e-Informatica

sssss

Wroctaw University
of Science and Technology

Editors
Zbigniew Huzar (Zbigniew. Huzar@pwr.edu.pl)
Lech Madeyski (Lech. Madeyski@pwr.edu.pl, http://madeyski.e-informatyka.pl)

Department of Software Engineering, Faculty of Computer Science and Management
Wroctaw University of Science and Technology, 50-370 Wroctaw, Wybrzeze Wyspianskiego 27,
Poland

e-Informatica Software Engineering Journal
www. e-informatyka.pl, DOI: 10.5277 /e-informatica

Editorial Office Manager: Wojciech Thomas

Proofreader: Anna Tyszkiewicz

Typeset by Wojciech Myszka with the ITEX 2¢ Documentation Preparation System

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,

transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publishers.

© Copyright by Oficyna Wydawnicza Politechniki Wroctawskiej, Wroctaw 2017

OFICYNA WYDAWNICZA POLITECHNIKI WROCLAWSKIEJ
Wybrzeze Wyspianskiego 27, 50-370 Wroctaw
www.oficyna.pwr.edu.pl;

e-mail: oficwyd@pwr.edu.pl; zamawianie.ksiazek@pwr.edu.pl

ISSN 1897-7979

Print and binding: beta-druk, www.betadruk.pl

http://madeyski.e-informatyka.pl
http://www.e-informatyka.pl
http://dx.doi.org/10.5277/e-informatica
http://www.oficyna.pwr.edu.pl
mailto:oficwyd@pwr.edu.pl
mailto:zamawianie.ksiazek@pwr.edu.pl
http://www.betadruk.pl

Editorial Board

Co-Editors-in-Chief

Zbigniew Huzar (Wroctaw University of Science and Technology, Poland)
Lech Madeyski (Wroctaw University of Science and Technology, Poland)

Editorial Board Members

Pekka Abrahamsson (NTNU, Norway)

Sami Beydeda (ZIVIT, Germany)

Miklés Biré (Software Competence Center
Hagenberg, Austria)

Markus Borg (SICS Swedish ICT AB Lund,
Sweden)

Pearl Brereton (Keele University, UK)

Mel O Cinnéide (UCD School of Computer
Science & Informatics, Ireland)

Steve Counsell (Brunel University, UK)
Norman Fenton (Queen Mary University

of London, UK)

Joaquim Filipe (Polytechnic Institute

of Setiibal/INSTICC, Portugal)

Thomas Flohr (University of Hannover,
Germany)

Francesca Arcelli Fontana (University

of Milano-Bicocca, Italy)

Félix Garcia (University of Castilla-La Mancha,
Spain)

Carlo Ghezzi (Politecnico di Milano, Italy)
Janusz Gérski (Gdansk University of Technology,
Poland)

Andreas Jedlitschka (Fraunhofer IESE,
Germany)

Barbara Kitchenham (Keele University, UK)
Stanistaw Kozielski (Silesian University

of Technology, Poland)

Ludwik Kuzniarz (Blekinge Institute

of Technology, Sweden)

Pericles Loucopoulos (The University

of Manchester, UK)

Kalle Lyytinen (Case Western Reserve
University, USA)

Leszek A. Maciaszek (Wroctaw University

of Economics, Poland

and Macquarie University Sydney, Australia)
Jan Magott (Wroclaw University of Science and
Technology, Poland)

Zygmunt Mazur (Wroclaw University of Science
and Technology, Poland)

Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Miiller (IDOS Software AG, Germany)

Jiirgen Miinch (University of Helsinki, Finland)
Jerzy Nawrocki (Poznan University

of Technology, Poland)

Mirostaw Ochodek (Poznan University

of Technology, Poland)

Janis Osis (Riga Technical University, Latvia)
Mike Papadakis (Luxembourg University,
Luxembourg)

Kai Petersen (Blekinge Institute of Technology,
Sweden)

FLukasz Radliniski (West Pomeranian University
of Technology in Szczecin, Poland)

Guenther Ruhe (University of Calgary, Canada)
Krzysztof Sacha (Warsaw University

of Technology, Poland)

Rini van Solingen (Drenthe University,

The Netherlands)

Miroslaw Staron (IT University of Goteborg,
Sweden)

Tomasz Szmuc (AGH University of Science and
Technology Krakéw, Poland)

Iwan Tabakow (Wroctaw University of Science
and Technology, Poland)

Guilherme Horta Travassos (Federal
University of Rio de Janeiro, Brazil)

Adam Trendowicz (Fraunhofer IESE, Germany)
Burak Turhan (University of Oulu, Finland)
Rainer Unland (University of Duisburg-Essen,
Germany)

Sira Vegas (Polytechnic University of Madrit,
Spain)

Corrado Aaron Visaggio (University of Sannio,
Italy)

Bartosz Walter (Poznan University

of Technology, Poland)

Bogdan Wiszniewski (Gdansk University

of Technology, Poland)

Marco Zanoni (University of Milano-Bicocca,
Italy)

Jaroslav Zendulka (Brno University

of Technology, The Czech Republic)

Krzysztof Zielinnski (AGH University of Science
and Technology Krakéw, Poland)

Contents

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble
of Classifiers

Sangeeta Lal, Neetu Sardana, Ashish Sureka
Experience Report: Introducing Kanban Into Automotive Software Project

Marek Majchrzak, Eukasz Stilger
Systematic Literature Review on Search Based Mutation Testing

Nishtha Jatana, Bharti Suri, Shweta Rani
Efficiency of Software Testing Techniques: A Controlled Experiment Replication
and Network Meta-analysis

Omar S. Gomez, Karen Cortés-Verdin, César J. Pardo
NRFixer: Sentiment Based Model for Predicting the Fixability
of Non-Reproducible Bugs

Anjali Goyal, Neetu Sardana e e
Machine Learning or Information Retrieval Techniques for Bug Triaging:
Which is better?

Anjali Goyal, Neetu Sardana e

e-Informatica Software Engineering Journal, Volume 11, Issue 1, 2017, pages: 7-38, DOI 10.5277/e-Inf170101

ECLogger: Cross-Project Catch-Block Logging
Prediction Using Ensemble of Classifiers

Sangeeta Lal®, Neetu Sardana”, Ashish Sureka™”

* Jaypee Institute of Information Technology, Noida, Uttar-Pradesh, India
** ABB Corporate Research, Bangalore, India

sangeeta@jiit.ac.in, neetu.sardana@jiit.ac.in, ashish.sureka@in.abb.com

Abstract

Background: Software developers insert log statements in the source code to record program
execution information. However, optimizing the number of log statements in the source code is
challenging. Machine learning based within-project logging prediction tools, proposed in previous
studies, may not be suitable for new or small software projects. For such software projects, we can
use cross-project logging prediction.

Aim: The aim of the study presented here is to investigate cross-project logging prediction methods
and techniques.

Method: The proposed method is ECLogger, which is a novel, ensemble-based, cross-project,
catch-block logging prediction model. In the research We use 9 base classifiers were used and
combined using ensemble techniques. The performance of ECLogger was evaluated on on three
open-source Java projects: Tomcat, CloudStack and Hadoop.

Results: ECLoggerpagging, ECLOZEET Averagevotes and ECLoggeryajorityvote Show a considerable
improvement in the average Logged F-measure (LF') on 3, 5, and 4 source—target project pairs,
respectively, compared to the baseline classifiers. ECLogger averagevote Performs best and shows
improvements of 3.12% (average LF') and 6.08% (average ACC — Accuracy).

Conclusion: The classifier based on ensemble techniques, such as bagging, average vote, and
majority vote outperforms the baseline classifier. Overall, the ECLogger averagevote model performs
best. The results show that the CloudStack project is more generalizable than the other projects.

Keywords: classification, debugging, ensemble logging, machine learning, source code

analysis, tracing

1. Introduction

Logging is an important software development
practice that is typically performed by inserting
log statements in the source code. Logging helps
to trace the program execution. In the case of
failure, software developers can use this tracing
information to debug the source code. Logging
is important because this is often the only infor-
mation available to the developers for debugging
because of problems in recreating the same exe-
cution environment or because of unavailability
of the input used (security/privacy concerns of
the user). Logging statements have many applica-
tions, such as debugging [1] workload modelling

[2], performance problem diagnosis [3], anomaly
detection [4], test analysis [5,6], and remote issue
resolution [7].

Source code logging is important, but it has
a trade-off between the cost and the benefit
[8-11]. Excessive logging in the source code can
cause performance and cost overhead. It can also
decrease the benefits of logging by generating too
many trivial logs, which can potentially make
debugging more difficult by hiding important
debugging information. Excessive logging can
also cause a severe performance bottleneck for
a system. In a recent blog, inefficient logging
was considered to be a major factor for Tomcat
performance problems [12]. Similarly to exces-

Sangeeta Lal, Neetu Sardana, Ashish Sureka

sive logging, sparse logging is also problematic.
Sparse logging can make logging ineffective by
missing important debugging information. Shang
et al. [13] reported an experience from a user
who was complaining about sparse logging of
catch-blocks in Hadoop. Hence, it is important to
optimize the number of logging statements in the
source code. However, previous research shows
that optimizing log statements in the source code
is challenging, and developers often face difficul-
ties with this task [8-11].

Several recent studies have proposed tools
and techniques to help developers optimize log
statements in the source code by automatically
predicting the code constructs that need to be
logged [8,10,11]. These techniques learn a pre-
diction model from the history of the project
(applying supervised learning from annotated
training data) to predict logging on new code
constructs. Predicting logged code constructs
will work well if a sufficient amount of training
data is available to train the model. However,
many real-world open-source and closed-source
applications and new or small projects do
not have sufficient prior training data to con-
struct the prediction model. There are sev-
eral long-lived and large projects that have
collected massive amounts of data. One can
use training data from these project(s) (source
project(s)) to predict logging on a particular
project (target project) of interest, i.e. one
can perform cross-project logging prediction.
Cross-project prediction is also called transfer
learning, which consists of transferring predictive
models trained from one project (source project)
to another project (target project). Cross-project
logging prediction can have several benefits:
1) multiple projects can be used for training
the model, and hence, good practices can be
learned from many projects, and 2) the model
can be refined offline over a period of time
to improve the performance of logging predic-
tion.

Cross-project logging prediction is an impor-
tant and a technically challenging task. There
are two main challenges in cross-project log-
ging prediction: 1) vocabulary mis-match prob-
lems and 2) differences in the domain of nu-

merical attributes. The vocabulary mis-match
problem can arise due to the use of different
terms in the source code of different projects.
For example, the Tomcat project has 119 unique
exception types, whereas the Hadoop project
has 265 unique exception types. Our analysis
of these exception types shows that 193 excep-
tion types present in the Hadoop project do not
exist in the Tomcat project. Similarly, the do-
main of numerical attributes may not be the
same in different projects. For example, the av-
erage SLOC of try-blocks associated with logged
catch-blocks is 6.98 and 10.65 for the Tomcat
and CloudStack projects, respectively. Hence,
it is important to create a prediction model
that uses generalized properties for cross-project
logging prediction rather than domain-specific
properties.

In this paper, the Authors propose ECLogger,
a cross-project, catch-block logging prediction
framework that addresses the aforementioned
challenges. To address the first challenge (vo-
cabulary mis-match problem), ECLogger per-
forms data standardization prior to learning
the model. Data standardization helps to nor-
malize the data in a specific range and hence
helps to address the problem of data het-
erogeneity [14]. To address the second chal-
lenge (non-uniform distribution of numerical at-
tributes problem), ECLogger, uses an ensem-
ble of classifiers-based approach. Ensemble-based
techniques capture the strength of multiple
base classifiers [15]. In this work, 9 base clas-
sifiers (AdaBoostM1, ADTree, Bayesian network,
decision table, J48, logistic regression, Naive
Bayes, random forest and radial basis func-
tion network) were used. ECLogger combines
these algorithms with three ensemble techniques,
i.e. bagging, average vote and majority vote.
8 ECLoggerpagging, 466 ECLogger averagevote and
466 ECLoggeryajorityvote models, i.e. a total of
940 models are created. The performance of
ECLogger on three large and popular open-source
Java projects: Tomcat, CloudStack and Hadoo-
pare evaluated. The experimental results reveal
that ECLoggerpagging, ECLOZZeTr Averagevote and
ECLoggernajorityVote Show maximum improve-
ments of 4.6%, 7.04% and 5.39% in the logged

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 9

F-measure, respectively, compared to the baseline
classifier.

2. Related work and novel research
contributions

In this section, previous works closely related to
the study presented in this paper are discussed.
They are organized and presented in multiple
lines of research. Then the novel research contri-
butions of this work in the context of existing
work is presented.

2.1. Logging applications

Log statements present in the source code generate
log messages at the time of software execution.
Log statements and log messages were widely used
in the past for different purposes [3,5-7,13,16-18|.
Shang et al. [13] used log statements present in
a file to predict defects. Shang et al. proposed
various product and process metrics using log
statements to predict post-release defects. Na-
garaj et al. [3] used good and bad logs of the
system to detect performance issues in the system.
Nagaraj et al. [3] developed a tool, DISTALYZER,
that helps developers in finding components re-
sponsible for poor system performance. Xu et al.
[18] worked on mining console logs from a dis-
tributed system at Google to find anomalies in
the system. Yuan et al. [17] used log informa-
tion to find the root cause of a failure. Yuan
et al. developed a tool, SherLog, that can use
log information to find information about failed
runs without any re-execution of the code. Log
messages are also helpful in fixing bugs, as the
empirical study performed by Yuan et al. [1]
showed that bug reports consisting of log mes-
sages were fixed 2.2 times faster compared to
bug reports not consisting of log messages. Log
messages are also useful in test analysis [5, 6],
remote issue resolution [7], security monitoring
[19], anomaly detection [4,18], and usage analy-
sis [20]. Many tools have also been proposed to
gather log messages [21,22]. Our work is comple-
mentary to these studies, focuses on improving
logging in the catch-blocks, and can be benefi-

cial for studies that work on analysing the log
information.

2.2. Logging code analysis and
improvement

Logging statements are very important in soft-
ware development (refer to subsection 2.1), and
hence, logging improvements have attracted at-
tention from many researchers in the software
engineering community [1,8-11,17,23,24]. Yuan
et al. [25] performed a study to identify a set of
generic exception types that cause most of the
system failures. Yuan et al. [25] proposed a con-
servative approach to log all of the generic excep-
tion types. Fu et al. [8] studied the logging prac-
tices of developers on C# projects and reported
the five most frequently logged code constructs.
Zhu et al. [11] and Fu et al. [8] proposed a ma-
chine learning-based framework for logging pre-
diction of exception-type and return-value-check
code snippets on C# projects. Lal et al. [9,10]
proposed a machine learning-based framework
for catch-block and if-block logging prediction
on Java projects. All three approaches use
static features from the source code for logging
prediction.

Yuan et al. [24] proposed the LogEnhancer
tool to help developers in enhancing the cur-
rent log statements. LogEnhancer strategically
identifies the variables that need to be logged,
and experimental results obtained by Yuan et al.
[24] showed that LogEnhancer correctly iden-
tifies the logged variables 95% of the time. In
another study, Yuan et al. [1] proposed a code
clone-based tool to predict the correct verbosity
level of log statements. Log statements have an
option to assign a verbosity level (e.g. debug,
info, or trace) as an indicator of the severity level.
An incorrect verbosity level to a log statement
can have implications on software debugging and
other related aspects [26,27]. Kabinna et al. [23]
performed a prediction on the stability (i.e. how
likely a logging statement will be modified) of
logging statements. Logging statements that are
frequently modified may cause log processing
applications to crash, and hence, timely logging
stability prediction can be beneficial [23]. Our

10

Sangeeta Lal, Neetu Sardana, Ashish Sureka

work is an extension of the logging prediction
studies performed by Fu et al. [§], Zhu et al. [11],
and Lal et al. [10]. In contrast to these studies,
which perform within-project logging prediction,
we emphasize on cross-project logging prediction.

2.3. Machine learning applications in
logging

Machine learning has been found to be useful in
various software engineering applications, such
as logging prediction [8,10,11], performance issue
diagnosis [3], defect prediction [28], and clean and
buggy commit prediction [29]. Fu et al. [8] and
Zhu et al. [11] applied the C4.5/J48 algorithm
for logging prediction. Lal et al. [10] applied
several other machine learning algorithms. These
algorithms are Adaboost (ADA), decision tree,
Gaussian Naive Bayes (GNB), K-nearest neigh-
bor (KNN), and random forest (RF)) for log-
ging prediction. This article considers J48, ADA,
Naive Bayesian (NB), and RF for cross-project
catch-block logging as the experimental results
by previous studies [8,10, 11] show that these
algorithms perform better than the others. Ad-
ditionally, the logistic regression (LR), Bayesian
network (BN), decision table (DT), radial basis
function network (RBF), and alternating decision
trees (ADT) algorithms are considered in this
work. These machine learning algorithms have
never been explored for logging prediction but
have been found to be useful in other branches
of software engineering, such as defect predic-
tion [30], software project risk prediction [31],
and re-opened bug prediction [32]. The selection
of these algorithms is not random or arbitrary;
rather, algorithms belonging to different domains
of classification algorithms were selected, for ex-
ample, J48 and ADT are decision tree-based algo-
rithms, NB and BN are probabilistic algorithms,
and RBF is an artificial neural network-based
algorithm.

2.4. Ensemble methods

Ensemble methods are learning algorithms that
construct a prediction model from a set of base
classifiers, and new data points are classified by

taking a vote (weighted) of predictions made
by base classifiers [33]. An ensemble consists of
base classifiers that are combined in some way
to predict the label of the new instance. Any
base classification algorithm, such as a neural
network, a decision tree or any other machine
learning algorithm, can be used to generate the
base classifiers from the training data. The gen-
eralization ability of an ensemble is typically con-
siderably better than that of base classifiers [34].
Ensemble methods can use a single or multiple
base classification algorithms [35-38]. Bagging
[38], boosting [38], average vote [39], majority
vote [39], and stacking [40] are some of the en-
semble methods. Previous research shows that
ensemble methods are useful in improving the
performance of machine learning frameworks in
various software engineering applications, such
as defect prediction [15], cross-project defect pre-
diction [30,41], and blocking bug prediction [42].
However, ensemble methods have not been ex-
plored for cross-project logging prediction. In
this work, three ensemble methods are applied,
namely, bagging [38], average vote [39] and ma-
jority vote [39], to construct the cross-project
logging prediction model.

2.5. Cross-project prediction

Cross-project prediction trains the model on one
(or more) project(s) to make predictions on an-
other project of interest. There are two types of
cross-project prediction: supervised and unsuper-
vised [43,44]. The supervised techniques have
some labelled instances available from the target
project, whereas the unsupervised ones have all
unlabelled instances fromthe target project. In
the literature, cross-project prediction has been
applied in various applications, such as defect
prediction [14, 30, 41], build co-change predic-
tion [45], and sentiment classification [46]. How-
ever, cross-project logging prediction is a rela-
tively unexplored area, which is theprimary fo-
cus of this work. To the best knwoledge of the
Authors, only Zhu et al. [11] have performed
a basic exploration of cross-project logging pre-
diction. This study is different from that of
Zhu et al. in many aspects: 1) cross-project

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 11

catch-block logging prediction is performed on
Java projects, whereas Zhu et al. considered C#
projects; 2) a focused and in-depth study is per-
formed, whereas Zhu et al.performed only a ba-
sic experiment on cross-project logging predic-
tion; and 3) an ensemble of classifiers is pro-
posed, whereas Zhu et al. only used the J48
classifier [39] for cross-project logging predic-
tion.

2.6. Research contributions

In context to related work, this work makes the
following novel and unique research contribu-
tions.

1. A comprehensive analysis of single classi-
fiers is performed for within-project and
cross-project logging prediction. Further-
more, the performances of single-project and
multi-project training models are comapred
for cross-project logging prediction (refer to
section 6.2).

2. ECLogger, a tool based on an ensemble of
machine learning algorithms, is proposed for
cross-project catch-block logging prediction
on Java projects. ECLogger uses static fea-
tures from the source code for cross-project
catch-block logging prediction. We create
8 ECLOggerBaggingv 466 ECLOggerAverageVote
and 466 ECLoggernajorityvote models, i.e. a to-
tal of 940 models (refer to section 4).

3. The results of a comprehensive evaluation of
ECLogger are presented on three large and
popular open-source Java projects: Tomcat,
CloudStack and Hadoop. The experimental
results demonstrate that ECLogger is effec-
tive in improving the performance of the
cross-project catch-block logging prediction
(refer to section 6.3).

3. Background

In this paper, 9 base machine learning algorithms
and three ensemble techniques are proposed. The
following subsections provide a brief introduction
to each of the 9 machine learning algorithms and
the 3 ensemble techniques.

3.1. Machine learning algorithms
3.1.1. AdaBoostMI1 (ADA)

AdaBoostM1 (ADA) [47] is an extension of the
simple AdaBoost algorithm for multi-class classi-
fication. There are two main steps in the ADA
algorithm: boosting and ensemble creation. In
the boosting phase, ADA first assigns a weight
to each data point present in the database (D).
Initially, all the data points are assigned an equal
weight. The weights assigned to the data points
are updated in subsequent iterations. In each
iteration, ADA constructs a prediction model
(M;) by training some base machine learning
algorithm, such as a decision tree or a neural net-
work, on a sample (D;) of D. In each iteration,
the error rate of the model M; is computed, and
the weights of incorrectly classified data points
are increased, whereas the weights of correctly
classified data points are decreased. Using this
strategy, ADA generates k prediction models,
i.e. M;, where i € {1,2,...,k}. In the ensemble
phase, the k£ models generated in the boosting
phase are linearly combined. For prediction on
a new instance, the weighted vote of the predic-
tion made by these k£ prediction models is taken.
ADA is an ensemble based algorithm. However,
this work consideres default WEKA [48] implan-
tation of ADA as a single classification algorithm
in Bagging [38], Average Vote [49] and Majority
Vote [49] (without the loss of generality).

3.1.2. Alternating decision tree (ADT)

The alternating decision tree (ADT) [50] is a gen-
eralization of the decision tree algorithm for
classification. The ADT algorithm constructs
a tree-like structure (i.e. ADT tree) for predic-
tion. The ADT tree consists of decision nodes and
prediction nodes in alternating order. Decision
nodes specify a prediction condition, whereas
prediction nodes consist of a single number. In
the ADT tree, prediction nodes are present both
as the root and as leaves. At the time of predic-
tion, the ADT algorithm maps each data point
in the ADT tree following all the paths for which
decision nodes are true and summing the value

12

Sangeeta Lal, Neetu Sardana, Ashish Sureka

of prediction nodes that are traversed. The pre-
diction of an instance is based on the sign of the
sum of the prediction values from the root to leaf,
i.e. an instance is classified as logged (+ve class)
if the sign is positive; otherwise, it is classified
as non-logged (—ve class).

3.1.3. Bayesian network (BN)

Bayesian network (BN) [51,52] algorithm uses
a probabilistic graphical model for classifica-
tion. The BN algorithm generates a probabilistic
model (a directed acyclic graph (DAG)) in the
training phase that is used to predict labels in
the prediction phase. This model shows a proba-
bilistic relationship or dependency between ran-
dom variables. Nodes represent random variables,
and edges between the nodes represent the prob-
abilistic dependencies among the variables. In
particular, a directed edge from variables X; to
X indicates that the value taken by the vari-
able X; depends on X;. In the BN algorithm,
a reasoning process can operate by propagating
information in any direction, and each variable
is independent of its nondescendents given the
state of its parents.

3.1.4. Decision table (DT)

The decision table (DT) [53] classification al-
gorithm consists of a decision table that is con-
structed in the training phase and is used to make
predictions in the prediction phase. A decision
table consists of two main components: schema
and body [53]. The schema of the decision table
consists of a set of features included in the table,
and the body consists of labelled instances. In the
training phase, the DT algorithm determines the
set of features and labelled instances to retain
in the decision table. The algorithm searches
through the feature space (using the wrapper
model [54]) to determine the optimal set of fea-
tures that enhances prediction accuracy. Once
the decision table is constructed, prediction on
a new instance is performed by searching in the
decision table for an exact match of the features.
If there is a match, i.e. the algorithm finds some
labelled instances matching the unlabelled in-

stance, it returns the majority class of labelled
instances. Otherwise, it returns the majority class
present in the table.

3.1.5. J48

The J48 algorithm is an open-source implemen-
tation of the C4.5 algorithm in the WEKA tool
[48]. The J48 algorithm constructs a decision
tree in the training phase that is used to make
predictions in the prediction phase. To create the
decision tree, in each iteration, the J48 algorithm
selects the attribute with the highest information
gain [39], i.e. the attribute that most effectively
discriminates the various data points. Now, for
each attribute, the J48 algorithm finds the set
of values for which there is no ambiguity among
the data points regarding the class label, i.e. all
data points having this value belong to the same
class. It terminates this branch and assigns it the
class (or label) [55].

3.1.6. Logistic regression (LR)

The logistic regression (LR) [56] model is a gener-
alization of the linear regression model for binary
classification. The LR model computes a score
for each data point (Score(d;)). If the value of
Score(d;) is greater than 0.5, the instance is
predicted as logged (4ve class); otherwise, it
is predicted as non-logged (—ve class). Equa-
tion (1) shows the general formula for computing
the logistic regression model. In Equation (1),
a, wi, Ws, . . . W, represent the linear combination
coefficients, and x1, o, ..., x,, represent the fea-
tures used in the prediction model. The larger
the value of w; is, the larger the impact of the
feature z; is on the prediction outcome.

at+w T twoTo+ twWy Ty,

P(d;) =

1+ ew1x1+w2:c2+m+wnxn (1)

3.1.7. Naive Bayes (NB)

The Naive Bayes (NB) classifier [39] is a sim-
ple probabilistic classifier based on Bayes the-
orem. NB uses a feature vector and input la-
bel to generate a simple probabilistic model.

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 13

This probabilistic model is used to predict the
label of an instance in the prediction phase.
The NB algorithm considers each attribute
to be equally important and independent [55].
NB is one of the simplest machine learning
methods and is known to provide good per-
formance in text categorization and numerical
data [57,58].

3.1.8. Random forest (RF)

Random forest (RF) [36,39] is an ensemble
method that uses decision trees as the base clas-
sification algorithm. RF generates multiple de-
cision trees using bagging [38] and random fea-
ture selection. Each decision tree is generated
from the bootstrap sample of the data. At the
time of tree generation, at each node, RF selects
a subset of features (randomly) to split. Once
all the decision trees are generated, prediction
on a new instance is performed by taking the
majority vote of the predictions of individual
decision trees. RF is one of the fastest learn-
ing algorithms and is suitable for large datasets
[39]. RF is an ensemble based algorithm. How-
ever, in this work we consider default WEKA
[48] implantation of RF as a single classifica-
tion algorithm in Bagging [38], Average Vote
[49] and Majority Vote [49] (without the loss of
generality).

3.1.9. Radial basis function network (RBF)

The radial basis function network (RBF) [59]
is a type of artificial neural network that uses
a radial basis as an activation function. There
are three main layers in RBFNetwork, i.e. input
layer, hidden layer and output layer. The input
layer corresponds to the features, i.e. source code
attributes. The hidden layer is used to connect
the input layer to the output layer and consists
of radial basis functions. The output layer per-
forms the mapping to the outcomes to predict,
i.e. logged or non-logged. The network learn-
ing is divided into two parts: first, weights are
learned from the input layer to the hidden layer
and then from the hidden layer to the output
layer.

3.2. Ensemble techniques
3.2.1. Bagging

Bootstrap aggregating (bagging) [38] is an ensem-
ble technique that can be combined with other
supervised machine learning algorithms. Given
a dataset D of size n, bagging first creates m
datasets, i.e. D; ,i € {1,2,...,m}. The size of
each D; is n;, such that n; = n. Since D;s are
generated by random sampling (with replace-
ment) from D, some data points can be missing
and others can be repeated in D;. Bagging trains
a supervised machine learning algorithm, such
as a decision tree, NB, or BN, on each D; and
generates m classifiers. For prediction, the output
of these m classifiers is combined using majority
vote. Bagging is helpful in improving the overall
performance of supervised machine learning al-
gorithms as it helps to avoid the data overfitting
problem [39].

3.2.2. Voting

Voting is one of the easiest ensemble techniques.
Voting first generates m base models by training
some supervised machine learning algorithm(s)
(base algorithm(s)), such as a decision tree, NB,
or BN, on the training datasets. Base models can
be generated in multiple ways, such as training
some base machine learning algorithm on dif-
ferent splits of the same training dataset, using
the same dataset with different base machine
learning algorithms, or some other method. At
the time of prediction, the output of these base
models is combined to generate the final predic-
tion. For example, the average vote [49] ensemble
method computes the average of the confidence
score given by each base model to compute the
final score. The final score is then compared
with a threshold value. If the confidence score
is greater than the threshold value, the given
instance is predicted as logged (+ve class); oth-
erwise, it is predicted as non-logged (—ve class).
Similarly, the majority vote [49] ensemble method
takes the majority vote of the predictions of these
base models to make the prediction, i.e. if the
majority of the base models predict an instance

14

Sangeeta Lal, Neetu Sardana, Ashish Sureka

Model Building Phase

Camel Casing
Stop Word
Stemming

>

Database > 0 L

) i ECLogger
Numerical | | TF-Idf | | | Naive Bayes | | Bagging | [1

| {1 Composite
Boolean | fone | Standardization | N | ,,,,,, | .>| Average Vote | .) Classifier

@ | Textual @
Labeled Code

Source Project

Discretization | 3
| ®

| MajorityVDte | é@,‘\-— ------

| Decision Table |

Constructs

Numerical

Database

Ta rgé{;;qecl

T o . —

0

N

> 00 00 > >
Unlabeled Code

Stop Word

Constructs

Prediction Phase

Feature Extraction

Yes/No

Preprocessing

Figure 1. Overview of the proposed ECLogger framework

as logged, it is predicted as logged; otherwise, it
is predicted as non-logged.

4. ECLogger model

Figure 1 presents the framework of ECLogger.
It consists of two main phases: model building
and prediction (refer to Figure 1). In the model
building phase, a cross-project logging predic-
tion model is build from the labelled instances
of the source project. There are 4 main steps
in the model building phase: training instance
collection (Step 1), feature extraction (Step 2),
pre-processing (Step 3), and ECLogger model
building (Step 4) (refer to Step 1 to Step 4 in
Figure 1). In the prediction phase, the label
(logged or non-logged) of the new instance in
the target project is predicted (refer to Step 5
in Figure 1). Algorithm 1 shows the sequence of
operations performed by the ECLogger model
and the details of the experimental setup (re-
fer to Table 1 for details regarding the notations
used). In Algorithm 1, lines 26, 11, 15 and 21-22
correspond to the experimental setup, whereas,
other lines correspond to the steps of the ECLog-
ger model. The lines 24-26 and 28-32 defines
the functions that are part of the experimental
setup. The lines 34-39 and 41-49 define the func-

tions that are part of the ECLogger model. The
following are the main steps of the ECLogger
model:

4.1. Phase 1: (model building)

Training instance collection (step 1): The
experimental dataset consists of three projects:
Tomecat, CloudStack and Hadoop. One project is
considered as the source project (SP), i.e. train-
ing project, and the other two projects as the
target project (7P), i.e. testing project, a sin-
gle project at a particular instance. Using this,
6 source and target project pairs are created
(lines 7-10 in Algorithm 1). EClogger extracts
all logged and non-logged catch-blocks (CBgp)
from the source project for training.

