase to-
wards the hotter end, in proportion to the square root of the tem-
perature. This relation is characteristic of thermal transpiration at
low pressures in narrow channels, while in the other extreme case,
when the diameter of the channel is large compared with the free
path, Maxwell’s formula (77) or a relation of similar form must
be applied.

The same result has been deduced in a different way by
Knud sen on pp. 222—223, and has been verified to some degree
of approximation by his experiments; on a larger scale it has been
confirmed by Reynolds’ researches on thermal transpiration
through Meerschaum-plates etc., in 1879.

In such porous materials of course the channels cannot be con
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sidered as cylindrical tubes; but if the analogy of a rarefied gas
with the phenomenon of radiation is considered, the above result
can easily be generalized so as to apply to a vessel of any form.
In a closed vessel of any shape radiation is known to be in thermal
equilibrium when the density of incident (or emitted) radiation is
everywhere the same. In our case the quantity of incident radia-
tion corresponds to the number of incident molecules per unit time
and unit surface, emitted radiation to the emitted molecules which,
if the walls allow no passage, are both identical with v. The condi-
tion of stationary state requires therefore v = const, everywhere, which
with the aid of (10) proves the above proposition. This will hold not
only on the assumption that f — 1, but also for any reflective or ab-
sorptive power of the surface.

The apparent decrease of thermal conductivity of gases when
rarefied is due, as | have shown in a series of papersl), to a sur-
face phenomenon, analogous to the slipping of gases discovered by
Kundt and Warburg. The kinetic theory of gases shows be-
sides? that at very low pressures, when the mean free path is
much greater than the dimensions of the vessel in which con-
duction is going on, another law must come into action, the trans-
mitted heat being proportional then to the gas pressure and inde-
pendent of the thickness of the layer of gas.

Some experimental evidence in support of this law has been
given by Mr. Brush and recently much ampler material is avail-
able, owing to a careful investigation by Messrs. Soddy and
Berry 3.

The form of this law being established, the question arises as
to the value of the factor of proportionality, or, as the last-named
authors put it: of the quantity of heat. Q, reduced to unit of hot

surface, one degree of difference of temperature, and oo1 mm of
mercury pressure.

* Ann. d. Phys. 64, 101, 1898; Wien. Sitzgsber. 107, 304, 1898; 108, 5,
1899; Phil. Mag. 46, 199, 1898.
See also Gehrcke, Ann. d. Phys. 2, 102, 1900.
* Wien. Sitzgsber. 107, 328, 1898.
s) Brush, Phil. Mag. 45, 31, 1898.
Soddy and Berry, Proc. Roy. Soc. 83 A, 254, 1910.
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By a roughly approximative reasoning (assuming that the mole-
cules can be divided in three classes, moving parallel to the axes)
I had found that the flux of conducted heat (for 1° and 1 cm2
ought to be of the order of magnitude: "Qsc where q is the den-
sity, s the specific heat at constant volume, ¢ the mean velocity.
This expression corresponds to the case when every molecule, by its
impact on the solid wall, assumes the vis viva corresponding to the
temperature of the latter, but it is to be multiplied by

\_ -]

i+/?
if only a partial equalisation of temperature is taking place, accord-
ing to the formula:

$ -d o= iS(Om- 0 o)

where 0O 6m. & denote the temperature of the wall, of the impin-
ging, and of the emitted molecules.

Messrs. Soddy and Berry use the same formula with a slight
difference of notation, putting

where n is the number of molecules per cms at oxo1 mm pressure,
N the number contained in one gram. H the molecular heat at
constant volume, G the mean velocity.

Their experiments enabled them to determine the ratio of the
observed transport of heat K to the calculated value Q for eleven
gases, and from these numbers, ranging between 109 and 0725,
they intend to draw conclusions relating to the factor /2 Now these
results appeared to be of a somewhat unexpected character, since
only values inferior to unity were supposed to be admissible. But
as soon as exact numbers are in question, such a rough estimate
as that referred to above is evidently insufficient and an exact
calculation ought to be made.

Consider a gas contained between two parallel horizontal plates,
the upper one at temperature 02, the lower one at temperature 0X
(one degree lower). It is convenient then, instead of making the
above supposition with respect to /?, to follow Maxwell's assump-
tion as to the reflected and emitted molecules. The whole number
of molecules in unit volume n will now be composed of four parts:
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nx molecules moving upwards withmean velocity cx

n[ r ” downwards » n n ci
nt " " upwards » ” " C2
ri2 . ” downwards ” ” ” c2

where and c2 are the velocities corresponding to the temperatures
and o2
These four kinds make together

(23) ... n= nx-)-n2-j- -]-w2;

they do not undergo any mutual influence, except at the impacts
on the plates, and each will move with velocities distributed accord-
ing to Maxwell’s law.

The number of impinging molecules is given by (10); but here
we denote by n the number of molecules moving in one direction
only, and therefore we must take

2nc

(24)- oo *= pfSs

Now considering the process at the lower plate, we see that the
molecules nx are made up of the «reflected» fraction (1 —/) of
the incident molecules n[ and of the fraction / of the whole number
of molecules which are impinging on the lower plate; whence:

(25) ... = (l—fynmc,+ /K ci
and similarly
(26) ... n2c2= (@1 — f)n'2c2

By adding these two relations we get a solution expressing the
fact that no one-sided current takes place:

@7 ... ntecx-j- n2c2 = nlcl+ n2c2

This equation and (26) and a similar one for the molecules
moving in reverse direction take the following form:
(«i —K)g==(r— w)a
= (1—FPn2

« = ('—1)nx
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whence follows:

n2c2 — n, ¢,
(28) e=m ] M\ex= w2e2= (1 —/)WCG

The quantity of heat lost by the -lower plate is:

2 WS 2 Ws
Q= )1/7bji fra (M2r2 ~2™) - (wica ~-wi Q)] == 7671 @ @®)fn\ad

Now relations (23) and (28) give

W @
n« =
2 —/ Ci+ @

so that we have:

(29) Q= 2fmns c2
48712 ;) A @
If we put
2gc2
(
and f = 1 — /2 we finally get:
(30)" " e=pSv~h|

This is the exact value for conduction of heat in a highly ra-
refied gas; we see it is greater than the value calculated before.

All the numbers given by Messrs Soddy and Berry for ~ ought
\Y

to be multiplied by the factor -iji= 07236. They will range be-
tween 079 for argon and 0*18 for hydrogen, which shows that the
coefficient /? is never to be neglected; in other words, the inter-
change of energy on impact is always imperfect. The order of gases:
A, Ne. N2, 02, CO, N20, C2H2, C02, CH4, He, H2, seems to
suggest the following rule: the interchange of energy is worse for
smaller molecular weights and it is worse for polyatomic and di-
atomic molecules than for monatomic ones. The first part of this
rule is easily intelligible; a simple mechanical reasoning showsy

* Wien. Sitzgsber. 107, 824, 1898.
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that the interchange of energy between colliding spheres is the
more imperfect the greater the difference of their masses, and here
the wall was composed of the heavy Pt molecules.

The second part is also in accordance with other phenomena of
conduction of heat, showing that intramolecular energy is compar-
atively leas disposed to equalisation by single impacts than energy
of progressive motion.
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