Feature extraction (step 2): ECLogger
extracts all the features from the source
catch-blocks (CBgp) for training as initial
source features (F Vép) (refer to function
ExtractFeatures(), i.e. lines 34-39 in Algo-
rithm 1). All 46 features proposed by Lal
et al. [10] are used for catch-block logging predic-
tion on Java projects (refer to Table 2). These
features are selected because they have shown
promising results for within-project catch-block
logging prediction [10]. Lal et al. [10] described
three properties for the features, i.e. domain, type

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 15

Algorithm 1. ECLogger Algorithm

1: procedure ECLOGGER

2: P = {PT,Pc,PH}

3: A= {AADA7 AADT7 ABNa ADT) AJ48a ALR7 ANB7 ARF) ARBN}
4 EA = {EABA,EAM\/,(C;AA\/}

5: M=10

6: CS ={3,4,5,6,7,8,9}
7 for all S € P do

8 for all T € P do
9

: if S # 7T then

10: SP=S,TP=T

11: CBsp = ReadCompleteData(SP)

12:]-'Vé»,; = ExtractFeatures(CBsp)

13: FVEp = Preprocess(FVsp)

14: ECLoggeryoqal] = BuildModel(FV5p, A, EA,CS)

15: CByp[M] = ReadBalanceData(7P)

16: for i = 1 to size(ECLoggeryioqe1) do

17: for j=1to M do

18:]"Vé”p = ExtractFeatures(CB)rp[j])

19: FV5p = Preprocess(FVrp)

20: PDLi][j] = ApplyModel(FV7p, ECLoggeryo4e1s[1])
5 PO

21: AR[i] = =——

22: BMgsp_7p = FindBestModel(AR, ECLoggeryodels)

23: procedure READCOMPLETEDATA(P)

24: CB = ReadCatchBlocks(P)

25: return CB

26: procedure READBALANCEDATA(P, M)

27: CB = ReadCatchBlocks(P)

28: CB = Randomize(CB)

29: BS[] = Generate_M_BalanceSamples(CB)
30: return BS

31: procedure EXTRACTFEATURES(CB)

32: 7 FV = getTextualFeatures(CB)

33: NFV = getNumericFeatures(CB)

34: pFV = getBooleanFeatures(C5)

35: FV ={+FV, NFV, gFV}

36: return FV

37: procedure PREPROCESS(FV)

38: +FV = TF IDFConversion(Stemming(StopWordRemoval(CamelCaseSeparation(7FV))))
39: if It is Test Data then

40: +FV = FilterFeatureNotTrainData(;F))
41: else .
42: 7 FV = 7 FV

43: FVF = Discretization(Standardization(Combine(; FV, s FV, nFV)))
44: return FV"

16

Sangeeta Lal, Neetu Sardana, Ashish Sureka

Table 1. Notations used in the ECLogger Algorithm (i.e. Algorithm 1)

Notation | Meaning Notation Meaning
P Projects A Algorithms
Px Project X, where X € {Tom- | Ax Algorithm X, where X € {ADA,
cat (T), CloudStack (C), Hadoop ADT, BN, DT, J48, LR, NB, RF,
(1)) RBN)
SP Source Project EA Ensemble technique
TP Target Project EAx Ensemble technique X, where
X € {Bagging (BA), Majority
Vote (MV), Average Vote (AV)}
CS Combination Size CB Catch-Blocks
CB Randomized catch-blocks CBx Catch-Blocks of X project, where
X € {SP, TP}
FV Feature Vector FV Feature vector obtained after
pre-processing textual features
Fy Feature vector obtained after fil- | zF Vgl(Feature Vector for project X of
tering undesired features type Y and domain Z, where
X € {SP, TP}, Y € {Initial (I),
Final (F)} and Z € {Textual (T),
Numerical (N), Boolean (B)}
BS Balance SubSamples PD Prediction results
AR Average values of the prediction | BMy_,y Best model for X(SP) and
results Y(TP)
1,7, M, P | Temporary Variables ECLoggeryioqers | All the 940 models generated by
ECLogger

and class. Domain indicates from which part of
the source code a particular feature is extracted.
Type indicates whether a features is numeric,
boolean, or textual. Class indicates whether a fea-
ture belongs to a positive class or a negative class.
In Table 2, the features are categorized based
on their type. ECLogger extracts all three types
of features for model building. For example, the
size a try-block (refer to numeric feature 1 in
Table 2) is a numeric feature that computes the
SLOC of try-blocks associated with logged and
non-logged catch-blocks and that belong to the
try/catch domain. All the features with their
respective properties are listed in Table 2.

Pre-processing (step 3): Six pre-processing
steps are applied to clean the initial source fea-
tures (F Vé p). First the textual features are
celaned. All the terms concatenated using the
camel-casing in the textual features (i.e. ‘getTar-
get’ is converted to ‘get’; ‘target’) are separated.
Subsequently, all the English stop words from the
textual features are removed. The used stop word
list was provided by the Python nltk tool [60].
Then stemming is applied (the Porter stemming

algorithm by the nltk tool [60]) on all the textual
features and converted all the textual features
to their tf-idf transformation to create the tex-
tual feature vector. The textual feature vector
is then combined with numerical and boolean
feature vectors. To address the problem of data
heterogeneity in the source and target projects,
data standardization was performed, i.e. feature
values were converted to a z-distribution. Nam
et al. [14] demonstrated the usefulness of data
normalization for the cross-project defect pre-
diction problem. Finally, all the features were
discretized, as some algorithms, such as Naive
Bayes, work only with discretized data. Using
this, the final feature vector (fvgp) for train-
ing the model (refer to function Preprocess() is
obtained, i.e. lines 41-49 in Algorithm 1).

ECLogger model building (step 4): ECLog-
ger models were built using 9 base classi-
fiers (ADA, ADT, BN, DT, J48, LR, NB,
RF, and RBF) and three ensemble techniques
(bagging, average voting and maximum vot-
ing). Bagging was applied on 8 of the 9 base
classifiers. We create 8 ECLoggergagging mod-

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 17

Table 2. Features used for cross-project catch-block logging prediction taken from previously published work
by Lal et al. [10]. PT: class = positive, domain = try/catch; PM: class = positive, domain = method_ bt;
PO: class = positive, domain = other; NT: class = negative, domain = try/catch; and NM: class = negative,
domain = method_ bt

Features
S. No. Textual (Class Domain) S. No. Numeric (Class Domain) . No. Boolean (Class Domain)
1 Catch Exception Type (PT) 1 Size of Try Block [LOC] (PT) 1 Previous Catch Blocks (PT)
. Size of Method BT[LOC] Logged Previous Catch
2 Log Levels in Try Block (PT) 2 (PM) 2 Blocks (PT)
3 (If))]a) Levels in Method BT 3 Log Count Try Block (PT) 3 Logged Try Block (PT)
4 Operators in Try Block (PT) 4 ?;ﬁ)c‘mnt in Method BT 4 Logged Method BT (PM)
5 Operators in Method BT 5 Count of Operators in Try 5 Method have Parameter (PO)
(PM) Block (PT)
Method Parameters (Type) Count of Operators in .
6 (po) 6 Method BT (PM) 6 IF in Try (PT)
Method Parameters (Name) Variable Declaration Count in .
7 (pO) T Try Blode (PT) 7 IF in Method_BT (PM)
8 Container Package Name 8 Variable Declaration Count in 8 Throw/Throws in Try Block
(PO) Method_ BT (PM) (NT)
. Method Call Count in Try Throw/Throws in Catch
9 Container Class Name (PO) 9 Block (PT) 9 Block (NT)
10 Container Method Name 10 Method Call Count in 10 Throw/Throws in Method -
(PO) Method_ BT (PM) BT (NM)
Variable Declaration Name in Method Parameter Count .
11 Try Block (PT) 11 (PO) 11 Return in Try Block (NT)
Variable Declaration Name in . .
12 Method BT (PM) 12 IF Count in Try Block (PT) 12 Return in Catch Block (NT)
Method Call Name in Try IF Count in Method_ BT .
13 Block (PT) 13 (PM) 13 Return in Method BT (NM)
14 Method - Call = Name in 14 Assert in Try Block (NT)

Method_ BT (PM)

15 Assert in Catch Block (NT)
16 Assert in Method BT (NM)
17 Thread.Sleep in Try Block

(NT)

18 Interrupted Exception Type
(NT)

19 Exception Object "Ignore" in
Catch (NT)

Total Features =

46 (Textual (14) + Numeric (13) + Boolean (19))

els, i.e. Baggingapa, Baggingapr, Bagginggn,
Bagging4s, Baggingr, Baggingyg, Baggingrr
and Bagginggrpr. Baggingapa is an ECLogger
model that is generated by applying bagging on
the ADA classifier. Bagging was not applied on
the decision table (DT) classifier because of its
high time complexity.

The number of created ECLogger average
vote models was 466. One can take an average
vote of n classifiers to perform a logging pre-
diction on a new code construct. For example,
ADA-ADT-BN is one possible combination of
3 classifiers which can be chosen to take an
average vote. In this case,the best value of n
(i.e. number of classifiers to take) is not known

similarly to the information which classifiers are
the most suitable for cross-project logging pre-
diction. Hence, all possible combinations of base
classifiers are created for n = {3,4,5,6,7,8,9}.
Using this strategy, 466 ECLogger averagevote mod-
els are created. Similarly to ECLogger averagevote:
466 ECLoggeryajorityVote models are created. 940
distinct ECLogger models (ECLoggeryioders|])
are created for cross-project logging prediction
(line 14 in Algorithm 1).

4.2. Phase 2: (prediction)

Prediction (step 5): In the prediction phase,
ECLoggerpoqels are used to predict the label of

18

Sangeeta Lal, Neetu Sardana, Ashish Sureka

Table 3. Experimental dataset details

Type Tomcat CloudStack Hadoop
Version 8.0.9 4.3.0 2.71
No. of Java Files 2,036 5,350 6,331
sLocC” 273,419 849,857 926,644
Log Statements Count 2,703 10,428 10,108
Total Catch-blocks 3,279 8,077 7,947
Logged Catch-Blocks 887 (27%) 2,792 (34.56%) 2,078 (26.14%)
Distinct Exception Types 119 163 265

: Computed using: http://www.locmetrics.com/.

a new code construct in the target project. All
the catch-blocks are extracted from the target
project and all the pre-processing techniques de-
scribed in Step 3 are applied. In addition to
these pre-processing steps, one additional filter-
ing step is applied in the prediction phase. In
cross-project prediction, there is a possibility
that some features that are present in the source
project (F Vf;p) may not be available in the tar-
get project (because of a vocabulary mismatch).
Hence, in the target project, the features that
are absent in the source project (line 44 in Al-
gorithm 1) are eliminated. Using this, the final
feature vector (F V? p) for the target project in-
stance is created. Then all the ECLogger mod-
els to predict the labels of target project in-
stances are applied. For each source and tar-
get project pair, the ECLoggeryioqel(BMsp_rp)
that provides the best performance (mea-
sured in terms of average LF) is then
identified.

5. Experimental details

In this section, we present details related to the
experiments performed in this work. We present
details regarding dataset selection, dataset prepa-
ration, experimental environment, design of the
experiment, and evaluation metrics.

5.1. Experimental dataset selection

To facilitate the replication of this study, all of
our experiments were conducted on open-source

"http://www.apache.org/

Java projects from the Apache Software Founda-

tion (ASFl). The ASF consists of a large number

of actively maintained and widely used projects.

Hence, it is believed that the projects from the

ASF consist of good logging and are suitable for

our study. We select projects from the ASF that

match the following criteria:

1. Number of files: The selected projects have
have at least 1000 files so that statistically
significant conclusions can be drawn.

2. Number of catch-blocks: The selected
projects have at least 1000 catch-blocks so
that statistically significant conclusions can
be drawn.

3. Programing language: The selected
projects are written in the Java programing
language. Java projects are selected because
Java is one of the most widely used program-
ming languages [61].

Three projects matching the above criteria are

selected: Tomcat [62], CloudStack [63], and

Hadoop [64] (see Tab. 3). All of these projects

are widely used and have previously been used

in logging studies [10,13,23,65].

5.2. Experimental dataset preparation

The catch-blocks (see Tab. 3) are extracted from
the three projects, i.e. Tomcat, CloudStack and
Hadoop. A catch-block is marked as logged (+ve
class) if it consists of at least one log statement;
otherwise, it is marked as non-logged (—ve class).
Numerous variations are observed in the usage
format of log statements in the three projects.
Hence, 26 regular expressionsare created to ex-

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 19

tract all types of logging statements present in
the catch-blocks.

5.3. Experimental environment

The WEKA [48] implementation is used for all
the classifiers. The default parameters are used
for all the classifiers. All of our experiments are
run on Windows Server 2012, with 64 GB RAM,
64-Bit operating system, and an Intel® Xeon®
CPU E5-2640 0, 2.50 GHz processor (2 proces-
sors), 6 cores per processor.

5.4. Design of the experiment

Two types of experiments were performed:
within-project and cross-project catch-block log-
ging prediction. The following presents the ex-
perimental design for both types of predictions:
Within-project prediction: To compute the
within-project logging prediction, 10 equal-sized
balanced datasets for each project were created,
namely, Tomcat, CloudStack, and Hadoop. Be-
cause the number of —ve class (non-logged) in-
stances is higher than that of +ve class (logged)
instances, the subsampling of —ve class instances
were performed to make the dataset balanced. In
this way, 10 random samples (with replacement)
were created from the database. The majority
class (—ve class) subsampling technique was used
in previous studies to balance the dataset [10,66].
On the balanced dataset, a 70/30 training-testing
split is used and the average results over the
10 datasets are reported.

Cross-project prediction: To conduct the
cross-project logging prediction experiment,
training and testing datasets are created. All
the catch-blocks of the source projects are
used for training. For the purpose of testing,
10 balanced subsamples of catch-blocks of the
target projects are created, i.e. the same as
the ones created for the within-project logging
prediction. Using this, 10 datasets that have
the same training dataset and different test-
ing datasets are created. The results are com-
puted for each of the 10 datasets and report
the average results over 10 datasets. Train-
ing and testing datasets are created (it is pre-
ferred solution to using 10-fold cross validation)

to compare the effectiveness of multiple mod-
els. This is because in the cross-project predic-
tion the model is trained on the source project
and tested on the traget project. Furthermore,
separation of training and testing data using
10-fold cross-validation is challenging in this con-
text.

5.5. Evaluation metrics

In this subsection, the performance metrics used
to evaluate the effectiveness of the prediction
model is described. Five metrics were used in
the evaluation process: precision, recall, accu-
racy, F-measure, and area under the ROC curve.
All of these are widely used metrics and were
previously used in logging prediction and defect
prediction studies [8,10,11,30,67]. There are four
possible outcomes while predicting the logging
of a code construct:
1. Predicting logged code construct as logged,
[= 1 (true positive).
2. Predicting logged code construct as
non-logged, [— n (false negative).
3. Predicting non-logged code constructs as
non-logged, n — n (true negative).
4. Predicting non-logged code constructs as
logged, n — [(false positive).
After constructing the classifier on the train-
ing set, its performance on the test set can
be evalauted. The total number of logged code
constructs predicted as logged (C)-;), logged
code constructs falsely predicted as non-logged
(Cj=n), non-logged code constructs predicted as
non-logged (C,,-,), and non-logged code con-
structs predicted and logged (C,-;) are com-
puted. Using these 4 values, the following metrics
are defined:
Logged Precision: It shows the percentage of
code constructs that are correctly labelled as
logged among those labelled as logged.

Logged Precision (LP) =

Cro

Logged Recall: It shows the proportion of
logged code constructs that are correctly labelled
as logged.

20

Sangeeta Lal, Neetu Sardana, Ashish Sureka

Logged Recall (LR) = x 100 (3)
Logged F-measure: It is a metric that com-
bines logged precision and recall. Precision and
recall metrics have a trade-off. One can increase
precision (recall) by decreasing recall (precision)
[39,68]. Hence, it is difficult to evaluate the per-
formance of different prediction algorithms us-
ing only one of the precision or recall metrics.
F-measure computes the weighted harmonic mean
of precision and recall and is hence useful in over-
coming the precision and recall trade-off. It has
been widely used in the software engineering lit-
erature for performance evaluation [42, 69, 70].
Equation (4) shows the formula to compute the
LF metric. In this equation, § is a weighting
parameter, where the value of § less than one
emphasizes precision and greater than one empha-
sizes recall. In this paper, 5 = 1, which gives equal
weightage to both precision and recall, is used.

Logged F-measure (LF) =

(B*+1)X LP X LR
B2x LP+ LR

X100 (4)

Accuracy: It computes the percentage of code
constructs that are correctly labelled as logged
or non-logged to the total number of code con-
structs. It is also a widely used metric for evalu-
ating the performance of prediction models. Ac-
curacy is found to be a biased metric in the case
of imbalanced datasets. However, in this work,
testing was performed only on balanced datasets.

Accuracy (ACC) =

C’l—>l + Cn—m
Cl—>l + Cl—m + Cn—m + Cn—»l

x 100 (5)

Area under the ROC curve (RA): It mea-
sures the likelihood that a logged code construct
is given a high likelihood score compared to
a non-logged code construct. RA can take any
value in the range 0 to 1. In general, higher RA
values are considered better, i.e. an RA value
of 1 is the best.

6. Experimental results

In this section, the eight identified research ques-
tions (RQs) are addressed. The following subsec-
tions elaborate the motivation, approach, and
results for each of the identified RQs.

6.1. Research questions

Fight RQs are categorized in two dimensions.

RQ1-RQ4 investigate the performance of single

classifiers for cross-project catch-block logging

prediction, whereas RQ5-RQ8 examine the per-
formance of the ECLogger models.

Research Objective 1 (RO1): Perfor-

mance of the single classifier for cross-project

catch-block logging prediction

— RQ1: How is the performance of within-pro-
ject different from cross-project catch-block
logging prediction?

— RAQ2: Which is better, the single-project or
multi-project training model for cross-project
catch-block logging prediction?

— RQ3: Are different classifiers complimentary
to each other when applied to cross-project
catch-block logging prediction?

- RQ4: Are the algorithms that perform
best for within-project and cross-project
catch-block logging predictions identical?

Research Objective 2 (RO2) : Performance

of ensemble-based classifiers, i.e. ECLogger mod-

els, for cross-project catch-block logging predic-
tion.

- RQ5: What 1is the performance of
ECLoggerpagging for cross-project catch-block
logging prediction?

— RQ6: What is the
ECLOggerAverageVote for
catch-block logging prediction?

- RQT7: What is the performance of
ECLoggernajorityVote for cross-project
catch-block logging prediction?

— RQ8: What is the average performance of the
baseline classifier and ECLoggeryioqels OVer
all the source and target project pairs?

performance of
cross-project

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers

21

100

80

Average LF (%)

20

RQ 1: Within-project vs. Cross-project Logging Prediction

60 -

40}

Il Cross-project ||
Within-project

Source Project -> Target Project

S Tc CS“CS HD*HD s e 0.5 o TC*CS HD“CS TC“HD CS“HD

Figure 2. The highest average LF' of within-project and cross-project logging predictions.
CS: CloudStack, TC: Tomcat, and HD: Hadoop

Table 4. Within-project catch-block logging prediction results (using a single classifier).
ML ALGO: Machine Learning Algorithm
Project: Tomcat

Total Instances: 1,774, Features: 1,522
ML ALGO Avg. LP (%) Ave. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)
ADA 75.13 £ 4.76 78.55 £ 11.82 75.97 £ 2.84 76.56 = 1.13 86.6 + 0.97
ADT 73.82 £ 3.72 88.59 * 8.86 80.08 = 2.05 79.06 £ 1 88.16 £ 0.99
BN 74.79 £ 1.07 81.92 + 0.75 78.18 £ 0.55 78.08 £ 0.7 87.45 £ 0.76
DT 76.19 + 2.2 72.12 + 5.82 73.98 £ 3.16 75.81 + 2.39 84.12 £ 1.76
J48 80.45 + 1.7 83.45 + 2.5 81.92 + 1.95 82.35 £ 1.81 86.17 = 2.06
LR 79.98 + 2.12 86.35 + 1.2 83.03 £ 1.36 83.06 + 1.53 91.64 = 0.94
NB 74.56 £ 1.12 81.76 = 0.77 77.99 £ 0.61 77.88 £ 0.76 87.25 £ 0.74
RF 80.93 + 2.77 82.71 = 1.96 81.79 £ 2 82.33 £ 2.07 90.37 £ 1.07
RBF 57.98 + 0.98 93.14 + 3.63 71.42 £ 0.92 64.3 + 1.08 75.19 £ 0.87

Project: CloudStack

Total Instances: 5,584, Features: 1,332
ML ALGO Avg. LP (%) Avg. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)
ADA 72.28 + 3.94 93.34 = 7.06 81.13 £ 0.4 78 +1.23 85.9 + 1.31
ADT 79.74 £ 1.99 92.42 + 3.01 85.54 + 0.39 84.16 + 0.43 92.11 £ 0.48
BN 73.6 £ 0.45 94.89 + 0.45 82.9 + 0.3 80.14 + 0.39 89.34 £ 0.4
DT 83.18 + 1.27 85.34 + 2.49 84.23 + 1.63 83.8 £ 1.56 91.54 £ 1.17
J48 88.43 + 1.25 88.12 + 2 88.25 + 0.74 88.1 £ 0.66 91.69 £ 0.58
LR 87.61 + 0.41 87.28 + 0.83 87.45 = 0.52 87.28 = 0.49 94.16 *+ 0.53
NB 73.54 + 0.49 94.76 + 0.49 82.81 = 0.32 80.04 + 0.43 89.2 + 0.39
RF 86.21 + 0.96 90.86 = 0.99 88.47 + 0.85 87.98 = 0.88 94.93 £ 0.28
RBF 55.02 £ 1.52 100 £ 0 70.97 £ 1.28 58.44 + 2.64 57.79 + 2.68

Project: Hadoop, Type: Catch-Block

Total Instances: 4,156, Features: 1,322
ML ALGO Avg. LP (%) Avg. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)
ADA 73.74 + 0.89 74.74 + 2 74.22 + 1.13 74.53 + 0.92 81.06 £ 0.42
ADT 75.28 + 1.93 78.64 £ 1.88 76.89 + 0.81 76.79 £ 1 83.17 £ 0.25
BN 74.11 £ 1.12 65.18 = 0.89 69.35 + 0.72 71.72 £ 0.72 81.06 £+ 0.63
DT 76.76 £ 1.66 76.13 £ 2.56 76.4 £ 1.12 76.93 £ 0.96 83.27 £ 0.7
J48 77.89 + 1.89 79.74 £ 1.59 78.78 £ 0.93 7891 + 1.1 81.57 £ 1.21
LR 78.74 £ 1.08 80 + 0.94 79.36 + 0.62 79.57 £ 0.68 87.25 £ 0.5
NB 74.08 £ 1.09 65.13 + 0.84 69.31 = 0.69 71.69 = 0.7 80.97 £ 0.63
RF 77.9 + 0.91 77.75 £ 1.27 77.82 £ 0.94 78.25 + 0.88 86.28 + 0.65
RBF 57.07 £ 0.81 76.68 £ 4.87 65.39 + 2.27 60.27 + 1.33 59.32 = 1.64

22

Sangeeta Lal, Neetu Sardana, Ashish Sureka

6.2. RO1: Performance of the single
classifier for cross-project
catch-block logging prediction

In this subsection four RQs (RQ1-RQ4), which
investigate the performance of single classifiers,
are answered. The questions related to the vari-
ation in performance of a single classifier for
within-project and cross-project logging predic-
tions using multiple evaluation metrics, using
both single-project and multi-project training
models are answered.

6.2.1. RQ1: How is the performance of
within-project different from cross-project
catch-block logging prediction

Motivation: IIn RQ1, the effectiveness of
within-project and cross-project logging predic-
tion models (using a single classifier) are com-
pared. Cross-project logging prediction is chal-
lenging, and hence, it is important to identify
the performance variation of the cross-project
logging prediction model compared to that of
the within-project logging prediction model. The
results from this investigation can provide im-
portant insights and motivation for constructing
the cross-project logging prediction model.
Approach: To answer RQ1, the performances
of single classifiers for within-project and
cross-project logging prediction are compared.
The average LF' is used to compare the perfor-
mances of different classifiers.

Results: Table 4 presents the detailed results of
within-project catch-block logging prediction for
all three projects. Our experimental results show
that the RF and LR models outperform other al-
gorithms in terms of average LF'. The highest av-
erage LF of 83.03%, 88.47%, and 79.36% for the
within-project catch-block logging prediction was
achieved on the Tomcat, CloudStack and Hadoop
projects, respectively. Figure 2 shows the highest
average LF' values from the within-project and
cross-project experiments. Figure 2 shows that
the highest average LF' for all six cross-project
results is lower than all three within-project re-
sults. Table 5, Table 6 and Table 7 show the
detailed cross-project logging prediction results

(using a single classifier). These experimental
results show that for the cross-project logging
prediction, the highest average LEF of 73.66%,
70.42% and 68.62% was achieved for the Tomcat,
CloudStack and Hadoop projects, respectively.
A 6.37% to 18.05% decrease was observed in
the classification performance for cross-project
logging prediction compared to within-project
logging prediction. The performance of the RBF
classifier is the worst for cross-project logging
prediction. For all six pairs of source and target
project pairs, RBF provides an average LF of 0%
and average ACC' of 50%, i.e. predicting all the
code constructs as non-logged (refer to Table 5,
Table 6, and Table 7).
A 6.37% to 18.05% decrease was observed in
the average LF for cross-project logging pre-
diction compared to within-project logging
prediction.

6.2.2. RQ2: Which is better, the single-project
or multi-project training model for
cross-project catch-block logging
prediction?

Motivation: In RQ2, the objective is to exam-
ine the effectiveness of multi-project training
for cross-project logging prediction. Thus it is
necessary to ascertain whether information fu-
siton enhances the accuracy of the cross-project
logging prediction. Training a predictive model
from multiple projects is one type of informa-
tion fusion-based approach and was shown to
enhance accuracy because it involves combining
information from multiple sources. Few stud-
ies in the past used multi-project training for
cross-project defect prediction [30,71]. However,
for cross-project logging prediction, this has yet
to be explored. The answer to this RQ can
provide important insights about selecting the
single-project or multi-project cross-project log-
ging prediction model.

Approach: Approach: To answer RQ2, 9 pairs
of source and target projects are created, i.e.
6 pairs consisting of one source project and
3 pairs consisting of two source projects.
Results: Figure 3 presents the histogram
of the average LF and average ACC wval-

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers

23

Table 5. Cross-project catch-block logging prediction results (using a single classifier) for Tomcat
(target project). ML ALGO: Machine Learning Algorithm

Total Instances (Source): 8077, Total Instances (Target): 1,774, Features: 1,304

Project: CloudStack—Tomcat

ML ALGO Avg. LP (%) Ave. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)
ADA 50.07 £ 0.1 97.07 £ 0 66.06 = 0.08 50.13 £ 0.19 57.11 £ 0.18
ADT 78.26 + 0.79 69.11 £ 0 73.4 £ 0.35 74.95 + 0.44 82.96 £ 0.45
BN 66.36 = 0.57 82.75 £ 0 73.65 £ 0.35 70.39 = 0.54 77.16 £ 0.51
DT 60.85 = 0.55 8219+ 0 69.93 = 0.36 64.65 + 0.61 77.56 + 0.43
J48 58.64 £ 0.41 70.35 £ 0 63.96 + 0.24 60.37 = 0.42 61.4 + 0.72
LR 64.2 £ 0.78 66.74 £ 0 65.45 + 0.4 64.76 + 0.62 69.84 + 0.51
NB 66.39 = 0.56 8241 + 0 73.54 £ 0.34 70.34 £ 0.52 77.19 £ 0.51
RF 62.08 + 0.63 56.82 £ 0 59.33 £ 0.29 61.05 = 0.46 63.64 + 0.49
RBF 00 00 00 50+ 0 50+ 0
Project: Hadoop—Tomcat
Instances (Source): 7,947, Instances (Target): 1,774, Features: 1,313

ML ALGO Avg. LP (%) Avg. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)
ADA 85.5 + 0.88 49.15 0 62.42 + 0.24 70.41 £ 0.3 79.45 + 0.32
ADT 79.37 £ 0.95 55.36 £ 0 65.22 + 0.32 70.48 *+ 0.42 77.96 £ 0.44
BN 74.74 £ 0.67 72.49 £ 0 73.6 £ 0.33 73.99 £+ 0.44 80.17 £ 0.47
DT 84.98 + 0.94 5220 64.67 = 0.27 71.48 £ 0.34 77.17 £ 0.33
J48 65.82 + 0.65 65.95 £ 0 65.88 + 0.33 65.85 £ 0.5 66.8 + 0.66
LR 76.52 £ 0.72 54.57 £ 0 63.7 + 0.25 68.91 = 0.34 76.99 £ 0.43
NB 74.76 + 0.64 72.6 £ 0 73.66 + 0.31 74.04 + 0.41 80.19 + 0.47
RF 67.91 + 1.06 39.46 £ 0 49.91 = 0.29 60.4 + 0.46 67.2 + 0.52
RBF 0x£0 0£0 0£0 50 £ 0 52.77 £ 0.93

Table 6. Cross-project catch-block logging prediction results (using a single classifier) for CloudStack

(target project). ML ALGO: Machine Learning Algorithm

Total Instances (Source): 3,279, Total Instances (Target): 5,584, Features:1,425

Project: Tomcat— CloudStack

ML ALGO Avg. LP (%) Avg. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)
ADA 87.84 + 0.49 53.19 £ 0 66.26 = 0.14 72.91 * 0.17 81.45 £ 0.22
ADT 90.12 + 0.41 52.79 £ 0 66.58 + 0.11 73.5 £ 0.13 80.95 + 0.13
BN 63.46 + 0.39 69.41 £ 0 66.3 + 0.21 64.72 £ 0.34 71.7 £ 0.38
DT 72.75 £ 0.33 45.38 £ 0 55.89 £ 0.1 64.19 + 0.14 74.41 + 0.16
J48 66.36 + 0.44 56.91 £ 0 61.28 + 0.19 64.03 = 0.28 63.32 £ 0.34
LR 80.48 + 0.56 48.14 £ 0 60.24 + 0.16 68.23 £ 0.21 74.94 £ 0.14
NB 63.36 = 0.39 69.23 £ 0 66.16 + 0.21 64.59 = 0.34 71.7 £ 0.38
RF 80.84 + 0.38 3729 £ 0 51.03 = 0.08 64.22 + 0.11 75.45 £ 0.18
RBF 00 00 00 50+ 0 63.11 + 0.44
Project: Hadoop—CloudStack
Instances (Source): 7,947, Instances (Target): 5,584, Features: 1,313
ML ALGO Avg. LP (%) Avg. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)
ADA 83.44 + 0.59 49.61 £ 0 62.22 + 0.16 69.88 = 0.21 79.79 £ 0.25
ADT 88.64 + 0.36 51.33£0 65.01 = 0.1 72.37 £ 0.12 81.86 + 0.16
BN 64.25 + 0.29 7787 £ 0 70.41 £ 0.17 67.27 + 0.27 76.79 £ 0.29
DT 84.71 £ 0.5 45.95 £ 0 59.58 + 0.12 68.83 = 0.16 74.65 £ 0.2
J48 64.58 = 0.38 58.45 £ 0 61.37 + 0.17 63.2 £ 0.27 65.21 + 0.28
LR 83.19 £ 0.5 55.73 £ 0 66.75 + 0.16 72.23 £ 0.2 79.03 £ 0.2
NB 64.25 =+ 0.29 7790 70.42 + 0.17 67.27 £ 0.27 76.8 £ 0.29
RF 83.91 + 0.57 36.1+0 50.48 £ 0.1 64.59 = 0.15 73.11 £ 0.25
RBF 0x0 0x0 00 50 £ 0 57.72 £ 0.42

24

Sangeeta Lal, Neetu Sardana, Ashish Sureka

Table 7. Cross-project logging prediction results (using a single classifier) for Hadoop (target project).
ML ALGO: Machine Learning Algorithm

Project: Tomcat—Hadoop
Total Instances (Source): 3,279, total instances (target): 4,156, features: 1,425

ML ALGO Avg. LP (%) Avg. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)
ADA 85.91 + 0.8 37.63 £ 0 52.34 £ 0.15 65.73 £ 0.2 78.22 £ 0.32
ADT 87.76 + 0.7 33.88 £ 0 48.89 = 0.11 64.58 + 0.15 77.04 £ 0.18
BN 73.67 £ 0.72 45.57 £ 0 56.31 £ 0.21 64.64 + 0.3 69.96 *+ 0.39
DT 83.69 + 0.74 34.31 £ 0 48.67 + 0.12 63.81 + 0.18 72.14 £ 0.45
J48 67.57 £ 0.61 36.77 £ 0 47.62 £ 0.15 59.56 = 0.24 70.75 £ 0.36
LR 82.12 £ 1.01 26.23 £ 0 39.76 + 0.12 60.26 £ 0.2 73.99 + 0.35
NB 73.58 £+ 0.68 45.86 £ 0 56.5 + 0.2 64.69 + 0.29 69.47 + 0.38
RF 82.76 + 0.99 21.13 0 33.66 = 0.08 58.36 £ 0.15 69.35 £ 0.4
RBF 00 00 00 50+ 0 55.4 + 0.34
Project: CloudStack—Hadoop
Instances (source): 8,077, instances (target): 4,156, features: 1,304

ML ALGO Avg. LP (%) Avg. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)
ADA 50.29 + 0.06 98.12 £ 0 66.5 £ 0.05 50.57 £ 0.12 54.24 £ 0.1
ADT 79.55 £+ 0.56 52.12 £ 0 62.97 = 0.18 69.36 = 0.23 76.51 £ 0.27
BN 57.26 £ 0.3 79.74 £ 0 66.65 + 0.2 60.11 + 0.36 68.2 + 0.39
DT 77.99 £ 0.36 61.26 £ 0 68.62 + 0.14 71.99 £+ 0.18 76.31 £ 0.14
J48 73.4 + 0.65 5813+ 0 64.88 + 0.25 68.53 = 0.35 69.99 £+ 0.45
LR 72.76 £ 0.95 55.58 £ 0 63.02 = 0.36 67.38 £ 0.5 71.83 £ 0.61
NB 57.31 £ 0.28 79.69 £ 0 66.67 + 0.19 60.16 + 0.34 68.16 + 0.39
RF 66.35 = 0.77 46.92 £ 0 54.97 = 0.26 61.56 + 0.41 67.32 £ 0.41
RBF 0£0 0£0 0£0 50+ 0 50 £ 0

ues of multi-project cross-project catch-block
logging prediction. Figure 3a reveals that
there is no dominant approach between sin-
gle-project and multi-project. In certain in-
stances, multi-project training increased the
prediction performance, and in other cases
it has decreased the prediction performance.
For example, in the CloudStack project
when single source-project training is used,
the highest average LF of 66.5% (source
project Tomcat) and 70.42% (source project
Hadoop) are achived (refer to Table 6).
In contrast, when multi-project training is
used and both Tomcat and Hadoop are ap-
plied to build the model, the highest av-
erage LF of 67.74% is achieved. Hence,
multi-project training causes a 1.24% decrease
and a 2.68% increase in the prediction per-
formance of single-project training when Tom-
cat and Hadoop are used, respectively. A sim-
ilar result is observed for the ACC metric
(refer to Figure 3b).

There is no dominant approach among the

single-project and multi-project cross-project

catch-block prediction models.

6.2.3. RQ3: Are different classifiers
complimentary to each other when
applied to cross-project catch-block
logging prediction?

Motivation: In RQ3, the objective is to exam-
ine the performance of individual classifiers on
multiple evaluation metrics. The evaluation of
a predictive model or a classifier can be per-
formed using several metrics or measures, and
the selected set of metrics depends on the classi-
fication task and problem. The Authors believe
that the answer to this research question will
provide important insights about combining dif-
ferent classifiers (using an ensemble of classifiers)
for improving the cross-project logging prediction
performance.

Approach: Individual classifiers are compared
on 5 evaluation metrics, namely, average LP,
average LR, average LF, average ACC', and av-
erage RA, to identify whether a single classifier
dominates and provides the highest values over
all the evaluation metrics.

Results: The results indicate that different
classifiers are complementary to each other. For

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers

25

RQ 2 (a): Single vs. Multi-project Training

RQ 2 (b): Single vs. Multi-project Training

100l Single project
HEl Multi-project
80
:\E _] —
Y 60f
- __
o
©
[
Z 40
20F
Cs..,. MO Te.. . HD. e, Cs..,.Cs c c
Tc T TRCs T SHp TSHp FHp. FHD. [FCs.
C c S Cs D HD oﬁrc D;CS SAHD

Source Project -> Target Project

(a) Average LF (%)

100} Single project | |
N Multi-project
80}
;\a] I — — —
S _
Q 60f
[
o
o
§ a0}
20f
Csay MO Ten . Moo Te., Cs.\,Cs c c
STe TSI TRCs ™Cs Hp UMHp *"/DAT;"/D‘;C; Sspp

Source Project -> Target Project

(b) Average ACC (%)

Figure 3. The Highest Average LF' of Single-project and Multi-project Training Logging Prediction Models.
CS: CloudStack, TC: Tomcat, and HD: Hadoop

RQ 3(a): Single Classifier Performance (CS->TC)

RQ 3(b): Single Classifier Performance (HD->CS)

HE ADA

100+
I BN

=3 ADT ||

80

40

20

0
AVG. LP

AVG. LR

AVG. LF
Metric

AVG. ACC AVG. RA

I NB

100 1
3 ADT

80

60

Values(%)

40

20

0 |]
AVG. LP AVG. LR AVG. LF AVG. RA

Metric

AVG. ACC

(a) Classifier performance for the CS—TC project pair(b) Classifier performance for the HD—CS project pair

Figure 4. The Results (average LP, LR, LF, ACC and RA) of Selected Single Classifiers.
CS: CloudStack, TC: Tomcat, and HD: Hadoop

example, consider the results obtained on the
following source and target project pair:

CloudStack (source)—Tomcat (target):
Figure 4a presents the histogram of all five
metrics (LP, LR, LF, ACC and RA) for the
CloudStack—Tomcat project pair for the ADA,
ADT and NB classifiers. ADA, ADT and NB
are selected because these three classifiers pro-
vide the best results for cross-project catch-block
logging prediction on the CloudStack—Tomcat
project pair. Figure 4a shows that the ADT
model provides the highest average LP, ACC

and RA values, whereas ADA and BN provide
the highest average LR and LF', respectively
(refer to Table 5 for detailed results).

Hadoop (source)—CloudStack (target):
Similarly to Figure 4a, Figure 4b presents
the histogram of all 5 metrics for the
Hadoop—CloudStack project pair for the ADT
and NB classifiers. Figure 4b shows that NB
provides the highest average LR and LF' val-
ues, whereas ADT provides the highest average
LP, ACC, and RA values (refer to Table 6 for
detailed results).

26

Sangeeta Lal, Neetu Sardana, Ashish Sureka

The above two examples indicate that differ-
ent classifiers provide complementary informa-
tion for cross-project catch-block logging predic-
tion and, hence, their ensemble can be benefi-
cial for improving the results of the prediction
model [72].

The results indicate that the different clas-

sifiers are complementary to each other for

cross-project catch-block logging prediction.

6.2.4. RQ4: Are the algorithms that perform
best for within-project and cross-project
catch-block logging predictions identical?

Motivation: In a related work, Zhu et al. [11]
used the same algorithm (J48) for both
within-project and cross-project logging pre-
dictions. However, there is a possibility that
the same algorithm is not suitable for both
within-project and cross-project logging predic-
tions. In RQ4, the performances of different clas-
sifiers for within-project and cross-project logging
predictions are compared. The Authors believe
that the results of this investigation will provide
us with important insights regarding algorithm
selection for ensemble creation.

Approach: To answer RQ4, we compare
the performances of different classifiers for
within-project and cross-project logging predic-
tions.

Results: Figure 5 presents the histogram of the
average LF' values of the RF, ADT and NB
classifiers for within-project and cross-project
logging predictions for the CloudStack project.
Figure 5 shows that the RF classifier provides the
highest average LF of 88.47% for within-project
logging prediction. The ADT and NB models
provide considerably lower average LF of 85.54%
and 82.81%, respectively, compared to the RF
classifier for within-project logging prediction.
However, for cross-project logging prediction, the
ADT and NB classifiers provide better average
LF compared to that of the RF classifier. For ex-
ample, for the Hadoop— CloudStack project pair,
NB provides an average LF of 70.42%, which
is considerably higher than the average LF' of
the RF classifier (50.48%). Similar results are
observed for other classifiers on other source and

target project pairs (refer to Table 4, Table 5,
Table 6 and Table 7 for detailed results). This
result shows that algorithms that perform best
for within-project and cross-project catch-block
logging predictions are different. These results re-
veal the weakness of the cross-project logging pre-
diction experiment performed by Zhu et al. [11],
where the authors perform within-project and
cross-project logging predictions using the same
algorithm (J48). Hence, in this work, the Au-
thors explore multiple classifiers for cross-project
catch-block logging prediction model building.
Classifiers that provide the best results for
within-project and cross-project logging pre-
dictions are different.
Performance summary of base classifiers
(RQ1-RQ4): In RO1, 4 investigations are per-
formed in the context of cross-project logging pre-
diction. RQ1 indicates that the results of single
classifiers are considerably lower for cross-project
logging prediction compared to the results for
within-project logging prediction. Hence, more
advanced methods are required for building the
cross-project logging prediction model. RQ2 in-
dicates that multi-project training does not im-
prove the performance of cross-project logging
prediction on all source and target project pairs.
Hence, to improve the model building time, only
a single project for training the cross-project
logging prediction model is considered. RQ3 indi-
cates that the classifiers provide complementary
information for the task of cross-project logging
prediction. Hence, the Authors believe that an
ensemble of different classifiers may be beneficial
in improving the performance of cross-project
logging prediction. RQ4 indicates that the classi-
fiers which provide good results for within-project
logging prediction are different from the classi-
fiers which provide good results for cross-project
logging prediction. Hence, to build an ensem-
ble of classifiers to improve the performance of
cross-project logging prediction, it is necessary
to conduct experiments on a wide range of clas-
sifiers to find the best set of classifiers. The first
four RQs derive the motivation for construct-
ing the ECLogger model, i.e. an ensemble of
classifiers-based model which uses a single project
for training the model.

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 27

RQ 4: Single Classifier Performance

Average LF (%)

CS->Cs

TC->CS

HD->CS

Source Project -> Target Project

Figure 5. Performance of RF, ADT, and NB classifiers for within-project
and cross-project catch-block logging predictions

6.3. RO2: Performance of
ensemble-based classifiers for
cross-project catch-block logging
prediction

In this subsection, the performances of
ensemble-based classifiers are investigated and
compared with the performances of single clas-
sifiers for cross-project logging prediction (re-
fer to RQ5-RQ8). For each source and target
project pair, the single classifier that provides
the best results (in terms of average LF') be-
comes the baseline classifier. For example, for
the CloudStack—Tomcat project pair, the BN
classifier provides the highest average LF and is
hence considered to be a baseline classifier (refer
to Table 5).

6.3.1. RQ5: What is the performance of
ECLoggerpagging for cross-project
catch-block logging prediction?

Motivation: In RQ5, the performances of 8 en-
semble classifiers, created using the bagging tech-
nique, are investigated and compared with the
performance of the baseline classifier. The an-
swer to this research question can provide impor-
tant insights regarding whether bagging is useful
in improving the performance of cross-project
catch-block logging prediction.

Approach: To answer this research question,
the average LF and average ACC of 8 ensemble

classifiers generated by applying bagging on the
base classifiers, i.e. ECLoggerpagging models, are
computed. For each source—target project pair,
the bagging model which provides the best av-
erage LF is reported. Then the results obtained
by the best bagging model is compared with the
baseline classifier for each source—target project
pair.
Results: Table 8 presents the average LF
and average ACC of the baseline classifier
and the best ECLoggerpagging model for each
source—target project pair. Table 8 shows that
ECLoggerpagging considerably improves (more
than 1% improvement) the average LF and av-
erage ACC for three and two source—target
project pairs, respectively. It improves the av-
erage LF and average ACC by 4.6% and
5.57% (CloudStack—Tomcat) and by 3.96% and
2.44% (CloudStack—Hadoop) when Bagging o pr
is used. For the Tomcat—CloudStack project
pair, project pair, a considerable improvement
(1.03%) is observed only in the average LF'. For
all other source and target project pairs, no
considerable difference in the performance of
ECLoggerpagging Was observed, compared to the
performance of the baseline classifier. Overall,
the Bagging 4 p7 model performs better than the
other bagging models and gives the highest av-
erage LF for three source and target project
pairs.

ECLoggerpagging shows a considerable im-

provement in the average LF' in 3 out of 6

28

Sangeeta Lal, Neetu Sardana, Ashish Sureka

Table 8. Results of ECLoggergagging. NA: Not Applicable and IMP: Improvement

Source Project —»Target Project Algorithm Avg. LF (%) %IMP Avg. ACC (%) %IMP
CloudStack—Tomcat Baseline (BN) 73.65 + 0.35 NA 70.39 £ 0.54 NA
BaggingapT 78.25 + 0.22 4.6 75.96 + 0.32 5.57

Hadoop—Tomcat Baseline (NB) 73.66 + 0.31 NA 74.04 £ 0.41 NA
Baggingnp 73.54 £ 0.29 -0.12 73.96 £ 0.39 -0.08

Tomcat—CloudStack Baseline (ADT) 66.58 + 0.11 NA 735+ 0.13 NA
Baggingap 67.61 + 0.14 1.03 73.92 + 0.17 0.42

Hadoop—CloudStack Baseline (NB) 70.42 + 0.17 NA 67.27 £ 0.27 NA
Baggingpn 70.49 + 0.19 0.07 67.56 + 0.29 0.29

Tomcat—Hadoop Baseline (NB) 56.5 + 0.2 NA 64.69 £ 0.29 NA
Baggingnp 56.43 + 0.2 20.07 64.7 + 0.29 0.01

CloudStack—Hadoop Baseline (DT) 68.62 + 0.14 NA 71.99 £ 0.18 NA
BaggingapT 72.58 + 0.3 3.96 74.43 + 0.39 2.44

source—target project pairs with a maximum
improvement of 4.6% (average LF') and 5.57%
(average ACC') for the CloudStack—Tomcat
project pair.

6.3.2. RQ6: What is the performance of
ECLogger averagevote for cross-project
catch-block logging prediction?

Motivation: In RQ6, the performances of 466
ECLoggerAverageV ote models are investigated
and compared with the performances of baseline
classifiers. The answer to this research question
can provide important insights about the effec-
tiveness of the average vote ensemble technique
for cross-project catch-block logging prediction.
Approach: To answer this research question,
the average LF and average ACC of 466
ECLogger averagevote models, generated using the
average voting ensemble technique are com-
puted. For each source—target project project
pair, the ECLogger averagevote model which pro-
vides the best average LF' is reported. We
then compare the results obtained by the best
ECLogger averagevote models with the baseline
classifier for each source—target project pair.

Results: Table 9 presents the average LF
and average ACC of the baseline classifier
and the best average voting technique for each
source—target project pair. Table 9 shows that
the ECLogger averagevote technique considerably
improves the average LF and average ACC on 5
source—target project pairs. ECLogger averagevote

improves the average LF and average ACC
by 3.78% and 5.92% (CloudStack—Tomcat),
2.3% and 3.01% (Hadoop—Tomcat), 7.04% and
2.45% (Tomcat—CloudStack), 6.9% and 11.43%
(Hadoop—CloudStack) and 3.57% and 1.35%
(CloudStack—Hadoop). For the 6™ source—
—target project pair, i.e. Tomcat—Hadoop,
ECLogger averagevote Shows a considerable im-
provement in the average ACC (1.74%), whereas
for the average LF', it provides results compara-
ble to the baseline classifier. No particular group
of classifiers whose average vote provides the best
results on each source and target project pair
was observed. However, it was observed that the
ADT, DT, BN, and NB classifiers are present
in most of the ECLogger Averagevote models which
provide the best results.
ECLogger averagevote Shows a considerable im-
provement in the average LF in 5 out of 6
source—target project pairs with a maximum
improvement of 7.04% in the average LF
(for the Tomcat—CloudStack project pair)
and 11.43% in the average ACC (for the
Hadoop—CloudStack project pair).

6.3.3. RQ7: What is the performance of
ECLoggermajorityvote for cross-project
catch-block logging prediction?

Motivation: In RQ7, the performances of 466
ECLoggermajorityvote models are investigated and
compared with the performances of baseline clas-
sifiers. The answer to this research question can

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers

29

Table 9. Results of ECLogger averagevote- IMP: Improvement, NA: Not Applicable, and AV: Average Vote

Source Project —»Target Project Algorithm Avg. LF (%) %IMP Avg ACC (%) %IMP
CloudStack—Tomcat Baseline (BN) 73.65 + 0.35 NA 70.39 £ 0.54 NA
AV (ADT-BN-DT-LR) 77.43 £ 0.47 3.78 76.31 £ 0.64 5.92

Hadoop—Tomcat Baseline (NB) 73.66 + 0.31 NA 74.04 £ 0.41 NA
AV (ADT-BN-DT-J48-NB) 75.96 £ 0.41 2.3 77.05 £ 0.51 3.01

Tomcat— CloudStack Baseline (ADT) 66.58 + 0.11 NA 73.5+0.13 NA
AV (ADT-BN-DT-J48-NB) 73.62 £ 0.1 7.04 75.95 + 0.13 2.45

Hadoop—CloudStack Baseline (NB) 70.42 + 0.17 NA 67.27 + 0.27 NA
AV (ADA-ADT-BN-DT-LR-NB) 77.32 + 0.15 6.9 78.7 £ 0.18 11.43

Tomcat—Hadoop Baseline (NB) 56.5 + 0.2 NA 64.69 £ 0.29 NA
AV (ADT-BN-DT-J48-NB) 56.77 £ 0.16 0.27 66.43 £ 0.22 1.74

CloudStack—Hadoop Baseline (DT) 68.62 £ 0.14 NA 71.99 £ 0.18 NA
AV (ADA-ADT-DT-J48-NB) 72.19 + 0.26 3.57 73.34 £ 0.34 1.35

Table 10. Results of ECLoggernajorityvote- IMP: Improvement, NA: Not Applicable, and MV: Majority Vote

Source Project—Target Project Algorithm Avg. LF (%) %IMP Avg. ACC (%) %IMP
CloudStack—Tomcat Baseline (BN) 73.65 + 0.35 NA 70.39 + 0.54 NA
MV (ADT-BN-DT) 77.85 + 0.3 4.2 76.78 + 0.41 6.39

Hadoop—Tomcat Baseline (NB) 73.66 + 0.31 NA 74.04 + 0.41 NA
MV (BN-NB-RF) 73.7 £ 0.32 0.04 74.09 = 0.43 0.05

Tomcat— CloudStack Baseline (ADT) 66.58 + 0.11 NA 73.5 + 0.13 NA
MV (ADA-BN-J48- LR-NB) 71.12 + 0.13 4.54 74.45 + 0.16 0.95

Hadoop— CloudStack Baseline (NB) 70.42 + 0.17 NA 67.27 £ 0.27 NA
MV (ADA-BN-DT- LR-NB) 74.17 + 0.18 3.75 76.74 £ 0.22 9.47

Tomcat—Hadoop Baseline (NB) 56.5 £ 0.2 NA 64.69 £ 0.29 NA
MV (ADT-BN-NB) 56.49 + 0.2 -0.01 64.75 = 0.28 0.06

CloudStack—Hadoop Baseline (DT) 68.62 + 0.14 NA 71.99 + 0.18 NA
MV (ADA-ADT- BN-DT-J48) 74.01 + 0.23 5.39 73.78 £ 0.31 1.79

provide important insights about the effective-
ness of majority vote models for cross-project
catch-block logging prediction.

Approach: To answer this research question,
the average LF and average ACC of 466
ECLoggernajorityvote models generated using
the majority vote ensemble technique are com-
puted. For each source—target project pair, the
ECLoggernajorityvote model which provides the
best average LF is reported. Then the results
obtained by the best ECLoggeryajorityvote mod-
els are compared with the baseline classifier for
each source—target project pair.

Results: Table 10 shows the average LF and av-
erage AC'C of the baseline classifier and the best
majority vote classifier for each source—target
project pair. Table 10 shows that the
ECLoggerajorityvote classifier improves the aver-

age LF and average ACC for 4 source—target
project pairs. ECLoggermajorityvote improves
the average LF and average ACC by 4.2%
and 6.39% (CloudStack—Tomcat), 4.54% and
0.95% (Tomcat— CloudStack), 3.75% and 9.47%
(Hadoop—CloudStack) and 5.39% and 1.79%
(CloudStack—Hadoop). In other cases, no consid-
erable difference in the performances of the base-
line classifier and ECLoggernajorityvote Classifier
was observed. No particular group of classifiers
whose majority vote provides the best results on
each source and target project pair was observed.
However, it was observed that the BN classifier
was present in all of the ECLoggermajorityvote
models that provide the best results.
ECLoggernajority Vote improved the
cross-project catch-block logging prediction
in 4 out of 6 source—target project pairs with

30

Sangeeta Lal, Neetu Sardana, Ashish Sureka

Table 11. Average performance of ECLogger models on all source—target projects pairs.
IMP: Improvement, NA: Not Applicable, AV: Average Vote, and MV: Majority Vote

Source—Target Approach Algorithm Avg. LF (%) % IMP Avg. ACC (%) %IMP
Baseline NB 67.825 NA 66.85 NA

Al ECLOgger Bagging Baggingan 67.8 ~0.025 66.89 0.04
ECLogger averagevote AV (ADA-ADT-BN-DT-LR-NB) 70.95 3.12 72.93 6.08
ECLoggermajorityVote MV (ADT-BN-DT-LR-NB) 68.775 0.95 72.84 5.99

a maximum improvement of 5.39% in the
average LF (for the CloudStack—Hadoop
project pair) and 9.47% in the average ACC
(for the Hadoop—CloudStack project pair).

6.3.4. RQ8: What is the average performance of
the baseline classifier and ECLoggeryiodels
over all the source and target project
pairs?

Motivation: In RQ 8, the performances of all
9 base classifiers and 940 ensemble models are
examined over all 6 source and target project
pairs. The answer to this RQ can be beneficial in
identifying a dominant approach that is suitable
for all types of source and target project pairs.
Approach: To answer RQ8, performances of all
9 single classifiers and 940 ensemble classifiers on
all the source and target project pairs are com-
puted. Then the average performance of all the
9 + 940 classifiers is computed. For example, to
compute the average performance of a model M,
its performance on all 6 source—target project
pairs is computed. The summation of these 6 val-
ues is divided by 6.

Results: Table 11 shows the results of the av-
erage performances of the best classifiers in each
category, i.e. single classifier, ECLoggergagging,
ECLOggerMajorityVote and ECLOggerAverage\/ote'
The results show that for individual classifiers,
NB provides the best results and provides on
average a 67.82% average LF and 66.85% av-
erage ACC on all source and target project
pairs and, hence it is considered to be a base-
line classifier for this experiment. The results
of the best bagging technique are comparable
with the baseline classifier, i.e., best individual
classifier. ECLoggerajorityVote Provides an av-
erage ACC of 72.84%, i.e. a 5.99% improve-
ment in the average ACC of baseline classi-

fier. ECLoggernajorityVvote Provides an average
LF comparable to that of the baseline classifier.
ECLogger averagevote Performs best and provides
an average LF and average ACC of 70.95% and
70.93%, respectively. ECLogger averagevote results
in 3.12% and 6.08% improvements in the average
LF and average ACC, respectively, compared to
the baseline classifier.
ECLogger averagevote Performs best and shows
improvements of 3.12% (average LF') and
6.08% (average ACC') compared to the base-
line classifier.
Overall performance summary of the
three proposed approaches (RQ5-RQ8):
Table 12 presents the overall perfor-
mance summary of the ECLoggergagging,
ECLOggerAverage\/ote and ECLOggerMajorityVote
models. The model that provides the highest
improvement (measured in average LF' and aver-
age ACC) by each approach is selected for each
source and target project pair. In Table 12, cells
containing / indicate that the respective model
improved the results of the baseline classifier
and those containing % indicate the model pro-
viding the best result for the respective source
and target project pair. Table 12 shows that
for three source and target project pairs, i.e.
Hadoop—Tomcat, Tomcat—CloudStack and
Hadoop—CloudStack, the ECLogger averagevote
model provides the best results in terms of
both average LF and average ACC. Table
12 shows that the cells associated with the
ECLogger averagevote model consist of a higher
number of % compared to those associated with
ECLoggeryajorityvVote and ECLoggerpagging. This
result shows that the ECLogger averagevote model
results in better improvements compared to the
other two approaches, i.e. ECLoggerpagging and
ECLoggernajorityvote- Lable 12 shows that the
rows consisting of CloudStack as the source

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 31

Table 12. Performance summary of ECLoggergagging, FECLOgEgET Averagevote and ECLoggernajority vote-
IMP: Improvement and ALGO: Algorithm

Source—Target ECLOggerBagging ECLOggerA\/erage\/ote ECLOggerMajorityVote
IMP. in Avg. IMP. in Avg. IMP. in Avg. IMP. in Avg. IMP. in Avg. IMP. in Avg.
LF ACC LF ACC LF ACC

CloudStack—Tomcat * v v v v Vo

Hadoop— Tomcat NE VA

Tomcat—CloudStack Vv ® Vv x v

Hadoop—CloudStack N V o* v v

Tomcat—Hadoop V %

CloudStack—Hadoop +/ NE Vv v V o* v

project consist of the largest number of / sym-
bols . This result indicates that all three proposed
models provide better performance (improve the
results provided by the baseline classifier) when
the CloudStack project (used as the source
project) is used to train the cross-project logging
prediction model compared to when Tomcat
or Hadoop is used to train the model. This
reveals that the overall CloudStack project is
more generalizable compared to the Hadoop
and Tomcat projects for cross-project logging
prediction. In all cases, the proposed models
provide better or comparable results analogous
with baseline baseline classifier.

7. Discussion

Performance of single classifiers: The log
context can be viewed from two perspectives.
One perspective is the log level such as debug,
fatal, error, info, trace and warn. The other
perspective is the programming construct and
the block in which the log statements are used
such as try-catch or if-else. The static code fea-
tures used as predictive variables to estimate
the position of the log statement depends on
the log context. This study focused on a spe-
cific context such as catch-block, and in future
a study will be conducted on a larger context.
It was observed that classifiers LR, RF, and
J48 provide better performance than the other
classifiers for within-project catch-block logging
prediction. The results are in compliance with
results of previous studies which report RF [10]
and J48 [11] as the best performing classifier for
within-project logging prediction. It was observed

that RF algorithm not only gives decent perfor-
mance for logging prediction but it is also one of
the fastest algorithms and, hence, is suitable for
large datasets or time constrained environments.
For cross-project catch-block logging prediction,
ADT, BN, NB, and DT provide better results.
The results reveal that NB performs best in three
out of the six cross-project logging prediction ex-
periments, whereas ADT, DT and BN perform
best for one cross-project logging prediction ex-
periment. Logging prediction is essentially a text
classification problem and NB has shown good
results for text classification problems [58]. The
simplistic learning approach of NB makes is suit-
able for cross-project learning. NB gives good
results for other cross-project prediction stud-
ies, such as cross-project defect prediction [73].
In addition to this, NB does not need a large
training dataset and can handle missing data
and uncorrelated features [74]. The performance
of RBF is worst for cross-project catch-block
logging prediction. RBF' consistently provides
poor performance across all the projects. RBF
is a neural network-based approach [59]. RBF is
known to be highly sensitive towards the training
data and the dimensionality of the training data
and, hence, it cannot extrapolate beyond the
training data [75].

Performance of ensemble techniques: The
investigated problem was the concept of integrat-
ing and combining multiple models to obtain
a more accurate global predictive model in com-
parison to its constituent models for cross-project
logging prediction [76-78|. The objective of using
ensemble methods was to develop a more reli-
able and robust global model by reducing the
generalization error [76-78]. Reducing generaliza-

32

Sangeeta Lal, Neetu Sardana, Ashish Sureka

tion error is particularly important in this study
because the experimental dataset consisting of
three open-source software projects can natu-
rally have biases due to specific logging practice
guidelines and characteristics. Although there
are several types of ensemble methods available,
three methods were used in the experiments: bag-
ging, average vote and majority vote. It was ob-
served that Bagging 4 pr provided better results
for cross-project catch-block logging prediction
compared to other bagging combinations. The
Authors believe that the better performance of
bagging is due to the decreased variance of the
base model [76-78]. Bagging 4 pr model was also
found to be useful in other applications such as
the detection of Single Nucleotide Polymorphism
(SNP) associated with diseases [79]. However,
a considerable increase in the model building
time was observed when the bagging technique
was applied and, therefore, it was not possible
to build the Baggingpr model because of its
high time complexity. Hence, bagging may not
be a good option for large datasets. It was also
observed that for the ADA algorithms, bagging
results in a considerable drop in the prediction
performance, i.e. upto 28.1% in average LF on
CloudStack—Hadoop project pair, as compared
to the results of the ADA algorithm. The Authors
believe this happened because ADA is an ensem-
ble based algorithm and its learning method is
quite different from bagging [80].

The results show that the average vote and
majority vote ensemble techniques give better
results as compared to that of the bagging en-
semble technique. It was also observed that the
time complexity of the average vote and the
majority vote is considerably lower as compared
to that of bagging. The reason for the higher
time complexity of bagging is that the bag-
ging technique assigns weight to the source in-
stances by running multiple iterations of the
algorithm on a sub-sampled dataset to generate
the learner whereas the average vote and the
majority vote generate a multiple learner in one
iteration [38,49]. However, it was observed that
for majority weight ensemble technique, the ma-
jority vote of a different classifier gives the best
results (measured in average LF') for different

source and target project pairs. For example,
classifier set ADT-BN-DT gives the highest aver-
age LF for the CloudStack—Tomcat project pair.
No dominating set of classifiers which gave the
best average LF for all source and target project
pairs was found. For the majority vote technique
classifier set, ADT-BN-DT-LR-NB gives overall
0.95% and 5.99% improvement (average over
all source and target project pairs) in average
LF and average ACC respectively, as compared
to the results of baseline classifier. Similarly
to majority vote for the average vote ensem-
ble technique, the average vote of different set
of classifiers gives the best results (measured
in average LF') for different source and target
project pairs. However, for the average vote tech-
nique classifier set ADA-ADT-BN-DT-LR-NB
gives overall 3.12% and 6.08% improvement (av-
erage over all source and target project pairs)
in average LF and average ACC respectively,
as compared to the results of the baseline clas-
sifier. Comparing the improvements percentage
of the majority vote and the average vote we
can infer that the average vote gives better pre-
diction results. Moreover, in the case of the
equal number of votes to both the positive
and negative class, the majority vote ensemble
technique does random prediction of the class,
whereas the average vote ensemble technique
makes fair decisions. As it considers classification
score for decision making. However, the Authors
observed that in the literature, there are sev-
eral studies which analyse the performance of
the majority vote ensemble technique in differ-
ent contexts, such as effect of the small-world
and various diversities [81-83]. There has been
much less emphasis given to the average vote
ensemble technique. The Authors believe that
the results of this paper mean that an indepth
study of the average vote ensemble technique
is necessary.

Project generalizability: During the exper-
iments it was observed that the CloudStack
project was more generalizable compared to
Hadoop and Tomecat for cross-project catch-block
logging prediction. Some traces of the associa-
tion of the CloudStack project with both the
Tomcat and Hadoop projects were found. Cloud-

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 33

Stack is the first cloud platform to join ASF?
and is quite popular in organizations which
prefer an open-source option for their cloud
and big data infrastructure. It was found out
that Hortonworks and the CloudStack project
team were working on identifying opportunities
where Hadoop components could be used to
back Cloud APIs and also where Cloud APIs
could be used to deploy Hadoop [84]. In addition,
CloudStack uses Tomcat as its servlet container
[85]. To find some examples of association in
the source code of these three projects,a simple
experiment was performed. For each source
and target project pair, the count of logged
catch-blocks that were common (i.e. have same
exception types) was computed. It was observed
that Tomcat— CloudStack, Tomcat—Hadoop,
CloudStack—Tomcat, CloudStack—Hadoop,
Hadoop—Tomcat, and Hadoop—CloudStack
have 38, 44, 38, 41, 41 and 44 common unique
exception types, respectively. The frequency of
each of these exception types in each source
project was computed. It was found out that the
CloudStack— Tomcat and CloudStack—Hadoop
projects have the highest frequency of these

exception types, i.e.1852 and 1934, respectively.

This provides an indication that the CloudStack
project has some similarities in its code with
both the Tomcat and Hadoop projects. The
Authors believe that the CloudStack project is
more generalizable than the Tomcat and Hadoop
projects because it provides some support to
both of these projects.

8. Threats to validity

Number and type of projects: The Tomcat,
CloudStack and Hadoop projects were selected
for the study. All three projects are open-source
Java-based projects. However, the results may
not be generalizable for all Java projects or

projects written in other programing languages.

Additional studies are required for other Java
projects or projects written in other languages
(e.g. C#, python). Only open-source projects

are considered in this study; hence, the results
cannot be generalized to closed-source projects.
Overall, no general conclusion which would be
applicable to logging prediction in all types of
software applications can be drawn.

Quality of ground truth: It was assumed that
logging statements inserted by the software de-
velopers of the Apache Tomcat, CloudStack and
Hadoop projects were optimal. There is a pos-
sibility of errors or non-optimal logging in the
code by the developers, which can affect the
results of this study. However, all three of the
projects are long lived and are actively main-
tained; hence, it can be assumed that most of
the code constructs follow good logging (if not
optimal). In the study 26 regular expressions
were used to extract the logging statements from
the source code. Manual analysis reveals that all
the logging statements were extracted (to the
best of the Authors’ knowledge). However, there
is still a possibility that the regular expressions
missed some types of logging statements in the
source code.

Algorithm parameters: Default parameters
for all the algorithms were used. Tuning classifi-
cation parameters is important and can help im-
prove the classification results. However, the Au-
thors considered default parameters for all the al-
gorithms as the initial step towards cross-project
logging prediction. Some planned future work
will encompass finding optimal parameters for
each of the classification algorithms.

Sampling bias: The under-sampling of major-
ity class instances was performed to balance the
datasets. This can lead a sampling bias in the
results. However, to reduce the sampling bias,
10 datasets were created and the average results
over these 10 datasets were reported.
Classifier set: In this work, we explored 9
base classifiers and 3 ensemble techniques. How-
ever, there are many other classifiers (such as
genetic algorithms [86]) and many other ensemble
techniques (such as stacking [39] and boosting
[39]), which have not been explored in this work.
It is possible that a different set of algorithms
would provide better results for cross-project

thtp://nosql.mypopescu.com/post/20461845393/cloudstack- and-hadoop-a-match-made-in-the-cloud
3https://dl.dropboxusercontent.com/u/48972351/RegExLoggingStudy.txt

34

Sangeeta Lal, Neetu Sardana, Ashish Sureka

catch-block logging prediction compared to the
set of algorithms explored in this work.
Computation of LF metric: Equation (4)
was used to compute the LF metric. In Equa-
tion (4), parameter 8 can take any value ranging
from 0 to oo. If the value of 8 is less than 1,
Equation (4) gives more weightage to precision.
Similarly, the value of 8 greater than 1 gives
more weightage to recall. A system with high
precision but low recall returns few results, but
most of its predicted labels are correct when com-
pared to the training labels. A system with high
recall but low precision returns many results, but
most of its predicted labels are incorrect when
compared to the training labels. At the time of
logging prediction, a high recall and low precision
system can cause the excess of log statements in
the source code. However, a high precision and
low recall system can cause less than required
number of log statements. In this system, both
excess or sparse logging in the source code is
problematic. Hence, the value of 5 as 1, i.e. as-
signed equal weightage to both precision and re-
call, was used. Hence, this study gives preference
to the classifier which optimizes both precision
and recall. There are certain application domains
which prefer either high-precision (low recall) or
high recall (low precision) system [87]. Hence,
depending upon the application domain either
high precision (low recall) or high recall (low
precision) system may be more suitable. In such
cases the value of 8 needs to be adjusted accord-
ingly. In this work, we have not compared the
performance of different classifiers for different
values of .

9. Conclusion and future work

In this paper, the Authors propose ECLogger,
an ensemble-based, cross-project, catch-block log-
ging prediction framework. ECLogger uses 9 base
classifiers (AdaBoostM1, ADTree, Bayesian net-
work, decision table, J48, logistic regression, Naive
Bayes, random forest and radial basis function
network). ECLogger combines these algorithms
with three ensemble techniques, i.e. bagging,
average vote and majority vote. In the study

8 ECLOggerBagginga 466 ECLOggerAverageVOte
and 466 ECLoggeryajorityVote models were cre-
ated. The performance of ECLogger on three
open-source Java projects: Tomecat, Cloud-
Stack and Hadoop was evaluated. The re-
sults of the comparison of ECLoggergagging,
ECLOggerAvoragc\/oto and ECLOggerMajorityVotc
with baseline classifiers were presented.
ECLOggerBaggingv ECLOggerAverage\/ote and
ECLoggerMajorityVOte show maximum improve-
ments of 4.6%, 7.04% and 5.39% in average
LF, respectively, in comparison to the base-
line classifier. Overall, the ECLogger averagevote
model performs better than ECLoggerp,gging and
ECLoggerpajorityVote- 1he experimental results
show that the CloudStack project is more gen-
eralizable for cross-project catch-block logging
prediction than the Tomcat and Hadoop projects.

In the future, there are plans to evaluate to
evaluate ECLogger on datasets from more soft-
ware projects, i.e. closed-source applications and
projects from other programing languages (i.e. C,
C++, and C+#). There are also plans to extend
the functionality of ECLogger for other types of
code constructs, such as if-blocks. The Authors
will also work to improve the performance of
ECLogger using other ensemble techniques, such
as stacking, which is found to be useful in bug
assignment problem [88]. Apart from this work
will be conducted on tuning various classifier
parameters to obtain the optimal classification
performance [89]. In addition to this, the iden-
tification of the most productive feature will be
examined using various feature selection tech-
niques to reduce the model building time and
to further improve the performance. The Au-
thors believe that their research can be applied
or transferred into practice by building a devel-
opment environment tool, such as an Eclipse
or Visual Studio plug-in. Future plans encom-
pass the development of an ECLogger plug-in for
Eclipse IDE which will give a logging suggestion
to software developers. at the time of coding.
The advantage of a plug-in based implementa-
tion is that the developers can use the tool as
part of their existing infrastructure and process
and do not need to learn or install a completely
new tool.

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers

35

References

1]

[10]

D. Yuan, S. Park, and Y. Zhou, “Characterizing
logging practices in open-source software,” in
Proceedings of the 34th International Conference
on Software Engineering, 2012, pp. 102-112.

B. Sharma, V. Chudnovsky, J.L. Hellerstein,
R. Rifaat, and C.R. Das, “Modeling and syn-
thesizing task placement constraints in Google
compute clusters,” in Proceedings of the 2Nd
ACM Symposium on Cloud Computing. New
York: ACM, 2011, pp. 3:1-3:14.

K. Nagaraj, C. Killian, and J. Neville,
“Structured comparative analysis of sys-
tems logs to diagnose performance prob-
lems,” in Proceedings of the 9th USENIX
Conference on Networked Systems Design
and Implementation, 2012, pp. 353-366.
[Online]. https://www.usenix.org/system/files/
conference/nsdil2/nsdil2-final61.pdf

Q. Fu, J.G. Lou, Y. Wang, and J. Li, “Ex-
ecution anomaly detection in distributed sys-
tems through unstructured log analysis,” in Pro-
ceedings of the 2009 Ninth IEEFE International
Conference on Data Mining. Washington: IEEE
Computer Society, 2009, pp. 149-158.

Z.M. Jiang, A.E. Hassan, G. Hamann, and
P. Flora, “Automatic identification of load test-
ing problems,” in IEEFE International Confer-
ence on Software Maintenance, Sep. 2008, pp.
307-316.

Z.M. Jiang, A.E. Hassan, G. Hamann, and
P. Flora, “Automated performance analysis of
load tests,” in IEEFE International Conference on
Software Maintenance, Sep. 2009, pp. 125-134.
Blackberry enterprise server logs submission,
BlackBerry Limited. [Online]. https://salesforce.
services.blackberry.com/webforms/beslogs [Ac-
cessed 4 June 2016].

Q. Fu, J. Zhu, W. Hu, J.G. Lou, R. Ding, Q. Lin,
D. Zhang, and T. Xie, “Where do developers
log? An empirical study on logging practices in
industry,” in Companion Proceedings of the 36th
International Conference on Software Engineer-
ing, 2014, pp. 24-33.

S. Lal, N. Sardana, and A. Sureka, “LogOpt-
Plus: Learning to optimize logging in catch and
if programming constructs,” in 40th Annual
Computer Software and Applications Conference
COMPSAC, Vol. 1, Jun. 2016, pp. 215-220.

S. Lal and A. Sureka, “LogOpt: Static feature
extraction from source code for automated catch
block logging prediction,” in 9th India Soft-
ware Engineering Conference ISEC, 2016, pp.
151-155.

[11]

[13]

[15]

[16]

[18]

[19]

J. Zhu, P. He, Q. Fu, H. Zhang, M. Lyu, and
D. Zhang, “Learning to log: Helping developers
make informed logging decisions,” in 37th IEEE
International Conference on Software Engineer-
ing ICSE, Vol. 1, May 2015, pp. 415-425.

A. Grabner, Top Tomcat performance
problems part 2: Bad coding, inefficient
logging and exceptions. [Online]. http:

//apmblog.dynatrace.com/2016,/03/08/top-
tomcat-performance-problems-part-2-bad-
coding-inefficient-logging-exceptions/ [Accessed
31 May 2015].

W. Shang, M. Nagappan, and A.E. Hassan,
“Studying the relationship between logging char-
acteristics and the code quality of platform soft-
ware,” Empirical Software Engineering, Vol. 20,
No. 1, 2015, pp. 1-27.

J. Nam, S.J. Pan, and S. Kim, “Transfer de-
fect learning,” in 35th International Conference
on Software Engineering ICSE, May 2013, pp.
382-391.

A.T. Masirhi, A.B. Bener, and B. Turhan, “An
industrial case study of classifier ensembles for lo-
cating software defects,” Software Quality Jour-
nal, Vol. 19, No. 3, 2011, pp. 515-536.

L. Mariani and F. Pastore, “Automated iden-
tification of failure causes in system logs,” in
Software Reliability Engineering, 2008. ISSRE
2008. 19th International Symposium on, Nov.
2008, pp. 117-126.

D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou,
and S. Pasupathy, “SherLog: error diagnosis by
connecting clues from run-time logs,” in Pro-
ceedings of the Fifteenth Edition of ASPLOS
on Architectural Support for Programming Lan-
guages and Operating Systems. New York: ACM,
2010, pp. 143-154.

W. Xu, L. Huang, A. Fox, D. Patterson, and M.I.
Jordan, “Detecting large-scale system problems
by mining console logs,” in Proceedings of the
ACM SIGOPS 22nd Symposium on Operating
Systems Principles, 2009, pp. 117-132.

M. Montanari, J.H. Huh, D. Dagit, R. Bobba,
and R.H. Campbell, “Evidence of log in-
tegrity in policy-based security monitoring,” in
IEEE/IFIP /2nd International Conference on
Dependable Systems and Networks Workshops
DSN-W. IEEE, 2012, pp. 1-6.

G. Lee, J. Lin, C. Liu, A. Lorek, and D. Ryaboy,
“The unified logging infrastructure for data ana-
lytics at Twitter,” Proc. VLDB Endow., Vol. 5,
No. 12, Aug. 2012, pp. 1771-1780.

Logstash homepage, Elasticsearch. [Online].
https://www.elastic.co/products/logstash/ [Ac-
cessed 27 July 2016].

36

Sangeeta Lal, Neetu Sardana, Ashish Sureka

[22]

[23]

[24]

Splunk homepage, Splunk, Inc. [Online].
http://www.splunk.com/ [Accessed 27 July
2016].

S. Kabinna, C.P. Bezemer, W. Shang, and A.E.
Hassan, “Examining the stability of logging state-
ments,” in The 23rd IEEE International Con-
ference on Software Analysis, Evolution, and
Reengineering SANER, 2016.

D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Sav-
age, “Improving software diagnosability via log
enhancement,” in Proceedings of the Sixteenth
International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems. New York: ACM, 2011, pp. 3-14.

D. Yuan, S. Park, P. Huang, Y. Liu, M.M. Lee,
X. Tang, Y. Zhou, and S. Savage, “Be conserva-
tive: Enhancing failure diagnosis with proactive
logging,” in Proceedings of the 10th USENIX
Conference on Operating Systems Design and
Implementation, 2012, pp. 293-306.

T. Nurkiewicz, 10 tips for proper application
logging. [Online]. http://www.javacodegeeks.
com/2011/01/10-tips-proper-application-
logging.html [Accessed 19 Oct 2015].

Why does the TRACE level exists, and
when should I use it rather than DEBUG?
[Online]. http://programmers.stackexchange.
com/questions /279690 /why-does-the-trace-
level-exists-and-when-should-i-use-it-rather-
than-debug [Accessed 22 Oct 2015].

T. Menzies, J. Greenwald, and A. Frank, “Data
mining static code attributes to learn defect pre-
dictors,” IEEE Transactions on Software Engi-
neering, Vol. 33, No. 1, Jan. 2007, pp. 2-13.

S. Kim, E.J.W. Jr., and Y. Zhang, “Classifying
software changes: Clean or buggy?” IEEE Trans-
actions on Software Engineering, Vol. 34, No. 2,
Mar. 2008, pp. 181-196.

Y. Zhang, D. Lo, X. Xia, and J. Sun, “An
empirical study of classifier combination for
cross-project defect prediction,” in 39th Annual
Computer Software and Applications Conference
COMPSAC, Vol. 2, Jul. 2015, pp. 264-269.

Y. Hu, X. Zhang, E. Ngai, R. Cai, and M. Liu,
“Software project risk analysis using Bayesian
networks with causality constraints,” Decision
Support Systems, Vol. 56, 2013, pp. 439-449.
X. Xia, D. Lo, X. Wang, X. Yang, S. Li, and
J. Sun, “A comparative study of supervised learn-
ing algorithms for re-opened bug prediction,” in
17th European Conference on Software Mainte-
nance and Reengineering CSMR. TEEE, 2013,
pp- 331-334.

[33]

[34]
[35]

[36]

[46]

[47]

T.G. Dietterich, “Ensemble learning,” in The
handbook of brain theory and neural networks,
2nd ed., M.A. Arbib, Ed. MIT Press: Cambridge,
MA, 2002, pp. 405—408.

Z.H. Zhou, “Ensemble learning,” Encyclopedia
of Biometrics, 2015, pp. 411-416.

L. Breiman, “Bagging predictors,” Machine
Learning, Vol. 24, No. 2, 1996, pp. 123-140.

L. Breiman, “Random forests,” Mach. Learn.,
Vol. 45, No. 1, Oct. 2001, pp. 5-32.

Y. Freund and R.E. Schapire, “A decision-the-
oretic generalization of on-line learning and an
application to boosting,” Journal of Computer
and System Sciences, Vol. 55, No. 1, Aug. 1997,
pp. 119-139.

J.R. Quinlan, “Bagging, boosting, and C4.S,” in
Proceedings of the Thirteenth National Confer-
ence on Artificial Intelligence — Volume 1. AAAT
Press, 1996, pp. 725-730.

J. Han, M. Kamber, and J. Pei, Data Mining:
Concepts and Techniques, 3rd ed. San Francisco:
Morgan Kaufmann Publishers Inc., 2011.

D.H. Wolpert, “Stacked generalization,” Neural
networks, Vol. 5, No. 2, 1992, pp. 241-259.

A. Panichella, R. Oliveto, and A.D. Lucia,
“Cross-project defect prediction models: L union
fait la force,” in IEEE Conference on Software
Maintenance, Reengineering and Reverse Engi-
neering CSMR-WCRE, Feb. 2014, pp. 164-173.
X. Xia, D. Lo, E. Shihab, X. Wang, and X. Yang,
“ELBlocker: Predicting blocking bugs with en-
semble imbalance learning,” Information and
Software Technology, Vol. 61, 2015, pp. 93-106.
W. Dai, Q. Yang, G.R. Xue, and Y. Yu, “Boost-
ing for transfer learning,” in Proceedings of
the 24th International Conference on Machine
Learning. New York: ACM, 2007, pp. 193-200.
S.J. Pan, IL.W. Tsang, J.T. Kwok, and Q. Yang,
“Domain adaptation via transfer component anal-
ysis,” IEEE Transactions on Neural Networks,
Vol. 22, No. 2, Feb. 2011, pp. 199-210.

X. Xia, D. Lo, S. McIntosh, E. Shihab, and
A E. Hassan, “Cross-project build co-change pre-
diction,” in 22nd International Conference on
Software Analysis, Fvolution, and Reengineering
SANER, Mar. 2015, pp. 311-320.

S.J. Pan, X. Ni, J.T. Sun, Q. Yang, and Z. Chen,
“Cross-domain sentiment classification via spec-
tral feature alignment,” in Proceedings of the
19th international conference on World wide web.
ACM, 2010, pp. 751-760.

Y. Freund and R.E. Schapire, Experiments
with a new boosting algorithm, (1996).[Online].

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers

37

[48]

http://www.public.asu.edu/~jye02/CLASSES/
Fall-2005/PAPERS /boosting-icml.pdf

M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I.H. Witten, “The WEKA
data mining software: An update,” SIGKDD
Ezplor. Newsl., Vol. 11, No. 1, Nov. 2009, pp.
10-18.

M. Sewell, “Ensemble learning,” RN, Vol. 11,
No. 02, 2008.

Y. Freund and L. Mason, “The alternating deci-
sion tree learning algorithm,” in Proceedings of
the Sixteenth International Conference on Ma-
chine Learning, 1999, pp. 124-133.

K. Murphy, A brief introduction to graph-
ical models and Bayesian networks. [On-
line]. http://www.cs.ubc.ca/~murphyk/Bayes/
bnintro.html [Accessed 20 March 2016].

T.D. Nielsen and F.V. Jensen, Bayesian net-
works and decision graphs. Springer Science &
Business Media, 2009.

R. Kohavi, “The power of decision tables,” in
Machine Learning: ECML-95, ser. Lecture Notes
in Computer Science (Lecture Notes in Artifi-
cial Intelligence), N. Lavrac and S. Wrobel, Eds.
Springer, 1995, Vol. 912, pp. 174-189.

G.H. John, R. Kohavi, K. Pfleger et al., “Irrele-
vant features and the subset selection problem,”
in Machine Learning: Proceedings of the Eleventh
International Chonference, 1994, pp. 121-129.
A. Padhye, Classification methods.
[Online]. http://www.d.umn.edu/~padhy005/
Chapterb.html [Accessed 20 March 2016].

D.W. Hosmer and S. Lemeshow, “Introduction
to the logistic regression model,” Applied Logistic
Regression, Second Edition, 2000, pp. 1-30.
D.D. Lewis, “Naive (Bayes) at forty: The inde-
pendence assumption in information retrieval,”
in Proceedings of the 10th FEuropean Confer-
ence on Machine Learning. London, UK, UK:
Springer-Verlag, 1998, pp. 4-15.

S. Shivaji, E.J. Whitehead, R. Akella, and
S. Kim, “Reducing features to improve code
change-based bug prediction,” IEFEE Transac-
tions on Software Engineering, Vol. 39, No. 4,
2013, pp. 552-569.

M.D. Buhmann and M.D. Buhmann, Radial Ba-
sis Functions. New York: Cambridge University
Press, 2003.

Python NLTK library, NLTK Project. [Online].
http://www.nltk.org/ [Accessed 19 March 2016].
P. Krill, Java regains spot as most popular
language in developer index. [Online].
http://www.infoworld.com/article/2909894 /
application-development /java-back-at-1-in-

[71]

[72]

73]

language-popularity-assessment.html [Accessed
19 March 2016].

Apache project homepage, The Apache Software
Foundation. [Online]. https://commons.apache.
org/proper/commons-logging/ [Accessed 18
March 2016].

Cloudstack project homepage, The Apache Soft-
ware Foundation. [Online]. https://cloudstack.
apache.org/ [Accessed 18 March 2016].

Hadoop project homepage, The Apache Software
Foundation. [Online]. http://hadoop.apache.org/
[Accessed 18 March 2016].

B. Chen and Z.M. (Jack) Jiang, “Characterizing
logging practices in Java-based open source soft-
ware projects — a replication study in Apache
Software Foundation,” Empirical Software Engi-
neering, 2016, pp. 1-45.

D. Correa and A. Sureka, “Chaff from the wheat:
Characterization and modeling of deleted ques-
tions on Stack Overflow,” in Proceedings of the
23rd International Conference on World Wide
Web. New York: ACM, 2014, pp. 631-642.

S. Shivaji, E.J.W. Jr., R. Akella, and S. Kim,
“Reducing features to improve bug prediction,”
in Proceedings of the 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engi-
neering. Washington: IEEE Computer Society,
2009, pp. 600-604.

C.D. Manning, P. Raghavan, and H. Schiitze, In-
troduction to Information Retrieval. New York:
Cambridge University Press, 2008.

Y. Tian, J. Lawall, and D. Lo, “Identifying Linux
bug fixing patches,” in Proceedings of the 34th
International Conference on Software Engineer-
ing. Piscataway: IEEE Press, 2012, pp. 386-396.
H. Valdivia Garcia and E. Shihab, “Charac-
terizing and predicting blocking bugs in open
source projects,” in Proceedings of the 11th Work-
ing Conference on Mining Software Repositories.
New York: ACM, 2014, pp. 72-81.

F. Zhang, Q. Zheng, Y. Zou, and A.E. Hassan,
“Cross-project defect prediction using a connec-
tivity-based unsupervised classifier,” in Proceed-
ings of the 38th International Conference on
Software Engineering. New York: ACM, 2016,
pp. 309-320.

G. Zhou, D. Shen, J. Zhang, J. Su, and S. Tan,
“Recognition of protein/gene names from text
using an ensemble of classifiers,” BMC bioinfor-
matics, Vol. 6, No. 1, 2005, p. 1.

R.F. Satin, I.S. Wiese, and R. Ré, “An ex-
ploratory study about the cross-project defect
prediction: Impact of using different classifica-
tion algorithms and a measure of performance in

38

Sangeeta Lal, Neetu Sardana, Ashish Sureka

(78]

[79]

[80]

[81]

building predictive models,” in Latin American
Computing Conference CLEI TEEE, 2015, pp.
1-12.

A. Jordan, “On discriminative vs. generative clas-
sifiers: A comparison of logistic regression and
Naive Bayes,” Advances in neural information
processing systems, Vol. 14, 2002, p. 841.
Neural networks, StatSoft, Inc. [On-
line]. http://www.fmi.uni-sofia.bg/fmi/statist/
education/textbook/eng/stneunet.html [Ac-
cessed 30 July 2016].

T.G. Dietterich, “Ensemble methods in machine
learning,” in Proceedings of the First Interna-
tional Workshop on Multiple Classifier Systems.
London, UK, UK: Springer-Verlag, 2000, pp.
1-15.

S.B. Kotsiantis, “Supervised machine learning;:
A review of classification techniques,” in Pro-
ceedings of the 2007 Conference on Emerging
Artificial Intelligence Applications in Computer
Engineering: Real Word Al Systems with Appli-
cations in eHealth, HCI, Information Retrieval
and Pervasive Technologies. Amsterdam, The
Netherlands, The Netherlands: IOS Press, 2007,
pp. 3—24.

Z.H. Zhou, Ensemble methods: foundations and
algorithms. CRC Press, 2012.

R.T. Guy, P. Santago, and C.D. Langefeld,
“Bootstrap aggregating of alternating decision
trees to detect sets of SNPs that associate with
disease,” Genetic epidemiology, Vol. 36, No. 2,
2012, pp. 99-106.

E. Bauer and R. Kohavi, “An empirical com-
parison of voting classification algorithms: Bag-
ging, boosting, and variants,” Machine Learning,
Vol. 36, No. 1-2, 1999, pp. 105-139.

G. Brown and L.I. Kuncheva, “Good and bad
diversity in majority vote ensembles,” in Interna-

[82]

[83]

tional Workshop on Multiple Classifier Systems.
Springer, 2010, pp. 124-133.

P.R. Campos, V.M. de Oliveira, and F.B. Mor-
eira, “Small-world effects in the majority-vote
model,” Physical Review E, Vol. 67, No. 2, 2003,
p- 026104.

L.I. Kuncheva, C.J. Whitaker, C.A. Shipp, and
R.P. Duin, “Limits on the majority vote accu-
racy in classifier fusion,” Pattern Analysis &
Applications, Vol. 6, No. 1, 2003, pp. 22-31.

Sheng, Cloudstack and Hadoop: A
match made in the cloud. [On-
line]. http://nosql.mypopescu.com/post/

20461845393/ cloudstack-and-hadoop-a-match-
made-in-the-cloud#fn:2-fn-Sheng/ [Accessed 27
July 2016].

Additional installation options, The Apache
Software Foundation. [Online]. http://docs.
cloudstack.apache.org/projects/cloudstack-
installation/en/4.9/optional__installation.html
[Accessed 27 July 2016].

M. Mitchell, An introduction to genetic algo-
rithms. MIT Press, 1998.

C. Zhai and S. Massung, Text Data Manage-
ment and Analysis: A Practical Introduction to
Information Retrieval and Text Mining. Associa-
tion for Computing Machinery and Morgan &
Claypool Publishers, 2016.

L. Jonsson, M. Borg, D. Broman, K. Sandahl,
S. Eldh, and P. Runeson, “Automated bug assign-
ment: Ensemble-based machine learning in large
scale industrial contexts,” Empirical Software
Engineering, 2015, pp. 1-46.

M. Borg, “TuneR: a framework for tuning soft-
ware engineering tools with hands-on instruc-
tions in R,” Journal of Software: Evolution and
Process, Vol. 28, No. 6, 2016, pp. 427—459.

e-Informatica Software Engineering Journal, Volume 11, Issue 1, 2017, pages: 39-57, DOI 10.5277/e-Inf170102

Experience Report: Introducing Kanban into
Automotive Software Project?

Marek Majchrzak*, fLukasz Stilger™

*Faculty of Computer Science and Management, Wroclaw University of Science and Technology
** Capgemini Polska

marek.majchrzak@pwr.edu.pl, lukasz.stilger@capgemini.com

Abstract

The boundaries between traditional and agile approach methods are disappearing. A significant
number of software projects require a continuous implementation of tasks without dividing them
into sprints or strict project phases. Customers expect more flexibility and responsiveness from
software vendors in response to the ever-changing business environment. To achieve better results
in this field, Capgemini has begun using the Lean philosophy and Kanban techniques.

The following article illustrates examples of different uses of Kanban and the main stakeholder of
the process. The article presents the main advantages of transparency and ways to improve the
customer co-operation as well as stakeholder relationships. The Authors try to visualise all of the
elements in the context of the project.

There is also a discussion of different approaches in two software projects. The article focuses
on the main challenges and the evolutionary approach used. An attempt is made to answer the
question how to convince both the team as well as the customer, and how to optimise ways to

achieve great results.

Keywords: kanban, lean, automotive, scrum, agile

1. Introduction

Lean thinking is important because it can dra-
matically reduce waste and introduce built-in
quality in every process step. It has been shown
that when applying this approach in the manufac-
turing or service organisation, the productivity
has at least doubled. Moreover, this method also
significantly reduces delivery time for new prod-
ucts and decreases overall costs [1,2].

The paper also describes two software
projects in the automotive industry, which have
employed the Kanban technique in an evolution-
ary way. In each of these cases, Kanban was
used to optimise a different process and was
motivated by other business problems. However,
the mutual characteristic was the simplification

of processes and evolutionary adaptation of both
the developer teams and the collaborating client
teams.

The idea was to make the communication
more efficient, and thanks to that do a project
more efficiently. It is necessary to continuously
identify bottlenecks and wastes. With the lean
principles and Kanban specific practices it is
possible to visualise the state of the project and
focus on the process.

This paper is organised as follows: an intro-
duction to Lean Software Development and Kan-
ban technique in Sections 2 and 3. Section 4
presents the related work. Section 5 describes
projects and their Kanban technique adoption
history. General results and conclusions are dis-
cussed in Section 6.

¥This paper was originally published in the KKIO 2015 proceedings P. Kosiuczenko and M. Smialek (Eds.), “From

Requirements to Software: Research and Practice”.

40

Marek Majchrzak, Lukasz Stilger

2. Lean software development

The principles of Lean thinking focus on value
added for the customer [3]. By removing the
unnecessary processes, activities and artefacts,
and on the other hand organising work as
a continuous flow, which recombines labour into
cross-functional teams dedicated to that activ-
ity and constant improvements across the en-
tire company, we have been able to develop,
fabricate and sell with half or less of the hu-
man effort, tools and overall costs. By intro-
ducing Lean thinking and its associated style
of operation, we have been able to react faster
and more flexibly to the ever-changing needs
of our Clients and the modern market. Lean
thinking requires continuous learning, growth
and most importantly, commitment and under-
standing from the personnel of any level including
management.

Lean Software Development is the application
of Lean Thinking to the software development
process. The Poppendieck and Poppendieck [4]
illustrated how many of the Lean principles and
practices could be used in the software engi-
neering context. They proposed seven principles
eliminating and managing the waste in software
development:

— Eliminate Waste — Do only what adds value
for a customer, and do it without delay.

— Amplify Learning — Use frequent iterations
and regular releases to provide feedback.

— Delay Commitment — Make decisions at the
last responsible moment.

— Deliver Fast — The measure of the maturity
of an organisation is the speed at which it can
repeatedly and reliably respond to customer
needs.

— Empower the Team — Assemble an expert
workforce, provide technical leadership and
delegate the responsibility to the workers.

— Build Integrity In — Have the disciplines in
place to assure that a system will delight
customers both upon initial delivery and over
an extended period.

— See the Whole — Use measurements and in-
centives focused on achieving the overall goal.

The automotive software projects use proven
technologies, mostly not the latest development
techniques. It is because the business function-
ality is more complex than the other software
projects. There are many external system in-
terfaces which extend at the same time. Lean
principles offer support to optimise the processes
with focus on following aspects:

— Time to market — it is crucial for the software
used in the automotive sector to keep sta-
bility and compatibility. However, the rapid
development of industry requires also more
flexibility of software. Automotive companies
constantly release new car models or versions
of the same car.

— Stakeholder management — at the same time,
stakeholder structure was extended in big
organisations. Each stakeholder (or group of
interested parties) has their goals which need
to converge.

— Domain knowledge — another characteristic
dimension in software for the automotive sec-
tor is domain knowledge which is based on
experienced subject matter experts.

Lean principles support the optimisation of
the processes with a focus on these three aspects:
time to market, stakeholder management and
domain knowledge. The main advantages of lean
principles for automotive software projects is
a fast visualisation of the executed processes and
based on it, improve our efficiency.

3. Kanban in software engineering

The name “Kanban” originates from Japanese
and could be translated as “signboard” or
“billboard”. It is a flow-control mechanism for
pull-driven “just-in-time” production. The idea
behind Kanban is to execute Lean principles in
practice.

David J. Anderson defined 5 Kanban core
principles which to agreat extent overlap with
Lean principles [5].

— Visualise the workflow — one has to under-
stand the route covered by an item between

a request and its completion.

Experience Report: Introducing Kanban into Automotive Software Project 41

— Limit WIP — limiting work-in-progress im-
plies that a pull system is implemented on
parts or on the whole workflow. New work is
“pulled” into the new activity when there is
available capacity within the local WIP limit.

— Manage Flow — the flow of work items
through each state in the workflow should
be monitored and reported.

— Make Process Policies Explicit — the process
needs to be defined, published and socialised
explicitly and concisely.

— Improve Collaboratively (using models & the
scientific method) — the use of models allows
a team to make a prediction about the effect
of change (or intervention).

In software projects, using “Kanban” is be-
coming increasingly popular regardless of the
project stages or production methods. An in-
teresting aspect of this technique is that it is
becoming an inside tool in both waterfall and
agile processes.

Kniberg [6] points out that Kanban is less
prescriptive than other agile methods like RUP,
XP or even SCRUM.

Scrum, XP and RUP are highly adaptive
while Kanban leaves almost everything open. The
only constraints are Visualize Your Workflow and
Limit WIP, which makes it a great tool for quick
and efficient workflow and a process management
tool. Especially, in the case when the prescribed
rules and artefacts do not fit project needs. Scrum
prescribes the use of timeboxed methods, but in
the case of a support team or a firefighting team,
it is hard to plan tasks in a sprint timebox.

3.1. Metrics — a way of observing facts
and finding bottlenecks

To make decisions, the management of a given
project requires capabilities for adequate situa-
tion analysis [7,8]. This role is served by project
metrics, correctly selected criteria according to
which the defined parameters can be observed.
A simple visualisation is a great way of in-
vestigating the work of a team and the cur-
rent state of progress. However, it is mainly em-
ployed in the day-to-day planning. When more
accurate analysis based on a larger volume of

data is needed, it is crucial for creating met-

rics or information-gathering schemes. Metrics

are collections of updated and adequately repre-
sented data used for problem identification and
decision-making.

The value of a good metric is to find a proper
way to monitor bottlenecks in the whole pro-
cesses or at its stages. For instance, one can mea-
sure the development processes in detail, i.e the
devlopemnt team, integration, defect handling,
system tests and network integration (target en-
vironment). One of the key findings is to focus
on measuring the flow and not the constraints,
which means it is better to identify and then
remove organisational impediments instead of
measuring it. Another interesting aspect is not
focusing on speed measurements but on moni-
toring capacity. Speed is usually related to the
human aspect and could foster unwanted com-
petition instead of the collective responsibility
for the project [9]. However, the case presented
in this paper depends more on dynamics devel-
opment analysis and not always on sustainable
development of new features. The key concepts
in measuring work efficiency in this specific case
are as follows:

— Reaction time: it is the interval time between
reporting an issue and starting an analysis
of the problem. A reaction can be defined in
a number of ways, however, according to the
most common definition the reaction means
delegating a task to a team.

— Lead time: a total time measured from task
creation until its c ompletion. Lead time takes
into consideration all of similar events be-
tween these two points, both predictable and
unpredictable.

— Cycle time: the correct volume of work.

Figure 1 is used to portray these two con-

cepts. It must be noted here that the entry

and exit points for work units, as well as the
in-between points, are defined in each project.

The purpose of both of these metrics is to show

the current work efficiency and the potential

decrease in the time and costs of delivering

a valuable work unit. More practical details and

the corresponding results are described in Sec-

tion 5.2.

42

Marek Majchrzak, Lukasz Stilger

Resolution Time (SLA) = Lead Time

\

[

\

Ticked Created Priority Set

\ }
|

Reaction Time (SLA)

Start Work Ticket Live

\ }
|

Cycle Time

Figure 1. Lead time and cycle time

4. Related work

Mattias Jansson, Operations Engineer at Spo-
tify!, introduces [10] Kanban in the operations
team as the answer to the growing number of
different kinds of tasks. Before testing Kanban,
the team noticed that although they were quite
efficient, they were not able to plan far in advance.
The problem was that they were reactive and
not pro-active. The growing number of “urgent”
jobs from other departments was always more
important that the internal tasks and the con-
text switching decreased the team’s effectiveness.
They realised that the company was growing too
fast for them to accommodate.

Soon after Kanban’s introduction, they no-
ticed that their lead times became shorter, more
internal tasks were done, and the departments
they interfaced with were more satified.

In his book Lean from the Trenches [11]
Kniberg described PUST — a digital investigation
system for the Swedish national police authority.
Due to the project scale, the teams, as well as the
Kanban boards, were divided into subsystems.
Besides having WIP limits in regular tasks, they
also decided to restrict the number of bugs re-
ported in the bug tracker. In the case of blocker
priority, the bug had to be fixed immediately or if
it was less important, it had to be replaced with
an existing one from the top thirty. Otherwise,
it would be ignored. He claimed that such an
approach not only allowed for effective communi-
cation (lower number of bugs, highly prioritised

bugs were immediately fixed), but also avoided
continued change control meetings to manage
long lists of bugs which would probably never be
fixed.

Ikonen et al. [12] conducted a study in
a medium-sized project (13 developers) in the
R&D field. The investigation focused on the
following project work aspects: documentation,
problem-solving, visualisation, understanding the
whole, communication, embracing the method,
feedback, approval process, selecting work assign-
ment. The presented results indicated consider-
able benefits of the Kanban technique includ-
ing team motivation and control over project
activities. Most of the work aspects were posi-
tively supported by Kanban techniques inside
the team.

Middleton and Joyce in their BBC World-
wide case study [13] showed that as a result of
the introduction of the Kanban technique, the
lead time to deliver the software improved by
over 37% and the number of defects reported by
customers decreased by 24%. They observed very
similar obstacles to those which may occur after
the introduction of the lean principles connected
with the environment and workspace, such as the
tension within the existing corporate standards
and processes. Some especially common obstacles
encompass, e.g. office space designed inappropri-
ately for Kanban boards, Kanban and reduction
of WIP inability to work with milestones and
Gant charts, close team co-operation with the
customer may be seen as working beyond the

1Spotify is a music streaming service for desktops and smartphones, which aims to provide a wide-ranging music

collection.

Experience Report: Introducing Kanban into Automotive Software Project 43

remit, and the self-managing team of specialist
may be challenging to the managers.

They observed that the Agile approach, es-
pecially Scrum, has some similarities. However,
they also noticed that the Kanban technique
and Lean have several advantages over the Ag-
ile/Scrum approach. They claim that WIP limits
the pull work model compared to the Scrum
Push and timeboxed approach, it reduces deliv-
ery time and allows to develop better quality
software. They also noticed that the ownership
and responsibility of the Scrum “impediments
list” are diffused. On the other hand, the Lean
team must solve the problem immediately if they
are blocked, because of limited WIP and visu-
alisation on the Kanban boards. In this case,
all staff members are obligated to eliminate the
bottlenecks.

In another case study by Middleton et al. [14]
the Timberland Company was analysed while
practising Lean thinking for two years. They
noticed many steps without any aded value in
their processes. A survey amongst company staff
showed that the majority of them supported
lean ideas and thought they could be applied to
software engineering. Interestingly only a small
minority (10%) was not convinced of the ben-
efits of lean software development. The com-
pany showed a 25% gain in productivity and
time for defect fixing was reduced by 65-80%.
The response on the product released using
lean development from customer site was overall
positive.

The authors of each study emphasise the ben-
efits of of the introduction of Kanban and col-
laboration both in the team and with the client.
The presented work was mainly conducted as in-
ternal projects. Moreover, most of the described
projects were relatively small. Hence, they did
not require the governance of the customer col-
laboration process. Additionally, they did not
show how to evolve and build the lean values in
the team and with the client to establish and use
the Kanban technique effectively. Thus we want
to present the Kanban technique in the extensive
project setting and the way of collaboration with
the external customer.

5. Discovering Kanban

This section presents two different approaches
and two different perspectives of Kanban intro-
duction. In Project A2 Kanban was introduced
as a tool for dealing with unplanned tasks in
Sprint. In Project B the main goal was to un-
block communication in the extensive stakehold-
ers structure.

5.1. Project A
5.1.1. Background

The system under investigation covers all as-
pects of car purchasing in one of the premium
car manufacturers in Germany. The system was
designed for experts and is used internally by
the customer. It allows to buy, lease or rent cars
by the clients’ employees, institutions or VIPs,
car fleet management and used car dealers.

The system consists of two main components.
One is a new version of the system developed
as a modern web-based application. The second
component written in COBOL is the old system’s
version, which is to be replaced by a new version
step by step. Thus, both systems are available
to the end users, and this, in turn, requires data
synchronisation in real time.

The project uses the Scrum framework with
certain small additional procedures, like the
additional Scrum of Scrums meeting and the
PO-Team meeting. A typical Sprint takes three
weeks, some of the user stories (US) are approved
during the sprint, some at the end during the
demo. The majority of US are confirmed and
tested by the PO-Team, however, in the case
of larger epics, there are more people involved,
including many external IT specialists.

5.1.2. Timeline

The old system version has been being developed
since 1990 using the waterfall software develop-
ment model. At the beginning the new version
of the system was also developed using the wa-
terfall software development model. The devel-

2Due to a commercial agreement, the project names have been anonymous.

44

Marek Majchrzak, Lukasz Stilger

(PO Team

A8
S

(JEE Dev Team 1

& 885308

B 8300

(Solution Architects | |

)

(JEE Dev Team 3

&5%5§5§j8mmMMm\

(HOST Dev Team ! |
| ‘ Support Team |

8 8830 g

Figure 2. Project A — team structure

opment started in 2010. The first release after
16 months showed that it was not possible to
integrate with the old system and that the min-
imal end user needs were not covered. In 2012
it was decided that to improve co-operation be-
tween both systems and ensure faster delivery,
new requirements for the whole project will be
developed as one Scrum project. After the final
transition in 2013, as it was mentioned above,
the entire team and the customer used Scrum.
Currently, a new version is being released at least
quarterly. In the case of urgent requirements, we
will provide minor releases extending the latest
production version.

It is important to note that the team started
to expand rapidly in 2014 (Figure 3). Until
mid-2013 no particular need of improvement had
been noticed. Support and bug fixing were per-
formed on a daily basis by one or two experienced
developers. Also, issues were stored in several
systems or delivered via email, hence develop-
ers responsible for support and bug fixing had
a detailed overview of pending issues.

A dynamic increase in the number of team
members forced a change of the project processes.
A growing number of developers caused code inte-
gration problems. Instead of one Scrum Team the
Scrum of Scrums concept was introduced and a dif-
ferent project governance model (3 Scrum Masters,
Project Manager, PMO? support). The response
time and cycle time became longer, mainly due
to the insufficient expertise in the automotive
industry among new developers and new Product
Owners. Even though the developers mentioned
above have been previously involved in different
automotive ventures, domain knowledge is often

3PMO stands for Project Management Office.

2010 2011 2012 2013 2014 2015

WEB Team s HOST team

Figure 3. Project A — team grow

one of the main obstacles in a software project.
For example, the automotive domain consists of
several specific sub-domains and a vast number of
process details, — which is one of the main reasons
for building custom software. In general, team
members do not have all the required knowledge,
and the project must acquire additional infor-
mation before accomplishing productive work.
The sources of this information can be relevant
documentation, formal training sessions, meetings
with domain experts and key users.

Additionally, several new business compo-
nents started to be delivered, which, in turn,
resulted in a growing number of support requests
and end-user bugs.

5.1.3. Team composition

The Team consists of 45 people. Around
one-third of them are connected with the project
from the initial stage. Approximately half of the
workers had several years of experience in enter-
prise projects. The entire team is divided into
seven sub-teams (see Figure 2), two of them are
virtual. A team member could be assigned to
more than one team because of his/her function.

— JEE Development Teams (x3, DT) are re-
sponsible for the new system version, they
use Scrum. Fach team has about six members
and the Scrum Master.

— Host Team is responsible for developing the
old system in a Cobol technology. The team
consists of 5 members and the Scrum Master.

— Fire Fighting and Support Team (FT and ST)
consists of 6 members. In most cases, they
are nominated in the sprint beginning from

Experience Report: Introducing Kanban into Automotive Software Project 45

each development team. The team is respon-

sible for the integration and production of

bug fixing and for providing 3rd line support.

The members of the team change every Sprint

session.

— Cross-Functional Team (CT) consists of tech-
nical leaders from each development team
and solution architects (SA). It focuses on
long-term technical and business decisions
and designs new components and supports
customer.

— Product Owners (PO) Team consists of 3
business architects focused on the new User
Story development. They work and agree on
a new functionality directly with end users
and major stakeholders within the organisa-
tion.

Up to a 70% of the capacity of people who lack

industry experience are used in the initial few

months of the Sprint. The slack time is used for
internal project training provided by experienced
software developers and architects.

Project teams are located in 3 different cities.
This type of work is organised in accordance with
the Distributed Scrum concept as described by
Majchrzak et al. [15].

The development team and project manage-
ment are located in two cities, the stakehold-
ers and PO work in the third location. The
main Scrum meetings were conducted in the cus-
tomer’s office. These meetings were attended by
several team members only; the remaining ones
participated in them via video calls.

Regarding daily contact with the PO team as
well as the major stakeholders, these are managed
mostly by means of email communication and
video calls.

5.1.4. Engineering practices

From the very beginning, we were focused on XP

techniques [16] which could be applied in both

the waterfall and then in Scrum framework:

— test-driven development (unit tests);

— clean code [17] instead of code documenta-
tion;

— automated end-2-end (E2E) testing covering
the user stories;

— continuous integration after each source code
change, nightly build includes long-running
E2E regression tests;

— source control software and rigorous configu-
ration management;

— bug-tracking software (JIRA [18]);

— documentation in wiki (Confluence [19]).

This results in high test coverage. The team can

provide a new release after each sprint. Due to

E2E testing, business and technical complexity,

the results are not always stable. About 5% of

the tests fail regularly. The problems appearing
before the release are checked manually to en-
sure that the reported ticket occurs because of
new functionality or because of bugs. Every time
a bug is found, it is promptly reported in the is-
sue tracking system. Another aspect which needs
to be included in agile projects is the branching
strategy. Similar to Shabib et al. [20] we have
found that a complex branching strategy could
impact the quality of software. Despite the fact
that the project consists of several teams, a deci-
sion is made to reduce the number of branches to
the minimum, and to use the simplest branching
strategy possible (Figure 4). The reason behind
that was the need of frequent merging (even sev-
eral times per day) as well as the choice to use one
branch for the sprint, maintenance branch and
release branch. This was only possible provided
that the team decide to use rigorous code-change
rules, such as frequent commit and integration

(several times per day), and quality rules such as

no failing JUnit tests (immediate fix or revert)

static code analysis before commit, clean code
and alike.

The branching and quality assurance rules,
such as XP practices, clean code and fully auto-
mated E2E, were also valid for each team work-
ing in the Kanban process, hence the changes in
Sprint and Kanban were visible immediately for
every team member in the project.

5.1.5. Kanban introduction stages

The main impulses for employing Kanban were
the doubts expressed by the team with regard to
bug correction and new feature implementation,
which had not been explicitly defined during the

46

Marek Majchrzak, Lukasz Stilger

V11

,, o

maintenance branch
V1.0
release branch merge
merge

s * ® °

main Sprint X Sprint X+1 Sprint X+2

Figure 4. Project A — branching strategy

sprint planning. The change requests were often
reported by end end users as tickets sent directly to
the support team instead of PO. It is worth noting
that the problem was not only which bug and in
what order a given task or bug was to be corrected,
but also the decision determining the incorrect
workings of an application and the decision about
who would be the sponsor of a given change.

The main stimulus to implement the im-

proved process of error and support request man-
agement originated from the developers’ team.
The team initiated efforts to improve the already
existing processes due to the growing amount of
correspondence (delays and handoffs), new team
members scattered across localities (delays), do-
main knowledge (waiting for solution approvals)
and some restrictions stemming from the Scrum
framework such as timeboxing and the sprint
target (switching tasks and relearning — in the
case of a new sprint).
Step 1: Identify work to be done. The first
step aimed at systemizing the volume of work
being done outside the sprint was to create one
list of errors and problems from various sources
and then organise them in the JIRA system. In
the project, because of diverse users and condi-
tioning, the above mentioned errors and queries
could be called in using many ways, i.e. by email,
by telephone but also with the help of HPQC
and Peregrine. From the developer’s perspective,
many sources of those were impossible to accom-
modate and respond to, similarly to prioritising
decisions.

The unified bug list was not the right solu-
tion as the following drawbacks were found very
quickly:

1. The developer had to arrange who would be
the sponsor of a change or error — fixing.

2. In the case of the lack of symptoms, many
tasks had the In Progress status. It is worth
noting that the developer was usually as-
signed to the FT team for approximately
only two weeks. As a result, the said developer
would begin many tasks (the work in progress
was not defined or limited) and practically
would not complete any in real life. Then
the tasks would be returned to the “To Do
list” and the whole procedure would be re-
peated. Consequently, some errors would wait
for weeks before being solved or rejected.

3. All of the agreements and contacts with PO
and stakeholders were chaotic. From the point
of view of each user group their bugs or tasks
had the top priority. Undoubtedly, it resulted
in misunderstandings and also caused addi-
tional arduous communication by email.

Step 2: Identify workstreams. The next step

was to identify the workstream and WIP ar-

rangement (Figure 5). For instance, people work-
ing on subjects connected with support received
their boards or were able to use the common
one, but their tasks were marked with differ-
ent colours. Similarly, people working on errors

(FT) owned their boards. Very quickly another

problem emerged, it was connected with the

project characteristics. Some of the bugs had
to be fixed using a different budget, which meant
for example that only 1 FTE* could be assigned.

Another problem was the fact that many errors

were marked as a new feature (CR) and from

the project standpoint, they were then investi-
gated in a different budget and with the use
of various resources. The constraints mentioned
above required the introduction of additional

Kanban boards. Then the question concerning

the person who would make a choice between

4FTE — Full-time equivalent is a unit that indicates the workload of an employed person.

Experience Report: Introducing Kanban into Automotive Software Project 47

Tobo | inrogress | R Resoved | /

Production Bugs Board
\ Tobo | in progress | Resolve)

Integration Bugs Board

PO Team and Developme
Tobo | inpro m

Classification Board Bugs Board
PO Team and End Users

Tobo | i progress | Resolved

Support Board CR Board

Work Stream View: Change Controll Board

Figure 5. Project A — Kanban boards
— work streams

workstreams arose. Certainly, more boards were
added and experienced developers or solution
architects used them to investigate the issue and
decide where it belonged.

Because of plenty of boards, this approach
might seem very complicated. However, from
the FT point of view, the “To Do Lists” were
shortened and the focus was only on bug fixing.
Step 3: Improve the communication. The
introduced division between work streams was
optimal from the FT and ST point of view. On
the other hand, from the management’s and
the client’s perspectives (PO-Team), the existing
work streams did not always meet their needs
Because of this, to improve communication the
efficient conduct of prioritisation meetings, we
defined many options which grouped the chosen
work streams but still retained simplicity. For in-
stance in Figure 5 Change Control Board formed
from Support Board and Change Request Board
was identified.

5.1.6. Results

After nearly a year since the introduction of the
above process, process, an interview similar to
the one suggested by Ikonen et. all [12] was con-
ducted. Opinions concerning the high complexity
of the project structure and different expecta-
tions were collected from each of the teams. Since
the main work stream was done in sprints, we
have focused only on selected work aspects.
The hierarchy of the Kanban processes was
built (Figure 6), it provides information for par-
ticular team members depending on their level.

General Issues
Board Level 0

Support Project Tickets
Board Board Level 1

I

Change Request
Bugs Board
Board & Level 2

]

Produktion Bugs Int. Bugs
Board Board Level 3

Figure 6. Project A — Kanban processes view

Each project member can find the right perspec-
tive and reduce the amount of information de-
pending on their needs. For instance Level 3 suits
the FT as they will concentrate solely on selected
and initially analysed bugs. On the other hand
Level 0 or Level 1 would meet the needs of the
project management team in terms of the general
project state and SLA.
Documentation. Dispersed exchange of infor-
mation by email and arrangements during several
meetings have been replaced by cohesive com-
ments within the scope of a given task. They
allowed us to understand each given problem
and the process in which a decision was made.
To a developer, it become evident what and why
needs to be done. A member of the ST addition-
ally states:
“Documentation has been improved, there is
no worry about losing parts of data. Once
something has appeared on a Kanban board,
it will not be forgotten or omitted, and it will
be equipped with the correct commentary
serving afterwards as a source of knowledge
in similar problems.” [ST]
The error log and new feature request stored in
one place allow for a significantly more straight-
forward analysis of the changelog. It consequently
helps to understand who made a decision to in-
troduce a change, and what were their reasons
as well as motivations for such an alteration.
“Due to the significant number of tasks re-
garding various components and business pro-
cesses, we have made a decision for all the
information to be included in the comments
of a given bug or task. This simplifies the

48

Marek Majchrzak, Lukasz Stilger

correlation detection between tasks and bugs
and the root cause analysis.” [CT]
“Bugs are well commented on, hence we
can reuse historical information during later
stages.” [SM]
From the developer team’s point of view, the key
aspect is the task status and in particular the
information which may impact the current tasks
in the sprint.
“We are aware of errors and how they are
managed; earlier on we used to lose such data,
whereas at present we can obtain statuses of
errors which are of interest to us.” [DT]
Problem solving. The introduction of Kanban
allowed for easy task assignment to suitable peo-
ple in the correct order. In the case when a de-
veloper or a customer finds a bug or requests
a new feature, he or she can easily issue a new
ticket without the need for consultation with the
Scrum work model and budget, which made it
possible to continue work without delays:
“It facilitates work and provides a structure
error correction.” [FT]
“Developers are not blocked and know that
the reported problem will be properly clas-
sified and solved. They are not blocked by
unplanned tasks and can develop new user
stories without changing the context.” [CT]
Even though most of the team thinks that cer-
tain progress has been made, ST and CT still
see some room for improvement:
“Using Kanban has not solved all of our prob-
lems. Too much of a mess occasionally still
happens.” [ST]
“Still, a large number of tasks, e.g. copying
emails and HPQC Bugs into JIRA require ad-
ditional time and should be automated.” [ST]
Also, one of the FT members pointed out that
there are still problems due to a largely rotating
team:
“On the other hand, we have to improve
the process of bug fixing itself. A task once
started does not always get completed before
it is time for a developer to leave the FT
team.” [FT]
Visualization. The process of error fixing and
CR management is much simpler and more trans-
parent from the team’s point of view. Bug sta-

tuses and workloads are always visible. Each
member can easily select a given board and then
the related task:
“Kanban boards look much better and pro-
vide more information than a long bug
list.” [SM]
The Team and stakeholders understand what the
support and bug fixing process looks like:
“Once upon a time, I found it difficult to de-
scribe the way in which we worked. A project
seems to be much more mature, once it
it becomes clear how a given process func-
tions.” [ST]
“Above all priorities are error statuses and
developers who make such errors. Such infor-
mation is indeed favourable in case of a sig-
nificant number of various errors.” [FT]
Visualisation also helps people working on regu-
lar Sprint tasks, and they claim that:
“It is easy to observe whether a person is
working to solve a problem which has blocked
us and what is its priority.” [DT]
“When we need to have a general overview,
Kanban boards offer a great deal of assis-
tance.” [CT]
Communication. Internal communication be-
tween teams and the PO has improved dra-
matically. Instead of having dedicated meet-
ings to discuss each critical error, regular meet-
ings for the selected work streams have been
initiated:
“The number of meetings has grown, how-
ever, they have become shorter and allowed
us to manage the tasks on given boards effec-
tively.” [CT]
“The number of meetings has increased,
which could be considered a major improve-
ment. Instead the inefficient information flow
via emails, it is much faster to conduct
a meeting drawing on the Kanban board
and thanks to this keeping the changes
up-to-date.” [SM]
From the team’s point of view, the information
concerning prioritising error-correction and the
details concerning them have been set in place.
On the other hand, from the PO’s point of view,
communication with the development team has
been improved:

Experience Report: Introducing Kanban into Automotive Software Project 49

“The client knows who to speak to with re-
gard to a given task and when to expect the
solution to a particular error.” [FT]
Another equally important aspect is the option
of regular progress monitoring.
“We can see the status of work immediately.
I don’t have to interrupt people and ask what
they are doing.” [SM]
A different point of view is presented by develop-
ers working on tasks in Sprints. As far as they
are concerned, communication has been reduced
to the minimum.
“Not relevant in the case of a development
team. We do not have to cope with bugs be-
cause we know that the right people from the
Firefighting Team will support the process,
and we do not have to be involved.” [DT]
Approval process. The basic advantage of the
defined process was the improvement of work
stream choices for new tasks:
“In the case of fixed bugs, our process still
needs improving. Despite the fact that devel-
opers know that they should fix and test the
bug, we additionally need a Verify column
in order to explicitly emphasise the need for
a test and verification.” [DT]
“It is easier to approve bugs and to assign
them to the proper work stream.” [SA]
Additionally, the introduction of rules concerning
the flow and identification of the sponsors respon-
sible for error-correcting has improved support
work:
“In the case when a task cannot be eas-
ily solved, because we have to deal with
a non-trivial bug or simply with a new feature,
we can easily move it to another board.” [ST]
“The PO Team checks the Kanban boards,
provides some additional information and,
most importantly, sets the right prior-
ity [FT]
Despite the above improvements, the team has
still seen the need for enhancing the process:
“Unfortunately, as of now, we have not
been able to establish a correctly-function-
ing approval process. We need another state
(column) — Verified. Fortunately we have
a proper release process, we can see on the

Kanban board what got released and what

didn’t.” [SM]
Selecting work assignment. Through close
interaction with the Customer and PO, we have
been able to set our priorities right, which in turn
has allowed for optimal task accomplishment by
the team:

“You simply take the first task from the first

column. You don’t have to search for tasks

or ask others.” [SM]

“Together with the PO-Team, we conduct the

prioritisation, thus the most important tasks

are at the top of the To Do column.” [SA]
Taking into account the aspect of a budget for
particular error types, the choice of a task is
clearly sensible from the Team member’s point
of view:

“Different boards help us find bugs from dif-

ferent work streams.” [FT]

“Tasks are split into work streams and

could be easily selected based on priority

order.” [DT]

“We use issue priority in order to select work

assignments. If the tasks have the same pri-

ority, we simply select the oldest ones.” [ST]

5.1.7. General problems and future work

One of the most difficult challenges found in
the processes described earlier is the need to
perform numerous activities manually. Clearly,
using extra human resources, e.g. in order to
copy emails to Jira, would be considered a waste
in the process. The next step should be the intro-
duction of such systems as Jira Service Desk [21],
and e.g. ConnectAll [22] to integrate HPQC
and Jira.

It was also observed that assigning new peo-
ple to a virtual team at the beginning of each
Sprint may result in wasting time and and re-
sources. Certain tasks sometimes require several
days to analyse, fix and test. If the members of
virtual teams are changed while tasks are still in
progress, new developers have to start them al-
most from the beginning. Thus, it was decided to
allow people to work on a given task, even though
they are assigned only to Sprint development.

50

Marek Majchrzak, Lukasz Stilger

5.2. Project B

The project involves the manufacturing of pro-
duction software in a large automotive concern.
A part of this software supports the direct steer-
ing of car production in three separate stages:
body construction, paint shop and assembly. The
steering systems are critical because each poten-
tial software error generates relatively expen-
sive problems. The said software is employed in
several dozen factories belonging to the afore-
mentioned automotive concern. The goal of this
project is the delivery of services within a spec-
ified time frame and with specified availability,
namely the development of new functions and
the support of current and existing functions
in the production environment.The support is
limited to the most difficult problems requiring
changes in the software or specific changes in
the system configuration. In Project B, the main
challenge in the introduction of the lean philos-
ophy with Kanban techniques was combining
transparency principles and contractual issues.
Many contractual constraints originate from the
extensive structure of stakeholders on the cus-
tomer’s side.

In general, it is possible to visualise many
processes on a Kanban board, e.g. governance,
transition, staffing, knowledge management, tech-
nology and infrastructure, financial and contrac-
tual elements.

5.2.1. Extensive structure of stakeholders on
customer side

In this case, the customer is one of the biggest
world manufacturing consortiums with many lay-
ers of interests. On the one hand, there is a need
for simplicity, however, however, on the hand
the goals is to deliver the production of software
— a crucial part of the customer’s business. To
meet these contradictory expectations a set of
stakeholders was identified, however, this article
focuss on the following groups:
— The IT department which is the main stake-
holder from the contractual point of view.
— Factories which are most important in case
of the continuity of the project.

— Quality assurance which is most important
to evidence our quality.

5.2.2. Team composition

Due to the massive system function complexity,

the team was extended. Taking into account var-

ious functions and tasks, the project was divided

into the following teams (see Figure 7):

— Feature Team (x4) — these are people directly
responsible for software manufacturing. The
team consists mainly of Programmers and
Testers. Each Team is responsible for specific
business components.

— Project Support (cross-functional team 1) —
responsible for the infrastructure and continu-
ity of project functioning in relation to techni-
cal data, namely integrating both Client’s and
contractor’s networks as well as supporting
the build and configuration of management
processes.

— Governance (cross-functional team 2) — re-
sponsible for the management and client
co-operation takes key decisions concerning
the project. It is involved in all the exist-
ing aspects of project management including
change and risk management.

5.2.3. Kanban introduction stages

The deployment of the agile approach is much
more challenging within the realms of a large
organisation and an extensive stakeholder struc-
ture. The above project description does not
focus on organisational or business limitations, it
focuses on the employment of the Kanban tech-
niques instead. Because of critical and limited
functionality, all of the process changes had to be
introduced carefully, i.e. with risk management,
which is an indispensable element of the empirical
project approach.

Step 1: Establishment of the common
workflow. At the initial stages, the arrange-
ment meant that each of the Teams functioned
according to their rules and used their individual
workflow. The following issues caused difficulties
pertaining to the correct definition of the general
state of work: defining a completed task (Defini-

Experience Report: Introducing Kanban into Automotive Software Project 51

‘ Team 1 4
Feature
Team 2

ProjectSupport > <]

(cross-functional Feature

team 1)
Team 3
> <]
Feature
Team 1

Figure 7. Project B — team structure

Governance
(cross-functional
team1)

tion of Done), reporting on critical productive
errors (escalations) and seeing the fully complete
picture of work in the entire project. After stan-
dardising the workflow, it was possible to create
the root for visualising the Kanban board. In its
initial stages, it comprises everyday work (daily
business), meaning current tasks. It consists of
the following stages:

— T-Shirt sizing: an initial assessment of a task,
which is a relative description of the size of
a task resulting from its complexity, uncer-
tainty and repeatability [23, Chapter 7, 16].
At this stage, the estimates are not precise,
and the analysis itself should not exceed 4
hours. The t-shirt sizing technique is similar
to Planning Poker [24]. However instead of
using the Fibonacci sequence, t-shirt sizes are
used (XS, S, M, L, XL).

— Problem analysis: at this stage, a detailed
analysis is conducted based on the earlier
estimate. The purpose of this stage is the
definition of the scope of work and its costs.

— Development: at this stage the earlier analysis
is used to perform the task. The purpose of
this stage is the engineering of a registrable
change in software.

— Deployment: the final stage is the employ-
ment of software change and in the majority
of cases this is the most complex process.
The goal is the delivery of the change in the
production environment.

It is possible that a problem is solved at each of

these levels, which then completes the process.

Step 2: Visualisation processes. Visualisa-

tion is the best way to achieve a common under-

standing of the state of the project, the best way
to keep a shared vision. It is possible to find the

Early Majority

Early Adopters Late Major|ty

Laggards
Innovators .

Figure 8. Innovation adoption lifecycle

bottlenecks only when everything is measured

and visualised to the whole team.

The reality of communication is that every
stakeholder can have different interests. At this
phase of introducing Kanban, it became crucial
to start collaborating in the same “language”.
A Kanban board was created on the basis of
the earlier study of the said workflow (see Fig-
ure 9). The workflow of problem management
is described in Paragraph 5.2.3. Visualisation is
not only communication improvement, but it is
also a major factor in achieving the shared vision
and promoting it in the whole project. After the
introduction of the visualisations, the following
observations were made in the teams:

— the processes were described and changes
were continuously supplemented;

— the board was continuously adapted;

— the processes were always visible to all mem-
bers of the team, and they were proposing
improvements (feedback loop).

Step 3: Introducing the culture of

self-improvement. The project approaches

based on nimble philosophy are tough to im-

plement for multiple reasons, such as the re-

quirements for experience and courage. A given
situation can be much simpler if there is an en-
vironment open to the Agile and Lean thinking.

It is fair to say that their deployment is not pos-

sible without the culture of change and constant

improvement in place.

In the process of change within a large organ-
isation, one must not forget about sociological
processes, an example of which can be the Adop-
tion Curve (see Figure 8) [25]. It is precisely
this model that became used in the process of
employing change to the project and its close

52

Marek Majchrzak, Lukasz Stilger

T-Shirt sizing Problem analysis

Development Deployment

in progress | done in progress | done

in progress | done in progress | done

problem management workflow

Figure 9. Project B — Kanban board — problem management workflow

environment. The technique used in the project
was, among others, the selection of the “so-called”
Change Ambassadors (early adopters), who were
recruited from the management of selected fea-
ture teams. It was this group to be the main com-
munication target in relation to Kanban deploy-
ment techniques. In the aforementioned “Early
Majority” means the Team.

Instilling the Lean culture allows the use of

techniques such as Kanban. Simultaneously, an
organisation promotes an adaptive approach on
a wider scale, moving far beyond the scope of
this project.
Step 4: Managing improvement from the
team. The Coach is a crucial role in this oper-
ation, and their position is not to be underesti-
mated. However, their role is to guide the Team
towards learning the process of coming to correct
conclusions. Just as a parent bringing up a child
teaches it to walk and then allows it to reach
full independence, so does the Team Coach by
pointing out specific problems and then teaching
the Team members a lesson on independence.

The first dilemma, observed thanks to visuali-
sation and the common workflow, was the lack of
comprehensible understanding of the Definition
of Done (DoD). At the beginning, each Team de-
fined their DoD in their own way. Unsurprisingly,
it invariably led to serious misunderstandings
during the execution of the said agreement, es-
pecially at the final stages of the project.

Second of all, certain knowledge limitations
became apparent within the Team. The Kan-
ban board immediately made the team painfully
aware which module lacked the necessary knowl-
edge, where fewer tasks existed and where there
was a potential for certain key moves. Through
the act of standardising the workflow and pro-
gramming it correctly in the JIRA, both the
executive documentation procedure and the com-

munication regarding production difficulties were

successfully improved:

— documentation concerning current problems
consists of the necessary meta information, i.e.
contact persons, references to other existing
documents (i.e. change request);

— summary of existing problems is documented
in a uniform manner.

Step 5: Introducing the processes to the

Customer. In the described here case, being

able to implement the process of improvements

was a direct result of the steps taken at the
previous stages. One of the most efficient ways
to achieve lean principles is visualising a given
processes. Together with identified stakeholders

(see Section 5.2.1) we decided to start with three

working areas: problem management, governance

processes and release management

Problem management board. This visualisa-

tion shows the whole scope and the parameters of

the daily state of work. The content of the board
consists of a set of tickets (problems) which were
sent to the development team. The goal of the
problem management board is to simplify the
feedback loop with the factories — one of the
crucial stakeholders identified for the project.

The problems (tickets) are prioritised and del-
egated to the appropriate team member. They
can proceed with a particular case of the Kan-
ban board relatively fast, aligning work to their
processes and also completing the gaps in the
specification.

Governance workflow. The work with the gov-

ernance processes was dynamic, which was possi-

ble thanks to a frame contract joining two com-
panies by agreements that set out the terms and
conditions for delivery services. In this project
the goal was the delivery of the 3rd level devel-
opment support. The frame contract allows to
adjust the financial part of the delivery — each

Experience Report: Introducing Kanban into Automotive Software Project 53

service can be negotiated separately. For instance,

the workflow of offering (see Figure 10) consists

of following steps:

1. Service request: the customer requests a spe-
cific offer.

2. Capacity: project management checks the ca-
pacity of the team, inclusive of the know-how
in other projects (if needed).

3. Offer: a full offer is made to the customer.

4. Confirmation: the customer accepts or rejects
the offer.

The real workflow is more complex than de-

scribed here. However, this example shows how

the crucial part of the processes can also be in-
volved in the Kanban visualisation. The project
management team and the customer’s I'T depart-
ment work jointly on the governance board. As

a result, a faster “one-piece flow” is achieved. It

is the crucial part of Lean Manufacturing [26]

and also works well with software development.

Release management processes. Besides en-

suring the quality of the software solution, it

is necessary to deliver software packages to the
factories. The development team delivers various
types of ensembles: release, service pack, fix pack
and hotfix. The roll-out team in the factory in-
stalls the corresponding package and ensures the
continuity of production. The development team
supports packages in case of emergency. Quality
assurance is the most important stakeholder in
this area. With the visualisation of the release
management processes, the delivery can be pri-
oritised more easily and additionally, the steps of
the processes can be adapted relatively fast. The

workflow of release management (see Figure 11)

consists of the following steps:

1. Development: preparation of delivery.

2. Ready for tests: finishing delivery and releas-
ing it for the customer.

3. Tests: the customer conducts acceptance
tests.

4. Ready for roll-out: finishing the delivery and
releasing it for roll-out (installation).

5.2.4. Results

One of the most significant consequences of the
introduction to Kanban is the ability to measure

a process, for example by quoting such defined

metrics as:

— an increase in the number of created tickets
relative to the closed cases (see Figure 12);

— a possibility to measure the average time for
closure and the costs of fabrication (Lead
Time and Cycle Time);

— cyclical report of shifts in the original esti-
mate, which meant a comparison of adequate
work estimation in the T-Shirt sizing phase
to the actual volume of work being done. The
report made the early detection of the most
incorrect estimates and their causes possible;

— the quality of task documentation coming
from the Client is also measured, which in
turn allowed for the introduction of multiple
improvements. The final effect was improved
communication with respective Client depart-
ments.

Additionally, SLA values (Service Level Agree-
ment) are measured within the scope of the said
project based on the previously agreed parame-
ters. The achieved SLA may shift up to a certain
extent. The following SLA indicators are used in
the project:

— Reaction time from the moment a work unit
was created to the beginning of actual work
(early analysis),

— Time of the initial analysis (T-Shirt sizing).

In the analysis phase (Problem Analysis, De-

velopment and Deployment), the high level of

vagueness made it impossible to introduce the

SLA which would measure the end of work. An

sample cumulative chart (Figure 13) highlighted

the piling up of tickets in the analysis phase for
the final period between September to Novem-
ber. Such visualisation enhanced the credibility
of the reports for the Client. The goal of metrics
is to monitor the state of the project and react
when problems occur. In this case most valuable
metrics are: Reaction Time, Lead Time and Cy-
cle Time. In practical terms, the results of the
metrics are not always easy to understand, which
was also the experinece gained in this project.

Matters which need to be interpreted separately

are described below.

— Incompletion of the data — there was some-
times a gap between real processes and the

54

Marek Majchrzak, Lukasz Stilger

Service request Capacity

Offer Confirmation

in progress | done in progress | done

in progress

done in progress | done

governance offering workflow

Figure 10. Project B — Kanban board — governance workflow

Development Ready for tests

Tests Ready for rollout

in progress | done in progress | done

in progress

done in progress | done

release management workflow

Figure 11. Project B — Kanban board — release management

Number of Issues

Figure 12. Created vs. resolved chart

documented data; for example, a request
which was not registered in the system. It
was assumed that these data were not crucial
for this metric.

The learning curve while introducing changes
to the processes — the whole process of intro-
ducing lean changes with Kanban techniques
is relatively time-consuming. Establishing the
efficient workflow of tickets lasted more than
six months, and the following six months were
required to teach the entire team. It was as-
sumed that there always was a learning curve
and the measured data were calibrated with
time. Hence, it effectively corresponded with
the reality.

Team rotation — the real problem was when
the capacity of the team varied. All projects

Cumulative Flow Diagram

1/Apr/14 to 20/Nov/14 (Custom) ~

® Refine report ~

Aug Sep ot

Figure 13. Cumulative flow diagram

need to deal with such issues not only because
of the growing numbers in teams on the team,
but also because of technical experience and
domain knowledge, which should be taken
into account. Unfortunately, the impact of
this issue on the presented results cannot be
accurately compared.

Bad multitasking — the more tasks there are
in the progress, the less efficient the working
time is. The Kanban visualisation allows us to
minimise this problem. However, this aspect
needs considering when interpreting the final
results.

The complexity of business knowledge — it
is a well-known fact that the software for
production systems is complicated because of
various elements, such as interface systems,

Experience Report: Introducing Kanban into Automotive Software Project 99

real-time constraints, security aspects and
production continuity. There is no direct rela-
tion between the level of business complexity
and the quality of the project; yet in metrics,
it was observed that in the tickets, compar-
ison to the others, this adverse effect can
be eliminated by using medians instead of
averages.
Reaction time. The total time from reporting
a problem to the moment the development team
can start dealing with it. Table 1 and Figure 14
show the effects of the described aspect of the
described aspect “the learning curve during the
introduction of changes to the processes”. The
year 2014 was the learning phase. From 2015
Q1 tuning the reaction time through minimizing
“bad multitasking” was started.
Lead time and cycle time. The lead time is
the total time required to develop a solution to
the problem including corresponding activities,
both the predicted as well as the unpredicted
ones. It is the time from task creation until its
completion. Cycle time is the correct volume of
work.

In both tables (Table 2, 3) one can observe the
difference between averages and medians. The
cause of the difference is that a small amount of
tickets was extremely complex. It corresponds
to the described issue “complexity of business
knowledge”. In Figure 15 one can observe how the
cost of the delivery was optimised. The period
between 2013 Q4 and 2014 Q2 was the time when
measuring data was not complete. From the 2014
Q3 team rotation begins. In the first quarter of
2015, we finished installing all modules of the
software.

6. Summary and key observations

In a progressively larger number of I'T projects,
one can easily notice a trend towards process
and tools optimisation. The software companies
and its customers have spotted flaws in the cur-
rent perspective based on waterfall approaches.
There is a big potential in creating waste, e.g.
through administrative behaviour. Moreover, fre-
quently chosen software development method-

ologies do not encompass certain much-needed
processes.

Although the Kanban technique is not the
subject of many analyses and was not promoted
as much as the Scrum or XP ones, it is more and
more frequently used in software projects as one
of the tools of Lean thinking. It can be used with
positive results in each project type regardless if
it is an “Agile” or “Waterfall” style operation.

It should be noted that this basic and simul-
taneously intuitive mechanism is a powerful tool
allowing for the easy optimisation of nearly every
activity and process within software projects. In
both cases, substantial profits were observed both
on the side of our Team as well as on the Client’s
side over a relatively short period.

As mentioned above, the most important as-
pects of those undoubtedly are visualisations,
process regular order and the creation of a coop-
erative platform, which can be easily modified
and adapted to any given target group.

During the analysis of the consequences
of Kanban deployment another perspective
emerged. Taking into account the human factor,
it can be observed that Kanban uses triggers as
a tool for gradual self-improvement of each team,
a sort of evolutionary step towards the reform of
documentation and fabricating processes. Hence,
unlike something forced upon the staff by the
management or outside specialists, Kanban re-
sults in an all-natural, symbiotic and adaptive
process.

7. About Capgemini and Software
Solutions Center Wroclaw

With 180,000 people in over 40 countries,
Capgemini is one of the world’s foremost
providers of consulting, technology and outsourc-
ing services. The Group reported 2014 global
revenues of EUR, 10.573 billion. Together with
its clients, Capgemini creates and delivers busi-
ness, technology and digital solutions that fit
their needs, enabling them to achieve innova-
tion and competitiveness. A deeply multicul-
tural organisation, Capgemini has developed its
own way of working, the Collaborative Business

56

Marek Majchrzak, Lukasz Stilger

Table 1. Project B — reaction time 30
25
Period Reaction Time 2
year quarter average median issues 15
2013 Q4 6d Sh 1h 21m 73 "
2014 Q1 2w 5d 6h 3d 3h 156
2014 Q2 1w4d 23h 19h 14m 195 °
2014 Q3 3w 14h 21m 16h 52m 200 0
2014 Q4 2w 8h 38m 20h 42m 171
2015 Q1 3w 7h 41m 6h 31m 176
2015 Q2 1d 15h 5h 30m 161
2015 Q3 2d 6h 4h 31m 179
2015 Q4 1d 15h 3h 2m 223

Table 2. Project B — lead time (time line)

Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

2013 2014 2014 2014 2014 2015 2015 2015 2015

= Reaction time median [h]

Figure 14. Project B — median of reaction time

Table 3. Project B — cycle time (in progress)

Period Reaction Time Period Reaction Time
year quarter average median issues year quarter average median issues
2013 Q4 6w 5d 20h 7w 3h 26m 25 2013 Q4 3w 1d 2w 3d 1h 41
2014 Q1 4w 3d 19h 2w 1d 10h 76 2014 Q1 3w 5d 5h 2w 3d 22h 62
2014 Q2 8w 4d 4h 6w 2d 2h 97 2014 Q2 4w 6d 3h 3w 1d 5h 107
2014 Q3 9w 6d 5h 5w 6d 4h 166 2014 Q3 4w 6d 12h 3w 5h 44m 130
2014 Q4 16w 5d 22h 11w 6d 4h 173 2014 Q4 9w 21h 6m 5w 3d 2h 177
2015 Q1 22w 1d 7h 15w 1d 19h 231 2015 Q1 7w 6d 14h 5w 10h 20m 200
2015 Q2 15w 5d 16h 10w 6d 22h 148 2015 Q2 8w 1d 16h 3w 3d 20h 171
2015 Q3 17w 5d 8h 10w 3d 6h 205 2015 Q3 6w 6d 8h 2w 6d 15h 191
2015 Q4 16w 3d 5h 6w 1d 6h 427 2015 Q4 5w 1d 21h 1w 2d 23h 328
3000
2500
2000
1500
1000 = e
500 — =
0
Q4 ‘ Ql ‘ Q2 ‘ Q3 ‘ Q4 ‘ Ql ‘ Q2 ‘ Q3 ‘ Q4 ‘
2013 ‘ 2014 ‘ 2014 ‘ 2014 ‘ 2014 ‘ 2015 ‘ 2015 ‘ 2015 ‘ 2015 ‘
Lead time median [h] Cycle time median [h]

Figure 15. Project B — median of lead time and cycle time

Experience™ and draws on Rightshore®), its
worldwide delivery model. Capgemini in Poland
employs 6500 consultants and IT as well as busi-
ness process experts. Centres for IT and busi-
ness process outsourcing services has operated in
Wroctaw, Poznan, Krakéw, Katowice and Opole
with the main office serving the Polish market
based in Warszawa. Capgemini Software Solu-
tions Center exists in Wroclaw since 2004. More
than 800 IT experts currently work in Wroclaw
delivering high-quality services in the areas of

software development, software package imple-
mentation and application lifecycle services to
German-speaking clients.

References

[1] T. Ohno, Toyota Production System: Beyond
Large-Scale Production. Cambridge, MA: Pro-
ductivity, 1988.

[2] J. Koplin, S. Seuring, and M. Mesterharm, “In-
corporating sustainability into supply manage-
ment in the automotive industry — the case of the

Experience Report: Introducing Kanban into Automotive Software Project

o7

Volkswagen AG,” Journal of Cleaner Production,
Vol. 15, No. 11, 2007, pp. 1053-1062.

J.P. Womack and D.T. Jones, “From lean produc-
tion to the lean enterprise,” Harvard Business
Review, Apr. 1994.

M. Poppendieck and T. Poppendieck, Lean Soft-
ware Development: An Agile Toolkit. Boston,
MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2003.

D.J. Anderson, Kanban: Successful Evolutionary
Change for Your Technology Business. Blue Hole
Press, Apr. 2010.

H. Kniberg, Kanban and Scrum — Making the
Most of Both. Lulu.com, 2010.

K. Petersen and C. Wohlin, “Measuring the flow
in lean software development,” Software: Prac-
tice and Ezperience, Vol. 41, No. 9, 2011, pp.
975-996.

M. Host, B. Regnell, J.N. och Dag, J. Ned-
stam, and C. Nyberg, “Exploring bottlenecks
in market-driven requirements management pro-
cesses with discrete event simulation,” Journal
of Systems and Software, Vol. 59, No. 3, 2001,
pp. 323-332.

M. Staron and W. Meding, “Monitoring bottle-
necks in agile and lean software development
projects,” Product-Focused Software Process Im-
provement, 2011, pp. 3-16.

M.J. Michael Prokop, “Use of kanban in the
operations team at spotify,” Info@, Sep. 2010.
H. Kniberg, Lean from the Trenches: Manag-
ing Large-Scale Projects with Kanban. Pragmatic
Bookshelf, 2011.

M. Ikonen, E. Pirinen, F. Fagerholm, P. Ket-
tunen, and P. Abrahamsson, “On the impact of
Kanban on software project work: An empirical
case study investigation,” in 16th IEEE Inter-
national Conference on Engineering of Complex
Computer Systems (ICECCS). IEEE, 2011, pp.
305-314.

P. Middleton and D. Joyce, “Lean software
management: BBC worldwide case study,”
IEEE Transactions on Engineering Management,
Vol. 59, No. 1, 2012, pp. 20-32.

P. Middleton, A. Flaxel, and A. Cookson, “Lean
software management case study: Timberline

[15]

[16]

[17]

2

Inc.” in Extreme Programming and Agile Pro-
cesses in Software Engineering. Berlin, Heidel-
berg: Springer, 2005, pp. 1-9.

M. Majchrzak, L. Stilger, and M. Matczak,
“Working with agile in a distributed environ-
ment,” in Software Engineering from Research
and Practice Perspective, L. Madeyski and
M. Ochodek, Eds. Polish Information Processing
Society Scientific Council, 2014, pp. 41-54.

K. Beck and C. Andres, Fxtreme Program-
ming Ezplained: Embrace Change, 2nd ed.
Addison-Wesley Professional, 2004.

M. Robert C., Clean Code: A Handbook of Agile
Software Craftsmanship, 1st ed. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2008.
Atlassian, JIRA documentation, (2016). [On-
line]. https://confluence.atlassian.com/display/
JIRA /JIRA+Documentation

Atlassian, Specification — confluence advanced
editor, (2016). [Online]. http://confluence.
atlassian.com/display /DOC/Specification+-
+Confluence+Advanced+Editor

E. Shihab, C. Bird, and T. Zimmermann, “The
effect of branching strategies on software quality,”
in 2012 ACM-IEEE International Symposium
on Empirical Software Engineering and Mea-
surement, ESEM, 2012, pp. 301-310. [Online].
http://doi.acm.org/10.1145/2372251.2372305
Atlassian, JIRA service desk documentation,
(2016). [Online]. https://confluence.atlassian.
com/servicedeskserver030/

Go2Group, Connect all, (2016).
http://www.go2group.com/connectall /
K.S. Rubin, Essential Scrum: A Practical Guide
to the Most Popular Agile Process, 1st ed.
Addison-Wesley Professional, 2012.

M. Cohn, Agile Estimating and Planning. Upper
Saddle River, NJ, USA: Prentice Hall, 2005.
E.M. Rogers, Diffusion of Innovations, 5th ed.
Simon and Schuster, 2003.

K.L. Jeffrey, The Toyota Way: 14 Management
Principles From The World’s Greatest Manufac-
turer. McGraw-Hill, 2004.

[Online].

e-Informatica Software Engineering Journal, Volume 11, Issue 1, 2017, pages: 59-76, DOI 10.5277/e-Inf170103

Systematic Literature Review on Search Based
Mutation Testing

Nishtha Jatana*, Bharti Suri**, Shweta Rani**

*Research Scholar, USICT and Assistant Professor, Department of Computer Science and Engineering,

MSIT, New Delhi, India
*USICT, GGS Indraprastha University, New Delhi, India

nishtha.jatana@gmail.com, bhartisuri@gmail.com, shweta2610@gmail.com

Abstract

Search based techniques have been widely applied in the domain of software testing. This Systematic
Literature Review aims to present the research carried out in the field of search based approaches
applied particularly to mutation testing. During the course of literature review, renowned databases
were searched for the relevant publications in the field to include relevant studies up to the year
2014. Few studies for the year 2015-2016, gathered by performing snowball search, have also been
included. For reviewing the literature in the field, 43 studies were evaluated, out of which 18 studies
were thoroughly studied and analysed. The result of this SLR shows that search based techniques
were applied to mutation testing primarily for two purposes, either for mutant optimisation or
for test case optimisation. The future directions of this SLR suggests the application of search
based techniques for other issues related to mutation testing, like, solution to equivalents mutants,
generation of non-trivial mutants, multi-objective test data generation and non-functional testing.

Keywords: software testing, analysis and verification, systematic reviews and mapping

studies

1. Introduction

Software testing [1] is a rigorous activity which
must be done to find the errors, quality assess-
ment and to gain insight into the state of the sys-
tem. The key challenge in the process of software
testing is to reduce costs and maximize benefits.
Since it is extremely time-consuming and requires
a lot of effort; the overall testing process needs to
be optimized for testing practices. Software test-
ing involves test planning, design, execution and
evaluation, reporting and closure activities. Test
design is an activity that entails the major chunk
of software test activities. It includes reviewing
the test basis, identifying test conditions, design-
ing tests, evaluating them and thereby designing
the test environment setup. One of the critical
tasks in testing is the generation of test data.
Research on test case generation has become
quite prevalent in the last two decades [2-5].

Search based approaches have been applied to
several optimisation problems [6]. Software test
design portrayed as a well formed optimisation
problem has been solved using meta-heuristic
techniques [7]. The generation of test data can
be automated using meta-heuristics or search
based techniques using a specific fitness function
to guide the search towards a potentially good
solution within a search space [8].

Search based mutation testing (SBMT) works
by formulating the test data generation/opti-
mization and mutant optimization problems as
search problems and applying meta-heuristics
techniques to solve them. Bottaci [9] introduced
the fitness function to apply optimization algo-
rithms to kill the mutants or faulty programs.
This fitness function was based on three con-
ditions: reachability, sufficiency and necessity.
These three conditions served as a base for the
foundation of SBMT and are are still used for

60

Nishtha Jatana, Bharti Suri, Shweta Rani

this purpose [10]. Optimization techniques, such
as Genetic Algorithm (GA), Hill Climbing (HC),
Ant Colony Optimization (ACO), Bacteriological
Algorithm (BA) and Immune Inspired Algorithm
(ITA) were used together with mutation testing
by researchers as an art of SBMT [11].

The aim of this systematic review is to ad-
dress the search based approaches applied to
mutation testing either for test case generation
or for mutant optimization. The systematic lit-
erature review (SLR) is the foremost essential
step in the research process conducted to rig-
orously collect, analyse and report the current
literature in the field. An extensive survey by
Jia and Harman [12] comprehensively addressed
developments of mutation testing. [13] lists the
various advancements in the areas of SBMT since
the year 2009. A recent systematic mapping by
Souza et al. [11] mentioned related work in the
context of test data generation for mutation test-
ing, whereas whereas this SLR focuses partic-
ularly on the search based techniques smeared
with mutation testing for test data generation/-
optimization and mutant optimization. A similar
study on SBMT has been recently published
by Silva et al. [14]. The authors explored the
use of meta-heuristic in the context of mutation
testing. The study is very rigorous as well as
detailed and reviews the publications up to the
year 2014. The studies included in this SLR were
also been in the systematic review by Silva et
al. This SLR primarily aims to review the stud-
ies in the field of SBMT up to the year 2014,
however, a few relevant studies of the year 2015
and 2016 were also cited. These recent papers
were collected using the snowballing approach
[15] to find the papers published in the last two
years which cited the studies included in present
SLR. The study and analysis of various papers
collected from a number of sources involves a
great deal of research effort and time as it also
encompasses the review and modification of the
paper entailing s time after it is communicated
to a journal. Review and modification of the
paper also entails time after it is communicated
to a journal. Therefore, in this paper the relevant
studies up to the year 2014 were thoroughly anal-
ysed and included only few studies published in

the year 2015-2016. The primary studies selected
for review are the ones which proposed a new
technique for SBMT up to the year 2014. This
SLR contains many figures and ttables to offer
easy access to comprehensive knowledge on the
topic. The studies selected for review were used
immensely by the researchers working in the field
of SBMT.

The rest of the paper is systematized as fol-
lows: Section 2 differentiates between Literature
Review (LR), Systematic Mapping (SM) and
Systematic Literature Review (SLR). Section 3
shows the research method followed for this SLR
highlighting the research question and the used
search strategy. Section 4 analyses the studies in
SBMT. Section 5 presents the results and then
Section 6 presents conclusion.

2. Differentiating LR, SM and SLR

Reviewing the literature in the field is a funda-
mental process prior to any worthwhile research.
This section compares and contrasts the implica-
tions of LR, SM and SLR.

Literature review — “A literature review is an
objective study done to thoroughly summarize
and critically analyse the available relevant re-
search, and to enable the researcher to gather
up to date information, to gain insight into the
current literature that forms a basis of a goal to
be achieved and also justifies the future research
in that area” [16].

Systematic mapping — “A systematic map-
ping study provides a structure of the type of
research reports and results that have been pub-
lished by categorizing them. It often gives a vi-
sual summary, the map, of its results. It requires
less effort while providing a more coarse-grained
overview” [17].

Systematic literature review — “A system-
atic literature review is a means of identifying,
evaluating and interpreting all available research
relevant to a particular research question, or
topic area, or phenomenon of interest. Individual
studies contributing to a systematic review are
called primary studies; a systematic review is
a form a secondary study” [18].

Systematic Literature Review on Search Based Mutation Testing

61

Q Research Search

Scope &
Questions

Search
Database

Refine Conclusion

Quality assessment &
Data

Data Analysis

Objective Strategy

Authors

1 Study preyalgnt research in the 3rea

2 iFrame the RQs -

T
3 Formulate the search:strategy

4 : Data Collection using search string

]

5 : Based oninclusion & exclusion criteria. refine the database

6 Classified the studies in refined database

7 : Conclude the SLR

T
>

Figure 1. Undertaken course of action for SLR

SLR entails an exhaustive and comprehensive
search process which adheres to the guidelines on
the conduct of a review and inclusion/exclusion
criteria, it is determined by the quality assess-
ment process. However, in the case of LR the
process may not be comprehensive and may or
may not include the quality assessment. SM, on
the other hand, has a complete search process
and identifies primary and secondary research
but may not include formal quality assessment
process [19].

3. Research method

The aim of this study is to offer insight into
various types of research carried out in the
area of search based mutation testing (SBMT).
The authors followed the guidelines given by
Kitchenham [18]. The undertaken course of ac-
tion is demonstrated using a sequence diagram
(Figure 1).

Initially, primary knowledge about the sub-
ject of the study was collected. As a result of an
inquisitive study of the research conducted in the
field, a set of research questions (RQs) were for-
mulated. Search strategy was then designed that
forms the base for collecting the relevant research
material from the data repositories. The most
vital step was to refine the data gathered by defin-
ing an inclusion/exclusion criterion. After this
stage, 43 relevant studies were categorized into

18 primary and 25 secondary studies (discussed
in this section). The method used to extract
the primary and secondary studies is explained
in [20]. In order to answer the RQs, collected
and segregated material was critically examined;
thus, reaching the conclusion.

The steps trailed in the SLR for test data gen-
eration/optimization and mutant optimization
using search based approaches were conducted in
the way elaborated in the following subsections.

3.1. Research questions (RQs)

As the RQs form the foundation of the SLR, the
PICOC criteria [20] (given in Table 1) were used
to define the research questions. The PICOC
criteria were defined as follows:

— Population — people, or an application area,
or a group of companies or any such commu-
nity affected by the research.

— Intervention — software methodologies/
tools/technologies/procedures which are re-
quired to solve a particular issue.

— Comparison — software methodologies/
tools/technologies /procedures with which in-
tervention can be compared.

— Outcomes — factors of significance which are
relevant in the study.

— Context — environment in which the com-
parison takes place.

The aim of this work is to summarize the
current state of art of research in SBMT by

62

Nishtha Jatana, Bharti Suri, Shweta Rani

Table 1. PICOC criteria applied to SLR.

Test data generation/optimization and mutant optimization techniques involved SBMT

Population = Search based Mutation Testing
Intervention Search based/meta-heuristic techniques
Comparison Approaches which are not meta-heuristic
Outcomes

Context

Within the domain of SBMT with a focus on empirical studies

Figure 2. Inclusion/exclusion criteria

proposing answers to the set of the following
research questions(RQs).

RQ1: Which search based approaches were used
in collaboration with mutation testing?

RQ2: What are the areas of application in which
search based approaches were applied for muta-
tion testing?

RQ3: What are the findings from the comparison
studies of the techniques used in SBMT?

RQ4: What are the major challenges faced by
the researchers in the field of SBMT?

3.2. Search process

This section describes the strategy used to mine
the databases containing the research material
and to extract the relevant information related
to the conducted research.

3.2.1. Data sources

According to the guidelines provided by Kitchen-
ham [20], several data sources were searched to
encompass the maximum possible information.
The following data repositories were explored to

retrieve the relevant publications from confer-
ence proceedings, workshop proceedings, journal
articles, books and theses.
— ACM digital library (www.dl.acm.org).
- IEEE Xplore Digital Library (www.
ieeexplore.ieee.org).
— Science Direct (www.sciencedirect.com).
— Springer (www.springerlink.com).
— Citeseer (scholar.google.com).
— Wiley Online Library (onlinelibrary.wiley.
com).
A few papers were available in more than
one searched repositories and in such cases the
duplicate copies were removed manually.

3.3. Inclusion and exclusion criteria

The overall process depicted in Figure 2 was
followed to obtain and segregate the relevant
primary and secondary studies.

3.3.1. Search strategy

Various research publication repositories pro-
vide different search options for data search. An

Systematic Literature Review on Search Based Mutation Testing 63

Table 2. Search Strings for selected data sources

Data Source

Search String

IEEE

((((Evolutionary OR heuristic OR search based OR search-based OR nature inspired OR
nature-inspired OR optimization OR selection OR minimization OR prioritization)) AND
(“Mutation Testing” OR “Mutation Analysis” OR “mutation operator testing” OR, “fault
injection” OR “fault based testing”))) in command search tab (under advanced search)

ACM

(Abstract:Mutation and Abstract:testing) and (Abstract:Evolutionary or Abstract:heuristic
or Abstract:metaheuristic or Abstract:search based or Abstract:search-based or
Abstract:nature or Abstract:inspired or Abstract:nature-inspired or Abstract:optimization
or Abstract:optimisation or Abstract:selection or Abstract:minimization or Ab-
stract:minimisation or Abstract:prioritisation or Abstract:prioritization)

Wiley

(Evolutionary OR heuristic OR metaheuristic OR search based OR search-based OR
nature inspired OR nature-inspired OR optimization OR optimisation OR selection OR
minimization OR minimisation OR prioritisation OR prioritization) in Abstract AND
“Mutation Testing" OR “Mutation Analysis” OR “Mutants testing” OR “mutation operator
testing” OR “fault injection” OR “fault based testing” in Abstract)

Elsevier

(Evolutionary OR heuristic OR metaheuristic OR search based OR search-based OR nature
inspired OR nature-inspired OR optimization OR optimisation OR selection OR mini-
mization OR minimisation OR prioritisation OR prioritization) and TITLE-ABSTR-KEY
(“Mutation Testing” OR “Mutation Analysis” OR “mutation operator testing” OR “fault
injection” OR “fault based testing”)

Springer

Mutation AND testing AND (Evolutionary OR heuristic OR metaheuristic OR search
based OR search-based OR nature OR inspired OR nature-inspired OR optimization
OR optimisation OR selection OR minimization OR minimsation OR prioritisation OR
prioritization)

citeseer

((((Evolutionary OR heuristic OR metaheuristic OR search based OR search-based OR
nature inspired OR nature-inspired OR optimization OR optimisation OR selection OR
minimization OR minimisation OR prioritisation OR prioritization)) AND (“Mutation
Testing” OR “Mutation Analysis” OR “Mutants testing” OR, “mutation operator testing”
OR “fault injection” OR “fault based testing”)))

advanced search strategy was used for mining
the data sources to locate the pertinent publi-
cations. The Boolean operators “AND”, “OR”
and “NOT” are used to arrange the keywords
for forming the search string. As the various
databases provide different search capabilities,
as stated in a recent SLR [21,22], conceptu-
ally similar search strings were used for each
of the data sources listed in Table 2. To en-
sure the maximum retrieval of significant ma-
terial, the search strategy was applied on to
a title, an abstract and keywords. The earliest
research in the field of search based on testing
was published in the year 1976, and thus the
start date for the search was established to be
January, 1976 and the end date was set to De-
cember, 2014.

Initially using the search string as specified in
section 3.2.2; a total of 4314 papers were found.
However, many of these papers pertained to mu-
tation and biology which were not relevant to
our field. Thereafter, a multi-step process was
followed to remove the irrelevant publications.
The number of papers shown by the respective
repositories using the aforesaid search string is
listed in Table 3.

In order to exclude the irrelevant papers, ti-
tle and abstract based exclusion was performed
manually and then the full text was read to
store the appropriate papers in our repository.
After analysing the papers thus found, a list
of active researchers (as listed in Table 4) in
the same field was maintained. Then, to ensure
the completeness of the data, another search

64

Nishtha Jatana, Bharti Suri, Shweta Rani

Table 3. Initial number of papers obtained by
searching the data repositories

Data source Initial Count

IEEE 201
ACM 448
Wiley 1844
Elsevier 20
Springer 1484
Citeseer 317

was accomplished to locate the leftover papers
of the researchers working in the field. The
reference section of the primary studies was
also checked to extract any relevant publica-
tion that was missing in our collection. A to-
tal of 10 new papers were located out of which
6 were found by reference search and 4 were
found by the author search. The total number
of relevant papers thus collected is listed in Ta-
ble 5.

Table 5. Number of papers after exclusion

Data source Count after exclusion

IEEE 16
ACM 6
Wiley 1
Elsevier 4
Springer 10
Citeseer 1
Others 5

The totally pertinent publication includes all
those papers which presented a new technique(s),
compares existing techniques and empirically
evaluated the techniques. These 43 studies were
then thoroughly reviewed by each author to seg-
regate them into primary and secondary studies.
The papers with a significant contribution in the
field in terms of research ideas and development
were chosen as primary studies and the rest were
marked as secondary ones. Eventually, 18 pri-
mary studies (as shown in Table 6) were then
thoroughly, analysed separately by each author.
It can be seen that 50% of the studies demon-
strated their technique in a theoretical manner
and the remaining 50% evaluated their technique
empirically.

Table 4. List of authors actively working in the field
of SBMT

Authors Total publications in SBMT

P. May 4
K. Ayari

M. Harman
M. Papadakis
G. Fraser

B. Baudry
M. Rad

N Ot W Ot Oy =

There are a few papers which were not been
included in this SLR that were included in the
recent SLR on SBMT [14]. The papers encompass
[39-47]. These papers are relevant to the field
of SBMT but their contribution to the field is
not novel as the techniques they proposed are
already used by researchers in the field of SBMT.

The papers published in 2015 and 2016 that
are relevant to the field of SBMT were collected
by snowballing. They are listed in the following
section.

4. Analysis of studies in SBMT

This section presents the analysis, trend patterns
and the discussion of the research done in the
field of SBMT.

4.1. Trends in SBMT

Table 7 and Table 8 list the publication types for
the selected studies and primary studies retrieved
from the repositories. Figure 3 shows the publi-
cation trends observed from 1998 to 2014. The
first publication was recorded in 1998 and after
that the research was carried out continuously
in this field. A decline in the research trends is
observed during the year 2006-2009.

4.2. Discussion on primary studies

Table 9 summarizes the contribution of the se-
lected primary studies and search based tech-
niques evolved/used by them. Table 10 lists the
subject programs, language and tools used by
the selected primary studies. It is observed that

Systematic Literature Review on Search Based Mutation Testing 65

Table 6. Overview of the selected primary studies

Study ID First Year Type Publisher Research References
Author (C/J/W/B) Category (E/T)
P1 L. Bottaci 2001 C Others T [9]
P2 B. Baudry 2001 W Springer E [23]
P3 B. Baudry 2002 C IEEE E [24]
P4 P. May 2003 B Springer T [25]
P5 M. C. F.P. Emer 2003 J Others E [26]
P6 K. Adamopoulos 2004 C Springer T [27]
P7 Md. M. Masud 2005 C IEEE T 28]
P8 K. Ayari 2007 C ACM E [29]
P9 Y. Jia 2008 C IEEE E [30]
P10 K. K. Mishra 2010 C IEEE T [31]
P11 B. Schwarz 2011 C IEEE T [32]
P12 M. Harman 2011 C ACM T [33]
P13 J.J. Dominguez-Jimenez 2011 J Elsevier E [34]
P14 G. Fraser 2012 J IEEE E [35]
P15 A. A. L. de Oliveira 2013 C IEEE E [36]
P16 M. B. Bashir 2013 C IEEE E [37]
P17 P. S. Yiasemis 2013 C Springer T [38]
P18 M. Papadakis 2013 J Springer T [10]

Type: C — Conference, W — Workshop, B — Book, J — Journal
Research Category: E — Experimental, T — Theoretical

Table 7. Publication type for 43 selected studies Table 8. Publication type for primary studies
Publication type Number Publication type Number
Journal 13 Journal 4
Workshop 3 Workshop 1
Thesis 1 Book 1
Conference 23 Conference 12
Book 3
7
: AN
0
® 5 / \
/\
: A
o / V
S 3
3 / \
5 2 / V v
3
Z 1 -
0 T T T T T T T T T T T T T T 1

1998 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Year

Figure 3. Publication trends of research in SBMT

66

Nishtha Jatana, Bharti Suri, Shweta Rani

Table 9. Contribution and techniques used by primary studies

Study no. Contribution Techniques References
P1 Fitness function introduced based on GA for mutation testing GA [9]
P2 Automation of test case enhancement for object oriented GA [23]
software components

P3 Introduced bacteriological algorithm and compared with GA GA,BA [24]

P4 Artificial Immune System applied for Mutation testing AIS [25]

P5 GP based procedure for selection and evaluation of test data GA [26]

P6 Dealt with equivalent mutant problem using GA GA [27]

P7 Test case generation for killing mutants in program units GA [28]
using GA

P8 Test case generation using mutation testing with ACO ACO [29]

P9 Construction and evaluation of higher order mutants using GA, HC, Greedy [30]
GA, HC, Greedy

P10 Elitist genetic algorithm applied with mutation testing GA [31]

P11 Generation of high impact mutants avoiding equivalent mu- GA [32]
tants using GA

P12 Production of test input via strong higher order mutants Search based [33]

P13 Mutant optimization using GA for WS-BPEL GA [34]

P14 Test oracle generation using automated mutation testing, GA [35]
assertions and GA

P15 Test case and mutant optimization using GA GA [36]

P16 Definition of a new fitness function aiming to produce test GA [37]
data

P17 Automatically finding and correcting faults using code slices, GA [38]
GA and mutation testing

P18 Improved fitness function for test generation using AVM HC [10]

Java programs are most popular for the research
and there are different tools that are used by the
researchers in the field of SBMT.

Figure 4 describes the yearly distribution
of the techniques used by the selected pri-
mary studies. As is evident from the scatter
chart, GA is the most prevalent and consis-
tently used technique by the researchers work-
ing in the area of SBMT. Study P12 is not
included in the chart, as it evaluates the ap-
plication of search based techniques in general
(no specific technique) for higher-order mutation
testing.

4.3. Relevant publications of 2015-2016

In order to collect publications in the domain
of SBMT for the years 2015-2016, the snowball
approach was followed. The relevant studies col-
lected asa result are cited here.

A few reviews relevant to the ones filed in
SBMT have been published in the past two years.

The literature review by Silva et al. [14] details
the work carried out in the field before 2014.
Other surveys include [13,48-51].

Considerable work was done in the context
of search based higher order mutation testing
by eminent researchers in the field. The relevant
publications include [52-56].

GA is still the most popular search algorithm
used by the researchers of the domain [52,57-59].

Hill Climbing [60] and PSO [61] have also
been recently used by researchers for test data
generation using SBMT. Other relevant publica-
tions include [62,63].

5. Results (RQs)

This section presents answers to the RQs for-
mulated above after analysing the 43 studies
in SBMT, amongst which 18 studies that were
identified as those stating a new technique, were
thoroughly analysed.

Systematic Literature Review on Search Based Mutation Testing 67

Table 10. Language used, subject programs and tools used by (Experimental) primary studies

Study no. Contribution Techniques References
P2 * Pylon library uSlayer
P3 C# C# parser *

P5 C++ cmm, fat, max, cmd GPTesT
P8 Java Triangle, Nextdate muJava
P9 C triangle, TCAS, schedule2, totinfo, printtokens, space MILU
P13 WS-BPEL WS-BPEL compositions (Travel Reservation, Service Ex- GAmera
tended Meta Search and Loan Approval Extended)
P14 Java commons CLI, commons codec, commons collections, com- muTEST
mons logging, commons Math, commons Primitives, Google
Collections, JGraphT, Joda Time, NanoXML
P15 * Bisect, Bub, Fourballs, Mid, trityp *
P16 Object oriented CGPA calculation *
P17 Java credit card validator, triangle classification, Base 64, Person Kaveri/Indus
sorted list, shapes, order set, Graph shortest Path, 3 Eclipse
libraries
P18 Java Triangle, Trityp, Triangle, Remainder, Calender, Fourballs, *

Cancel, Quadratic

* Indicates the data not mentioned by the authors concerned in the study.

O ssmnrmananrzs P1$1.:..p.15 ,pm
2012 = .;P‘M i oo
Dor L | I .p,a.,f,p".......... s 0 5 B SR SR S T S SR S SR G A R SR
e
2008 |- kPO P9
% 2007 |- %P8
> o006
2005 | %P7
ool les s ranmrennsmran *P6 . ;
003 v B -
57T 1 7) LR *P3 %P3 :]
G 1] | P P2 pq : : ; ;
a i i | i 1
GA BA HC ACD 1A,

Techniques
Figure 4. Corroboration of selected primary studies

5.1. Techniques of SBMT (RQ1) domly. Thereafter, all its neighbours are searched
and evaluated until no improved solution can

In order to answer RQ1, the techniques used be found. The major drawback of this tech-

by the researchers working in the field are sum-
marised below.

5.1.1. Hill climbing (HC)

It is one of the meta-heuristic search based tech-
niques that strives to improve the current so-
lution by exploring all its neighbours in the
search space. It includes an initialization stage,
where the initial candidate solution is chosen ran-

nique is local convergence as search includes
the neighbourhood space only [64]. Jia and Har-
man [30] applied hill climbing with GA to deal
with the explosion of a large number of higher
order mutants created from lower order mu-
tants. Papadakis and Malveris [10] used Alter-
nating Variable Method, which is a variant of
Hill Climbing, for test data generation using
mutation testing by using an improved fitness
function.

68

Nishtha Jatana, Bharti Suri, Shweta Rani

5.1.2. Ant colony optimisation (ACO)

ACO is a metaheuristic technique proposed by
Dorigo in the late 1990s [65,66] for approximately
solving the combinatorial problems which are
otherwise hard to solve in a reasonable amount
of time. It was inspired by Ant System [67] in
1991. ACO starts by mapping the problem un-
der study such that it simulates the stigmergic
behaviour of ants. The ants start at random first
to locate a food source and then they lay a chem-
ical compound known as pheromone on the most
pertinent paths. The ants thereafter follow the
pheromone trails to reach the desired destination.
ACO was applied to obtain approximate solu-
tions to many optimisation problems [68]. ACO
finds its application in the domain of software
testing [69]. Ayari et al. [29] proposed and ap-
plied ACO for automatic test data generation
in the context of mutation testing and empiri-
cally proved that ACO gives better results as
compared to Hill Climbing and the random ap-
proach.

5.1.3. Genetic algorithm (GA)

The idea of GA was initially proposed by
Fraser [70] and Bremermann [71] although it
was popularised by Holland and his students
because of applying its concepts in the field of
computer science [72]. GA starts with randomly
generated populations which are then evolved
using genetic operators (mutation and crossover).
The evolved population is evaluated for fitness
and the best performing individuals are chosen.
The process continues until stopping criteria are
met. GA finds its application in the software
testing domain for test data generation, mutant
optimisation and minimisation of test data [73].

GA was used by various researchers working
in the area of SBMT, but the conducted research
is varied in nature. The paragraph below presents
how GA was used for the optimisation of the pro-
cess of search based mutation testing in various
aspects.

Bottaci [9] gave a new fitness function for
GA that works in collaboration with mutation
testing. The fitness function was composed of

three conditions: (i) Reachability: the path fol-
lowed by the execution of test case must reach
the mutated statement, (ii) Necessity: the condi-
tion stated by the mutated expression must be
satisfied for it to be killed and (iii) Sufficiency:
the difference between the subject program and
the mutated program must be propagated to
the final output. This fitness function was fur-
ther used by Masud et al. [28], Ayari et al. [29].
Baudry et al. [23] used mutation analysis for
integration testing by enhancing the test cases
using GA. Baudry also applied GA for test case
optimization for C# parser [24]. Emer et al. [26]
developed a tool named GPTest for C++ pro-
grams for the selection and assessment of test
data using fault based testing. GA was also used
to address the problem of equivalent mutants
in mutation testing by Adampolous et al. [27].
Masud et al. [28] proposed a model to apply
GA for exposing faults by splitting the subject
program into small units, hence reducing the
cost and execution time of test cases. Jia and
Harman [30] introduced the paradigm of higher
order mutation testing and applied GA for opti-
mization and selection amongst the huge number
of higher order mutants (HOMs) from the lower
order ones. Later, HOMs were extensively ex-
plored in [74]. Omar et al. [39,40] introduced
search algorithms to find subtle HOMs and con-
cluded that local search performed better than
GA and the random search in finding HOMs for
Java and AspectJ subject programs. Elitist GA
was used by Mishra [31] for the generation of
efficient test data by selecting those test cases
which have already killed a large set of mutants.
Dominguez-Jimenez [34] used GA for a reduction
in mutants which eventually derive test cases for
improving the quality of initial test cases for
WS-BPEL compositions. Fraser et al. [35] also
optimised test cases using mutation analysis and
GA and evaluated them on 10 open source li-
braries. GA has also been used by [36-38] for the
optimisation of the process of mutation testing.

5.1.4. Bacteriological algorithm (BA)

BA was proposed by Baudry et al. [24,75, 76]
and is inspired by the bacteriological adapta-

Systematic Literature Review on Search Based Mutation Testing 69

tion. This technique was particularly recom-
mended for improving the test cases using mu-
tation testing. It takes a set of test cases as
input and makes small changes in them call-
ing them bacteria. These bacteria are evaluated
for fitness using a memorization function. The
technique evolved from GA and it differs from
it by two key points: introduces the memoriza-
tion function for the evaluation of fitness and
suppresses the crossover operator which was the
cause of slow convergence in population evolution

in GA.
5.1.5. Immune inspired algorithm (IIA)

Immune inspired algorithms are a class of in-
telligent algorithms which uses the primciples
associated with the immune system of verte-
brates. The characteristics exploited here are
related to learning and memory and they are
used to solve a problem. May et al. [25] applied
these characteristics for optimization of test cases
and mutants. May et al. further worked on this
approach [77,78] and successfully mapped the
evolutionary approach to the process of the opti-
mised generation of test cases and mutants. The
process starts by choosing initial test cases called
antibodies which are evolved through multiple
iterations by seeking those which are capable of
killing more mutants that are referred to as anti-
gens. The mutation score is denoted by Affinity.
Figure 5 shows the search based techniques used
by researchers in SBMT. It clearly shows that
the Genetic Algorithm is the one which is the
most frequently used by the authors.

M HC
HIA
MGA
M ACO
i BA

Figure 5. Usage of search based techniques

5.2. Applications of SBMT (RQ2)

After the analysis of the 18 primary studies
selected for the research, it was observed that
SBMT found its application as shown below in
Figure 6. Amongst the 18 primary studies, 9 were
identified for their work in test case generation,
3 worked on test case optimization, 5 worked
on mutant optimisation and the 2 remaining
ones contributed to both test case and mutant
optimisation.

5.2.1. Test data generation (TDG)

The process of TDG [2,5] using mutation testing
begins with the generation of a set of mutants
and the execution of the test suite on them. Then
the required test suite then iteratively collects
those test cases which can kill the mutants. Since
this process is computationally expensive and
time consuming, search based approaches [7, 8]
were applied to automate this process. As is ev-
ident from Figure 6, nine studies representing
TDG were conducted. Out of these nine stud-
ies, six [9, 23,28, 31, 35,37] are based on GA.
Ayari et al. [29] applied ACO and Papadakis
et al. [10] used a variant of HC for generating
test data using the process of mutation test-
ing. The symbolic execution and concolic test-
ing were also suggested for test data generation
by making use of weak mutation testing [79].
Harman et al. [33] evaluates the application of
the search based technique in general (not any
specific technique) for higher-order mutation test-
ing.

5.2.2. Test case
optimization/minimization/prioritization

(TCO)

The search based techniques were used for the
optimized reduction or prioritization of test cases
using mutation testing wherein the test cases
that are capable of killing maximum mutants are
considered at first hand, so that the maximum
number of faults is covered with the minimum
number of test cases. The search based tech-
niques guide this search process in promising

70

Nishtha Jatana, Bharti Suri, Shweta Rani

1CO_MTO

o5,

P15 @

MTO

Figure 6. Categorization of primary studies according to SBMT application

directions yielding optimum results in less com-
putational time. As shown in Figure 6, three
studies [23, 24, 26] contributing towards TCO
were identified. GA were used in [23,26] for test
case optimisation and [76] for the comparison
and evaluation of GA with BA for purpose of
the optimisation of test cases.

5.2.3. Mutant optimization (MTO)

The execution of a large number of mutants
requires enormous computational efforts. Ow-
ing to this, a large number of program mutants
needs to be optimised to obtain a reduced set
of mutants to that they are capable of detect-
ing the majority of significant plausible faults
in the program under test. Figure 6 depicts five
studies [27, 30, 32, 34, 38] found to implement
the techniques for MTO. GA was predominantly
adopted to obtain the optimised set of mutants
[27,32,34,38]. Jia et al. [30] evaluated GA with
HC and the Greedy Approach for creation of
higher order mutants.

5.2.4. Mutant and test case optimisation
(TCO_MTO)

Some researchers proposed approaches to opti-
mise mutants as well as test cases using search
based techniques with mutation testing. May et
al. [25] proposed the AIS technique and Oliveira
et al. [36] used GA for the purpose of mutant
and test case optimisation. Figure 6 depicts the
categorization of primary studies in the domain
of SBMT.

Figure 6 shows that despite the fact that
test case generation is a domain containing

more studies, most approaches in this domain
were concentrated on applying the Genetic Al-
gorithm (6 studies). Mutant optimization is an-
other prominent area in which researchers were
specially interested in, and here also GA was
actively applied (6 studies). Basically, SBMT re-
lies on the fitness function which searches for
candidate solutions and on mutation testing
which is mainly a quality assessment technique.
Both the fitness function and the quality as-
sessment criteria determine the level to which
the approach satisfies the analysed problem at
hand. Thus test case generation is the most
worked upon area as it is test case generation
is the prior requirement in the field of software
testing.

5.3. Findings from comparison studies

(RQ3)

Ayari et. al [29] proposed ACO and compared
it with GA,HC and Random Search algorithms.
Their preliminary results on two small programs
(Triangle and NextDate) show that ACO outper-
formed the other algorithms in terms of muta-
tion score and the convergence factor. Baudry
et. al [23,24,76] introduced BA which works on
a similar principle as GA, but differs from it by
memorizing the efficient test cases across genera-
tions. The authors compared their work [75] with
GA on 32 classes of C#. They state that BA is
more stable than GA and converges faster. Jia
and Harman [80] generated subsuming higher or-
der mutants using search based techniques (GA,
HC) and the greedy approach. The subsuming
higher order mutants are those which are difficult
to kill (detect). The authors applied the tech-

Systematic Literature Review on Search Based Mutation Testing 71

niques (GA, HC and Greedy Approach) on 10
programs and stated that GA is the most efficient
among them for the generation of subsuming
higher order mutants. May et. al [77] proposed
a new approach (Immune Inspired Algorithm)
for evolution of test data using mutation testing
adequacy criteria and evaluated the efficiency of
their approach on 4 programs compared with
the Genetic Algorithm. They state that their
approach gives better results in comparison with
the others. Researchers working in the area of
SBMT proposed various approaches and most of
them evaluated their approach against GA.

5.4. Major challenges faced by
researchers (RQ4)

The challenges faced by researchers in the field
of SBMT are significantly related to those faced
by mutation testing and those in SBST in gen-
eral. The challenges (i)—(iv) as listed in [81,82]
are those dealing with mutation testing in gen-
eral. The challenges (v)—(vii) are in context with
search based software testing [83] which is appli-
cable to SBMT as well. The challenges (viii)—(xi)
are the findings of this SLR. The following points
address RQ4.

(i) Computational cost of executing a large num-
ber of mutants is very high.

(ii) Mutants generated from the traditional mu-
tant operators may be trivial (easily killable).
(iii) Detection of equivalent mutants is a cumber-
some task.

(iv) Checking the output of each test case for
every mutant with that of the original program
takes a significant amount of time.

(v) Work on SBMT has mainly focussed on single
objective optimisation, multi-objective test data
generation is yet to be achieved.

(vi) SBMT focuses on unit structural test data
generation. Other areas (non-functional, etc.) of
software testing remains unexplored in this field.
(vii) Tools that qualify FiFiVerify (Find Fix and
Verify) challenge [83] are missing in the domain
of SBMT.

(viii) Most researchers of SBMT worked on ar-
tifacts (benchmark programs) of small size and
several of those are artificial examples.

(ix) Most researchers worked independently, try-
ing to find new SBMT techniques rather than
extending or enhancing the proposed approaches
of other researchers.

(x) Search techniques used in SBMT were ap-
plied mostly to single order mutants, however,
less work has been carried out for higher order
mutants.

(xi) Updates a few tools (like MuClipse) which
are still being used by researchers of SBMT are
not being updated with the optimisation stan-
dards which are used nowadays in mutation test-
ing as per latest research.

6. Conclusion

In this paper, the results from a systematic re-
view of search based mutation testing are pre-
sented. The following are the findings in regard
to the research questions:

RQ1: In the 18 primary studies identified in this
work, search based techniques namely HC, ACO,
GA, BA and ITA were empirically evaluated in
the area of mutation testing. The other search
based techniques have not yet been applied in
this field.

RQ2: Search based techniques were applied to
mutation testing for test data generation, selec-
tion, minimization and optimisation and also for
mutant optimization.

RQ3: Most researchers who proposed a new
SBMT technique empirically evaluated their tech-
nique with GA. However, there is a lot of variance
in the uniqueness of the identified search based
techniques. Some techniques may be treated as
novel at the time of their publications, while
others may be considered as slight variations of
already existing techniques. No technique can be
said to be distinctly better than another as the
programs used for empirical evaluation may not
be considered as strong evidence to prove the
superiority.

RQ4: The challenges prevailing in the area of
mutation testing are pertinent to the area of
SBMT along with a few more challenges. The
major ones include the effort and cost entailed in
mutation testing, and thus limit its application

72

Nishtha Jatana, Bharti Suri, Shweta Rani

to testing real world programs. Most techniques
given by researchers are either presented in a gen-
eral manner or are not sufficiently empirically
evaluated to serve as a base for enabling a prac-
titioner to choose a specific SBMT technique for
given software.

The analysis of the studies collected for the
20152016 shows that the Genetic Algorithm
is still being used most frequently by the re-
searchers in the field of SBMT. The inclination of
the interest of researchers towards Higher Order
Mutation testing can also be observed. Alongwith
other metaheuristics, PSO is also used for test
data generation using SBMT.

The findings in the area of search based mu-
tation testing, wrapping its application domain
and the used techniques are covered here. This
work identified research in the field since its evo-
lution in the year 1976. The results of this SLR
show that there is a significant research gap in
the area of SBMT. Despite the fact that the re-
search has been conducted in this area for more
than 40 years, only 18 studies were segregated
as primary studies out of 43 relevant studies. In
addition to this, the problems in the area are still
prevalent and not much work has been carried
out to resolve them. Few techniques applied in
the area of SBMT have been applied and tested
on small programs and thus may not be scal-
able to the industrial needs and real software.
Researchers worked independently rather than
working collaboratively towards the elimination
of open problems in the area. As a result, a lot of
research can be carried out in the area including
the work on the feasibility analysis of SBMT, ap-
plying SBMT to other programming languages,
effective approaches for test data generation us-
ing SBMT, complexity analysis of approaches
used in SBMT and reduction in the overall cost
of SBMT.

References

[1] G.J. Myers, C. Sandler, and T. Badgett, The art
of software testing. John Wiley & Sons, 2011.

[2] J. Edvardsson, “A survey on automatic test
data generation,” in Proceedings of the 2nd Con-

ference on Computer Science and Engineering,
1999, pp. 21-28.

[3] M. Prasanna, S. Sivanandam, R. Venkatesan,
and R. Sundarrajan, “A survey on automatic
test case generation,” Academic Open Inter-
net Journal, Vol. 15, 2005. [Online]. http:
//www.acadjournal.com/2005/v15/part6/p4/

[4] H. Tahbildar and B. Kalita, “Automated soft-
ware test data generation: Direction of research,”
International Journal of Computer Science and
Engineering Survey, Vol. 2, No. 1, 2011, pp.
99-120.

[5] S. Anand, E.K. Burke, T.Y. Chen, J. Clark,
M.B. Cohen, W. Grieskamp, M. Harman, M.J.
Harrold, P. McMinn et al., “An orchestrated
survey of methodologies for automated software
test case generation,” Journal of Systems and
Software, Vol. 86, No. 8, 2013, pp. 1978-2001.

[6] C.A.C. Coello, “A comprehensive survey of
evolutionary-based multiobjective optimization
techniques,” Knowledge and Information sys-
tems, Vol. 1, No. 3, 1999, pp. 269-308.

[7] P. McMinn, “Search-based software test data
generation: A survey,” Software Testing Verifi-
cation and Reliability, Vol. 14, No. 2, 2004, pp.
105-156.

[8] P. McMinn, “Search-based software testing: Past,
present and future,” in IEFE Fourth Interna-
tional Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW). IEEE,
2011, pp. 153-163.

[9] L. Bottaci, “A genetic algorithm fitness func-
tion for mutation testing,” in Proceedings of the
SEMINALL-workshop at the 23rd International
Conference on Software Engineering, Toronto,
Canada, 2001.

[10] M. Papadakis and N. Malevris, “Searching and
generating test inputs for mutation testing,”
SpringerPlus, Vol. 2, No. 1, 2013.

[11] F. Souza, M. Papadakis, V.H. Durelli, and M.E.
Delamaro, “Test data generation techniques for
mutation testing: A systematic mapping,” Pro-
ceedings of the 11th ESELAW, 2014, pp. 1-14.

[12] Y. Jia and M. Harman, “An analysis and survey
of the development of mutation testing,” IFEFE
Transactions on Software Engineering, Vol. 37,
No. 5, 2011, pp. 649-678.

[13] N. Jatana, S. Rani, and B. Suri, “State of art in
the field of search-based mutation testing,” in
4th International Conference on Reliability, In-
focom Technologies and Optimization (ICRITO)
(Trends and Future Directions). IEEE, 2015, pp.
1-6.

[14] R.A. Silva, S. do Rocio Senger de Souza, and
P.S.L. de Souza, “A systematic review on search

Systematic Literature Review on Search Based Mutation Testing

73

[15]

[16]

[17]

[22]

[23]

based mutation testing,” Information and Soft-
ware Technology, 2016.

C. Wohlin, “Guidelines for snowballing in sys-
tematic literature studies and a replication in
software engineering,” in Proceedings of the 18th
International Conference on Fvaluation and As-
sessment in Software Engineering. ACM, 2014,
p- 38.

P. Cronin, F. Ryan, and M. Coughlan, “Un-
dertaking a literature review: A step-by-step
approach,” British Journal of Nursing, Vol. 17,
No. 1, 2008, p. 38.

K. Petersen, R. Feldt, S. Mujtaba, and M. Matts-
son, “Systematic mapping studies in software
engineering,” in 12th International Conference
on FEvaluation and Assessment in Software
Engineering, G. Visaggio, M.T. Baldassarre,
S. Linkman, and M. Turner, Eds., 2008, pp.
68-77.

B. Kitchenham, “Procedures for performing
systematic reviews,” Keele University, Keele
University, Keele, Staffs, UK, Joint Technical
Report TR/SE-0401, 2004. [Online]. http:
/ /csnotes.upm.edu.my /kelasmaya/pgkm20910.
nsf/0/715071a8011d4c2{482577a700386d3a/
$FILE,/10.1.1.122.3308[1].pdf

M.J. Grant and A. Booth, “A typology of re-
views: An analysis of 14 review types and associ-
ated methodologies,” Health Information and Li-
braries Journal, Vol. 26, No. 2, 2009, pp. 91-108.
B. Kitchenham and S. Charters, “Guidelines for
performing systematic literature reviews in soft-
ware engineering,” Keele University & Univer-
sity of Durham, EBSE Technical Report EBSE
2007-01, 2007.

W. Orzeszyna, L. Madeyski, and
R. Torkar, Protocol for a systematic
literature review of methods dealing
with equivalent mutant problem. [Online].

http://madeyski.e-informatyka.pl/download/
slr/EquivalentMutantsSLRProtocol.pdf

L. Madeyski, W. Orzeszyna, R. Torkar, and
M. Jozala, “Overcoming the equivalent mutant
problem: A systematic literature review and
a comparative experiment of second order mu-
tation,” IEEE Transactions on Software Engi-
neering, Vol. 40, No. 1, 2014, pp. 23—42.

B. Baudry, V. Le Hanh, J.M. Jézéquel, and
Y. Le Traon, “Trustable components: Yet an-
other mutation-based approach,” in Mutation
testing for the new century. Springer, 2001, pp.
47-54.

B. Baudry, F. Fleurey, J.M. Jézéquel, and
Y. Le Traon, “Genes and bacteria for automatic

[25]

[26]

[27]

[32]

[34]

test cases optimization in the .NET environ-
ment,” in 13th International Symposium on Soft-
ware Reliability Engineering. IEEE, 2002, pp.
195-206.

P. May, K. Mander, and J. Timmis, “Soft-
ware vaccination: An artificial immune sys-
tem approach to mutation testing,” in Interna-
tional Conference on Artificial Immune Systems.
Springer, 2003, pp. 81-92.

M.C.F. Emer and S.R. Vergilio, “Selection and
evaluation of test data based on genetic program-
ming,” Software Quality Journal, Vol. 11, No. 2,
2003, pp. 167-186.

K. Adamopoulos, M. Harman, and R.M. Hi-
erons, “How to overcome the equivalent mutant
problem and achieve tailored selective mutation
using co-evolution,” in Genetic and evolution-
ary computation conference. Springer, 2004, pp.
1338-1349.

M. Masud, A. Nayak, M. Zaman, and N. Bansal,
“Strategy for mutation testing using genetic al-
gorithms,” in Canadian Conference on Electri-
cal and Computer Engineering. IEEE, 2005, pp.
1049-1052.

K. Ayari, S. Bouktif, and G. Antoniol, “Auto-
matic mutation test input data generation via
ant colony,” in Proceedings of the 9th annual
conference on Genetic and evolutionary compu-
tation. ACM, 2007, pp. 1074-1081.

Y. Jia and M. Harman, “Constructing sub-
tle faults using higher order mutation testing,”
in Eighth IEEE International Working Confer-
ence on Source Code Analysis and Manipulation.
IEEE, 2008, pp. 249-258.

K. Mishra, S. Tiwari, A. Kumar, and A. Misra,
“An approach for mutation testing using elitist
genetic algorithm,” in 8rd IEEE International
Conference on Computer Science and Informa-
tion Technology (ICCSIT), Vol. 5. IEEE, 2010,
pp. 426-429.

B. Schwarz, D. Schuler, and A. Zeller, “Breed-
ing high-impact mutations,” in IEEE Fourth
International Conference on Software Testing,
Verification and Validation Workshops (ICSTW).
IEEE, 2011, pp. 382-387.

M. Harman, Y. Jia, and W.B. Langdon, “Strong
higher order mutation-based test data genera-
tion,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference
on Foundations of Software Engineering. ACM,
2011, pp. 212-222.

J.J. Dominguez-Jiménez, A. Estero-Botaro,
A. Garcia-Dominguez, and I. Medina-Bulo, “Evo-
lutionary mutation testing,” Information and

74

Nishtha Jatana, Bharti Suri, Shweta Rani

[37]

[44]

[45]

Software Technology, Vol. 53, No. 10, 2011, pp.
1108-1123.

G. Fraser and A. Zeller, “Mutation-driven gen-
eration of unit tests and oracles,” IEEE Trans-
actions on Software Engineering, Vol. 38, No. 2,
2012, pp. 278-292.

A.A.L. de Oliveira, C.G. Camilo-Junior, and
A .M. Vincenzi, “A coevolutionary algorithm to
automatic test case selection and mutant in mu-
tation testing,” in IEEE Congress on Fvolution-
ary Computation. IEEE, 2013, pp. 829-836.
M.B. Bashir and A. Nadeem, “A fitness
function for evolutionary mutation testing of
object-oriented programs,” in 9th International
Conference on Emerging Technologies (ICET).
IEEE, 2013, pp. 1-6.

P.S. Yiasemis and A.S. Andreou, “Locating and
correcting software faults in executable code
slices via evolutionary mutation testing,” in In-
ternational Conference on Enterprise Informa-
tion Systems. Springer, 2012, pp. 207-227.

E. Omar, S. Ghosh, and D. Whitley, “Comparing
search techniques for finding subtle higher order
mutants,” in Proceedings of the Annual Confer-
ence on Genetic and Evolutionary Computation.
ACM, 2014, pp. 1271-1278.

E. Omar, S. Ghosh, and D. Whitley, “Construct-
ing subtle higher order mutants for Java and
Aspect] programs,” in IEEE 24th International
Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2013, pp. 340-349.

Y.M.B. Ali and F. Benmaiza, “Generating test
case for object-oriented software using genetic
algorithm and mutation testing method,” Inter-
national Journal of Applied Metaheuristic Com-
puting (IJAMC), Vol. 3, No. 1, 2012, pp. 15-23.
A.S. Banzi, T. Nobre, G.B. Pinheiro, J.C.G.
Arias, A. Pozo, and S.R. Vergilio, “Selecting mu-
tation operators with a multiobjective approach,”
Expert Systems with Applications, Vol. 39, No. 15,
2012, pp. 12131-12142.

B. Baudry, V. Le Hanh, J.M. Jézéquel, and
Y. Le Traon, “Building trust into oo components
using a genetic analogy,” in 11th International
Symposium on Software Reliability Engineering.
IEEE, 2000, pp. 4-14.

S. Subramanian and R. Natarajan, “A tool for
generation and minimization of test suite by
mutant gene algorithm,” Journal of Computer
Sciences, Vol. 7, No. 10, 2011, pp. 1581-1589.
K.T. Le Thi My Hanh and N.T.B. Tung,
“Mutation-based test data generation for
simulink models using genetic algorithm and
simulated annealing,” International Journal of

[46]

[47]

[48]

[49]

[54]

Computer and Information Technology, Vol. 3,
No. 04, 2014, pp. 763-771.

N.T. Binh, K.T. Tung et al., “A novel test
data generation approach based upon mutation
testing by using artificial immune system for
Simulink models,” in Knowledge and Systems
Engineering. Springer, 2015, pp. 169-181.
L.T.M. Hanh, N.T. Binh, and K.T. Tung,
“Applying the meta-heuristic algorithms for
mutation-based test data generation for Simulink
models,” in Proceedings of the Fifth Symposium
on Information and Communication Technology.
ACM, 2014, pp. 102-109.

B.N. Thanh and T.K. Thanh, “Survey on
mutation-based test data generation,” Interna-
tional Journal of Electrical and Computer Engi-
neering, Vol. 5, No. 5, 2015.

M. Patrick, “Metaheuristic optimisation and
mutation-driven test data generation,” in Com-
putational Intelligence and Quantitative Soft-
ware Engineering. Springer, 2016, pp. 89-115.
F. Popentiu-Vladicescu and G. Albeanu,
“Nature-inspired approaches in software faults
identification and debugging,” Procedia Com-
puter Science, Vol. 92, 2016, pp. 6-12.

M. Dave and R. Agrawal, “Search based tech-
niques and mutation analysis in automatic test
case generation: A survey,” in IEEFE Interna-
tional Advance Computing Conference (IACC).
IEEE, 2015, pp. 795-799.

Y. Jia, F. Wu, M. Harman, and J. Krinke, “Ge-
netic improvement using higher order mutation,”
in Proceedings of the Companion Publication of
the Annual Conference on Genetic and FEvolu-
tionary Computation. ACM, 2015, pp. 803-804.
Q.V. Nguyen and L. Madeyski, “Searching for
strongly subsuming higher order mutants by ap-
plying multi-objective optimization algorithm,”
in Advanced Computational Methods for Knowl-
edge Engineering. Springer, 2015, pp. 391-402.
Q.V. Nguyen and L. Madeyski, “Higher order
mutation testing to drive development of new
test cases: An empirical comparison of three
strategies,” in Asian Conference on Intelligent
Information and Database Systems. Springer,
2016, pp. 235—244.

Q.V. Nguyen and L. Madeyski, “Empirical eval-
uation of multiobjective optimization algorithms
searching for higher order mutants,” Cybernetics
and Systems, 2016.

F. Wu, M. Harman, Y. Jia, and J. Krinke,
“HOMI: Searching higher order mutants for soft-
ware improvement,” in International Symposium

Systematic Literature Review on Search Based Mutation Testing

75

[61]

[64]

[65]

on Search Based Software Engineering. Springer,
2016, pp. 18-33.

A. Estero-Botaro, A. Garcia-Dominguez, J.J.
Dominguez-Jiménez, F. Palomo-Lozano, and
I. Medina-Bulo, “A framework for genetic
test-case generation for WS-BPEL compositions,’
in Testing Software and Systems, ser. Lecture
Notes in Computer Science, vol 8763, M. Merayo
and E. de Oca, Eds. Berlin, Heidelberg: Springer,
2014, pp. 1-16.

C.P. Rao and P. Govindarajulu, “Genetic algo-
rithm for automatic generation of representative
test suite for mutation testing,” International
Journal of Computer Science and Network Secu-
rity (IJCSNS), Vol. 15, No. 2, 2015, p. 11.

S. Rani and B. Suri, “An approach for test data
generation based on genetic algorithm and delete
mutation operators,” in Second International
Conference on Advances in Computing and Com-
munication Engineering (ICACCE). IEEE, 2015,
pp. 714-T18.

F.C.M. Souza, M. Papadakis, Y. Le Traon, and
M.E. Delamaro, “Strong mutation-based test
data generation using hill climbing,” in Pro-
ceedings of the 9th International Workshop on
Search-Based Software Testing. ACM, 2016, pp.
45-54.

N. Jatana, B. Suri, S. Misra, P. Kumar, and A.R.
Choudhury, “Particle swarm based evolution and
generation of test data using mutation testing,”
in International Conference on Computational
Science and its Applications. Springer, 2016, pp.
585-594.

N.T. Binh, K.T. Tung et al., “A novel fitness
function of metaheuristic algorithms for test data
generation for Simulink models based on muta-
tion analysis,” Journal of Systems and Software,
Vol. 120, 2016, pp. 17-30.

N. Jatana, B. Suri, P. Kumar, and B. Wadhwa,
“Test suite reduction by mutation testing mapped
to set cover problem,” in Proceedings of the Sec-
ond International Conference on Information
and Communication Technology for Competitive
Strategies. ACM, 2016, p. 36.

P. McMinn, M. Harman, K. Lakhotia, Y. Has-
soun, and J. Wegener, “Input domain reduction
through irrelevant variable removal and its effect
on local, global, and hybrid search-based struc-
tural test data generation,” IEEE Transactions
on Software Engineering, Vol. 38, No. 2, 2012,
pp. 453-477.

M. Dorigo and G.D. Caro, “New ideas in op-
timization,” D. Corne, M. Dorigo, F. Glover,
D. Dasgupta, P. Moscato, R. Poli, and K.V.

)

[67]

[68]

[75]

Price, Eds. McGraw-Hill Ltd., 1999, ch. The ant
colony optimization meta-heuristic, pp. 11-32.
M. Dorigo, G. Di Caro, and L.M. Gambardella,
“Ant algorithms for discrete optimization,” Arti-
ficial life, Vol. 5, No. 2, 1999, pp. 137-172.

M. Dorigo, “Optimization, learning and natural
algorithms,” Ph.D. dissertation, Politecnico di
Milano, 1992.

T. Stiitzle, M. Lépez-Ibanez, and M. Dorigo, “A
concise overview of applications of ant colony
optimization,” Wiley Encyclopedia of Operations
Research and Management Science, 2011.

B. Suri and S. Singhal, “Literature survey of
ant colony optimization in software testing,” in
CSI Sixth International Conference on Software
Engineering (CONSEG). IEEE, 2012, pp. 1-7.
A.S. Fraser, “Simulation of genetic systems by
automatic digital computers VI. Epistasis,” Aus-
tralian Journal of Biological Sciences, Vol. 13,
No. 2, 1960, pp. 150-162.

H.J. Bremermann, The evolution of intelligence:
The nervous system as a model of its environ-
ment. University of Washington, Department of
Mathematics, 1958.

J.H. Holland, Adaptation in natural and artificial
systems: an introductory analysis with applica-
tions to biology, control, and artificial intelli-
gence. U Michigan Press, 1975.

C. Sharma, S. Sabharwal, and R. Sibal,
“A survey on software testing techniques using
genetic algorithm,” CoRR, 2014. [Online].
https://arxiv.org/abs/1411.1154

E. Omar and S. Ghosh, “An exploratory study of
higher order mutation testing in aspect-oriented
programming,” in IEEE 23rd International
Symposium on Software Reliability Engineering.
IEEE, 2012, pp. 1-10.

B. Baudry, F. Fleurey, J.M. Jézéquel, and
Y. Le Traon, “Automatic test case optimization
using a bacteriological adaptation model: Ap-
plication to .NET components,” in 17th IEEFE
International Conference on Automated Software
Engineering. IEEE, 2002, pp. 253-256.

B. Baudry, F. Fleurey, J.M. Jézéquel, and
Y. Le Traon, “From genetic to bacteriological
algorithms for mutation-based testing,” Soft-
ware Testing, Verification and Reliability, Vol. 15,
No. 2, 2005, pp. 73-96.

P. May, J. Timmis, and K. Mander, “Immune
and evolutionary approaches to software muta-
tion testing,” in Artificial Immune Systems, ser.
Lecture Notes in Computer Science, vol 4628,
L. de Castro, F. Von Zuben, and H. Knidel, Eds.
Berlin, Heidelberg: Springer, 2007, pp. 336-347.

76

Nishtha Jatana, Bharti Suri, Shweta Rani

(78]

P. May, K. Mander, and J. Timmis, “Mutation
testing: An artificial immune system approach,”
in UK-Softest. UK Software Testing Workshop.
Citeseer, 2003.

M. Papadakis and N. Malevris, “Automati-
cally performing weak mutation with the aid
of symbolic execution, concolic testing and
search-based testing,” Software Quality Journal,
Vol. 19, No. 4, 2011, pp. 691-723.

Y. Jia and M. Harman, “Higher order mutation
testing,” Information and Software Technology,
Vol. 51, No. 10, 2009, pp. 1379-1393.

Y. Jia, “Higher order mutation testing,” Ph.D.
dissertation, University College London, 2013.

[82]

[83]

[Online]. http://discovery.ucl.ac.uk/1401264/1/
YuePhDFinal2013.pdf

Q.V. Nguyen and L. Madeyski, “Problems of mu-
tation testing and higher order mutation testing,”
in Advanced computational methods for knowl-
edge engineering. Springer, 2014, pp. 157-172.
M. Harman, Y. Jia, and Y. Zhang, “Achieve-
ments, open problems and challenges for search
based software testing,” in IEEFE 8th Interna-
tional Conference on Software Testing, Verifi-
cation and Validation (ICST). IEEE, 2015, pp.
1-12.

e-Informatica Software Engineering Journal, Volume 11, Issue 1, 2017, pages: 77-102, DOI 10.5277/e-Inf170104

Efficiency of Software Testing Techniques:
A Controlled Experiment Replication and
Network Meta-analysis

mar S. Gomez aren Cortés-Verdin ésar J. Pardo
O S. G * K Cortés-Verdin**, C J. Pardo***

*Facultad de Informdtica y Electronica, Fscuela Superior Politécnica de Chimborazo
** Facultad de Estadistica e Informdtica, Universidad Veracruzana
*** Electronic and Telecommunications Engineering Faculty, Information Technology Research Group (GTI),
Universidad del Cauca

ogomez@espoch.edu.ec, kcortes@uv.mx, cpardo@unicauca.edu.co

Abstract

Background. Common approaches to software verification include static testing techniques,
such as code reading, and dynamic testing techniques, such as black-box and white-box testing.
Objective. With the aim of gaining a better understanding of software testing techniques,
a controlled experiment replication and the synthesis of previous experiments which examine the
efficiency of code reading, black-box and white-box testing techniques were conducted. Method.
The replication reported here is composed of four experiments in which instrumented programs were
used. Participants randomly applied one of the techniques to one of the instrumented programs.
The outcomes were synthesized with seven experiments using the method of network meta-analysis
(NMA). Results. No significant differences in the efficiency of the techniques were observed.
However, it was discovered the instrumented programs had a significant effect on the efficiency. The
NMA results suggest that the black-box and white-box techniques behave alike; and the efficiency
of code reading seems to be sensitive to other factors. Conclusion. Taking into account these
findings, the Authors suggest that prior to carrying out software verification activities, software
engineers should have a clear understanding of the software product to be verified; they can apply
either black-box or white-box testing techniques as they yield similar defect detection rates.

Keywords: software verification, software testing, controlled experiment, experiment
replication, meta-analysis, network meta-analysis, quantitative synthesis

1. Introduction

Currently, due to the increase in both the size
and complexity of software products, verification
plays an important role in the software prod-
uct development (or maintenance) process. The
aim of software verification is to enssure that
a software product fully satisfies all the require-
ments defined by the customer. It typically in-
cludes such activities as code executions, reviews,
walkthroughs and inspections of the artifacts
produced in the development or maintenance
process.

Software verification is performed at different
phases of the software development (or main-

tenance) process by following two approaches:
reviewing or inspecting artifacts, such as docu-
ments and a source code (static approach) or an
executing code (dynamic approach).

In the software construction phase, common
techniques used in software verification include
code reading (static approach), black-box and
white-box testing (dynamic approach), and var-
ious other techniques, such as regression test-
ing [1].

With the aim of gaining a better understand-
ing of various software testing techniques applied
during the software construction phase, in this
work, the authors pursue two goals: 1) running
a controlled experiment replication on the effi-

78

Omar S. Gémez, Karen Cortés-Verdin, César J. Pardo

ciency of testing techniques expressed in terms of
the number of defects detected per hour by each
of the techniques: code reading, black-box and
white-box (this carried out through the applica-
tion of an experimental paradigm [2—-4]), and 2)
carrying out a synthesis of existing experiments
which also address the efficiency of the related
testing techniques.

Our replication is the extension of previous
experiments reported in [5-12], where the effec-
tiveness of the aforementioned software testing
techniques was the main issue examined. In these
experiments, the effectiveness was measured ei-
ther as the percentage or as the number of defects
observed in these testing techniques. Complemen-
tary to effectiveness, efficiency is another aspect
that deserves attention. Due to the limitations
of time and resources it is often raised in the
software verification phase, it is worth consider-
ing which of the testing techniques behave in an
optimal way (e.g. the fastest technique detecting
defects). The authors have found some controlled
experiments that also address the efficiency of
the testing techniques [5-8,11].

In order to corroborate the previous findings
and also generate new knowledge with regard to
the study of software testing techniques efficiency,
this work reports the findings of a controlled ex-
periment replication that examines efficiency in
terms of the number of defects detected per hour
of the following testing techniques: code reading,
black-box and white-box testing. The replication
results are then incorporated to existing related
experiments following a quantitative synthesis
approach. According to [13], this experiment can
be considered as a conceptual replication of the
original experiment reported in [5], only the con-
structs are maintained; these are the three testing
techniques (causal constructs) and the efficiency
(effect construct).

In science, replication is a key mechanism
which allows for the verification of previous find-
ings and for the consolidation of the body of
knowledge [14,15]. Replication is still a pending
issue to be addressed in Software Engineering,
since there is evidence showing a minimal amount
of controlled experiments that have been repli-
cated [16,17]. If an experiment is not replicated

or verified, there is no way to distinguish whether
its outcome was produced by chance, artificially
or it conforms to a reality. The results of this
replication serve as a mechanism for verification,
and they also contribute to the consolidation of
the body of knowledge in the software verification
research area. Although a number of experiments
related to our replication have been conducted, it
is worth to note that increasing the number of re-
lated experiments (experiments family) will allow
other researchers to apply quantitative synthesis
methods in a more confident way, the synthe-
sis outcome will be strengthened by the pooled
samples sizes of the related experiments.

The rest of the document is organized as
follows. In Section 2, the related work is pre-
sented. In Section 3, the baseline experiment of
the presented replication is described. In Sec-
tion 4, the studied software testing techniques
are studied. Sections 5 presents the context of
our experiment replication. In Section 6,there is
the statistics used for analysis and the results
obtained. In Section 7, a quantitative synthesis
using the obtained results and the results from
related experiments is carried out. In Section 8§,
the findings are discussed and finally in Section 9
the conclusions are presented.

2. Related work

This section presents the summary of the em-
pirical studies (family or series of experiments)
related to the experiment replication reported
here. The authors considered the controlled ex-
periment reported in [5] as the baseline for their
experiments. The aim of this experiment is to
examine the effectiveness, efficiency and cost
of three software testing techniques: black-box
by equivalence class partitioning and boundary
value analysis, white-box by sentence coverage
and code reading by stepwise abstraction.

The authors of [5] carried out two replications
of their experiment. Years later, the authors
of [6, 7] performed the other two replications.
A few years later, the authors in [8] conducted
another replication. The authors of [9,10] also
carried out several replications. Recently, the au-

Efficiency of Software Testing Techniques: A Controlled Experiment Replication and Network Meta-analysis 79

thors of [11] and [12] replicated the experiment
as well.

Note that these replications do not take as
reference the same baseline experiment. For ex-
ample, the second and third replication reported
in [5] takes as baseline their first experiment. The
experiment reported in [6,7] is the replication
of [5]. In the case of the experiment reported
in [8], the authors used the experiment repli-
cation package of [6, 7], thus considering this
experiment the replication of [6,7]. Experiments
of the authors of [9,10] are based on the repli-
cation packages of [6,7] and [8]. With regard
to the experiment in [11], it is related to the
replication package of [6,7]. In the case of the
experiment reported in [12], the authors adapted
the replication package of [9,10]. Table 1 presents
some characteristics of these experiments.

2.1. Constructs and operationalizations
studied

2.1.1. Cause constructs and operationalizations

The cause constructs examined in these experi-
ments are: the black-box [5-12], white-box [5-12]
and code reading [5-11] techniques. Regarding
black-box, it was operationalized either as equiv-
alence class partitioning and boundary value
analysis [5-8,11] or as equivalence class parti-
tioning [9,10,12]. Concerning white-box, it was
operationalized either as sentence coverage [5]
or as branch coverage [6-12]. In the case of code
reading, in all the experiments [5-12] it was op-
erationalized by the use of stepwise abstractions
approach [18]. Secondary cause constructs, also
examined, are the instrumented program (soft-
ware type) [5-12], the participant expertise [5],
the defect type [9,10] and the version of the
instrumented programs [9,10].

2.1.2. Effect constructs and operationalizations

The effect constructs examined in these experi-
ments are: effectivenesses [5-12], efficiency [5-8,
11], fault visibility [9] and cost [5-7,11].

The effectiveness construct was operational-
ized as the number of observed defects [5,8], the

percentage of observed defects [5-7,11,12], the
number of observable defects [5], the percentage
of observable defects [5,12], the percentage of
participants who detect a given defect for each
defect in the instrumented program [9,10], the
percentage of participants that are able to gener-
ate a test case that uncovers the failure associated
with a given defect [9,10], the number of isolated
defects [8], and the percentage of isolated defects
[6,7,11]. Efficiency was operationalized as the
number of defects detected per hour (detection
rate) [5-8,11], and as the number of defects iso-
lated per hour (isolation rate) [6,7]. Finally cost
was operationalized as the time spent applying
the testing techniques [5-7,11], defect isolation
time [6,7,11], cpu-time [5], connect time [5] and
number of programs runs [5].

2.2. Findings

In this section some relevant findings of these
experiments are presented. These findings are
organized according to the different effect con-
structs examined.

2.2.1. Effectiveness

Number of observed defects (operational-
ization 01.1). For the umd82 experiment [5],
either code reading or black-box were signifi-
cantly more effective than white-box. Concerning
umd83 experiment [5], no significant differences
were observed between the three testing tech-
niques. In the case of umd84 [5], code reading
was significantly more effective than black-box
and white-box, also black-box was significantly
more effective than white-box. In the case of
u0s97 [8], the authors observed a significant dif-
ference in the effectiveness of the techniques,
however, it is not described which of the pairwise
techniques was significantly different. It seems
that black-box and white-box behave in a similar
way and that these techniques are more effective
than code reading. With regard to the studied
secondary factors and interaction effects:
— Software type (instrumented programs). The
effectiveness of the techniques (measured as
the number of observed defects) was signifi-

80

Omar S. Gémez, Karen Cortés-Verdin, César J. Pardo

Table 1. Characteristics of the aforementioned family of experiments

Experiment Participants Programs and number of defects Language Country
umds82 [5] CS (under)graduates pl(9), p2(6), p3(7) Simplt USA
umds83 [5] CS (under)graduates pl(9), p2(6), p4(12) Simplt USA
umd84 [5] Professionals p1(9), p3(7), p4(12) Fortran ~ USA
ukl94 [6, 7] CS undergraduates nt(11), cm(14) na(11) C Germany
ukl95 [6,7] CS undergraduates nt(6), cm(9), na(7) C Germany
uos97 [8] CS undergraduates nt(8), cm(9), na(8) C UK
upm00 [9] CS undergraduates nt(9), cm(9), na(9), tr(9) C Spain
upmO1 [9,10] CS undergraduates nt(7), cm(7), na(7) C Spain
upmo02 [10] CS undergraduates nt(7), cm(7), na(7) C Spain
upmo03 [10] CS undergraduates nt(7), cm(7), na(7) C Spain
upm04 [10] CS undergraduates nt(7), cm(7), na(7) C Spain
upm05 [10] CS undergraduates nt(7), cm(7), na(7) C Spain
uds05 [10] CS undergraduates nt(7), cm(7), na(7) C Spain
upv05 [10] CS undergraduates nt(7), cm(7), na(7) C Spain
ort05 [10] CS undergraduates cm(7), na(7) C Uruguay
uok11 [11] CS graduates nt(8), cm(9), na(8) C India
uadyl13 [12] CS undergraduates nt(7), cm(7) C Mexico

cantly affected by the instrumented programs
used in umd84 [5] and uos97 [8]. On the other
hand, the effectiveness is not affected by soft-
ware type in umd82 and umd83 [5].

— Expertise. The effectiveness (in terms of the
number of observed defects) was significantly
affected by the expertise, advanced expertise
participants detected more defects than either
intermediates or juniors (umd84 [5]).

— Interaction effects. In umd83 [5] and uos97 [§],
the authors report a significant interaction
effect between the testing techniques and the
instrumented programs. A three-way interac-
tion between techniques, programs and ex-
pertise was observed in umd84 [5].

Percentage of observed defects (01.2). Ei-

ther code reading or black-box were significantly

more effective than white-box (in umd82 [5]).

Code reading was significantly more effective

than black-box and white-box, and also black-box

was significantly more effective than white-box

(in umd84 [5]). There are no significant differ-

ences between the testing techniques (umd83 [5],

ukl94, ukl95 [6,7], uokll [11] and uadyl3 [12]).

In the case of secondary factors and interaction

effects:

— Software type. The effectiveness of the tech-
niques (measured as the percentage of ob-
served defects) was significantly affected by

the instrumented programs in umd82, umd83,
umd84 [5], ukl94 [6,7] and uokl11 [11].

— Expertise. The effectiveness significantly
varies with regard to the level of expertise
(in umd84 [5]). The percentage of observed
defects was significantly higher for the par-
ticipants with advanced expertise, this differ-
ence is significant only with respect to juniors.
There were not significant differences between
intermediates and juniors in umd82, umd83,
umd84 [5].

— Interaction effects. In umd83 [5] an interac-
tion effect between the testing techniques
and the instrumented programs was observed.
A three-way interaction between techniques,
programs and expertise was observed in
umd84 [5].

Number of observable defects (01.3). In the

case of umd82 [5], the number of observable de-

fects was significantly higher for black-box (in
comparison to white-box). Significant differences

were not found in umd84 [5].

Percentage of observable defects (01.4).

The percentage of observable defects is signif-

icantly higher for black-box than for white-box

in umd82 [5]. Significant differences were not

found in umd84 [5] and uady13 [12].

Percentage of participants who detect

a given defect for each defect in the instru-

Efficiency of Software Testing Techniques: A Controlled Experiment Replication and Network Meta-analysis 81

mented program (01.5). The effectiveness is
affected by the testing techniques. Code reading
is significantly less effective than black-box and
white-box, and black-box and white-box behave
in a similar way (upmOO0 [9], upmO1, upm02,
upm03, upm04, upm05 and uds05 [10]). Concern-
ing secondary factors and interaction effects:

— Software type. The effectiveness of the tech-
niques was significantly affected by the in-
strumented programs in upmo00 [9].

— Defect type. In upm00 [9], the effectiveness
of the techniques was significantly affected by
the defect types injected in the instrumented
programs.

— Interaction effects. In upm00 [9] an interac-
tion effect between the testing techniques
and the instrumented programs was observed.
Also an interaction effect between the instru-
mented programs and the defect types was
observed.

Percentage of participants that are able to

generate a test case that uncovers the fail-

ure associated with a given defect (01.6).

The effectiveness did not impact black-box

and white-box (upm01, upm02, upm03, upm04,

upm05, uds05 and upv05 [9, 10]). Black-box
is significantly more effective than white-box

(ort05 [10]). In the case of secondary factors and

interaction effects:

— Software type. The effectiveness of the tech-
niques was significantly affected by the instru-
mented programs in upmO01, upm05, uds05,
upv05 and ort05 [10].

— Defect type. In upm04, uds05, upv05 and
ort05 [10], the effectiveness of the techniques
was significantly affected by the defect types
injected in the instrumented programs.

— Program version. The version of the instru-
mented programs was not affected in upmO1,
upm02, upm03, upm04, upm05, uds05, upv05
and ort05 [10].

— Interaction effects. In upm00, upm0O1, upm02,
upm03, upm04, upm05, upv05 and ort05 [9,
10] an interaction effect between the testing
techniques and the instrumented programs
was observed. An interaction effect between
the instrumented programs and the defect
types was observed in upmO0, upm02, upm04,

upm05, uds05, upv05 and ort05 [9,10]. An in-
teraction effect between techniques and defect
types was observed in upmO1, upm03, upm05
and uds05 [10]. An interaction effect between
program version and defect types was ob-
served in upm03, upv05 [10]. Another inter-
action effect between the technique and the
program version was observed in uds05 and
upv05 [10]. Three-way interactions between
instrumented programs, techniques and de-
fect types, and also between instrumented
programs, program versions and defect types

were observed in ort05 [10].

Number of isolated defects (0l.7). Al-

though some information about this is presented

in 1os97 [8] neither descriptive nor inferential
analysis is discussed.

Percentage of isolated defects (01.8). The

effectiveness of the testing techniques behaves

in a similar way (ukl94 [6,7] and uokll [11]).

The percentage of isolated defects is significantly

affected by the testing techniques in ukl95 [6, 7],

although a post-hoc is missing, it seems that

black-box and code reading show better effective-
ness than white-box. The findings for secondary
factors and interaction effects are:

— Software type. The effectiveness of the tech-
niques was significantly affected by the in-
strumented programs (in ukl94 [6, 7] and
uokl11 [11]).

— Technique application order (sequence). The
effectiveness of the techniques is significantly
affected by the order in which techniques are
applied (in ukl94 [6,7]).

Summarizing. It can be observed that the
effectiveness construct has the greatest number
of operationalizations. It was operationalized in
several ways. It can also be seen that secondary
factors such as instrumented programs and exper-
tise may have an impact on the techniques effec-
tiveness. It is not so clear which of the techniques
is more effective due to contradictory findings.

2.2.2. Efficiency
Defects detected per hour (02.1). The three

testing techniques showed similar defect detec-
tion rates in umd82, umd83 [5] and uok11 [11].

82

Omar S. Gémez, Karen Cortés-Verdin, César J. Pardo

Code reading showed the higher defect detec-
tion rate in comparison to either black-box or
white-box (umd84 [5]), this difference was signi-
ficant. The authors of ukl94 and ukl95 experi-
ments [6,7] report a significant difference between
the techniques, however, a post-hoc analysis did
not show the pairwise significant differences, it
seems that black-box shows the higher defect de-
tection rate. In the case of u0os97 [8], the authors
did not report the inferential statistics for this
metric, however, black-box seems to yield the
higher defect detection rate, white-box appears
to be the second most efficient technique. The
findings from secondary factors and interaction
effects are:

— Software type. The efficiency of the tech-
niques (measured as the number of defects
detected per hour) was significantly affected
by the instrumented programs in umdS82,
umd84 [5] and uokl1l [11].

— Expertise. The efficiency did not vary with
regard to the level of expertise (umd83,
umd84 [5]). Intermediate participants de-
tected defects at a significantly faster rate
than juniors did (umd82 [5]).

— Technique application order (sequence). The
efficiency of the techniques is significantly af-
fected by the order in which they are applied
(in ukl95 [6,7]).

— Interaction effects. A two-way interaction be-
tween techniques and instrumented programs
was observed in umd84 [5].

Defects isolated per hour (02.2). The three
techniques behave in a similar way (ukl94 [6,7]).
However, in the case of ukl95 [6,7] and uok11 [11],
the defect isolation rate is significantly affected
by the techniques, although a post-hoc analysis
is missing, in ukl95 [6,7] it seems that black-box
shows a higher defect isolation rate. In the case of
uok11 [11] it seems that white-box and black-box
show higher defect isolation rates than code read-
ing. With regard to secondary factors:

— Technique application order (sequence). The
defect isolation rate is significantly affected
by the order in which techniques are applied
(ukl9o4 [6,7]).

Summarizing. Similar findings can be ob-
served for the efficiency construct, secondary fac-

tors, such as instrumented programs, expertise
and the technique application order, may have
an impact on the techniques efficiency. At first
sight, it is hard to conclude which of the tech-
niques is more efficient due to some contradictory
findings.

2.2.3. Cost

Time spent applying the testing tech-
niques (03.1). The time spent applying the
three testing techniques is similar (in umd83,
umd84 [5] and uokl11 [11]). Applying white-box
requires significantly more time than applying
either code reading or black-box (umd82 [5]).
Although a significant difference was observed in
ukl94 and ukl95 [6,7], the authors did not present
a post-hoc analysis to assess which of the tech-
niques requires significantly less time, however, it
seems that applying code-reading requires more
time than applying white-box; black-box requires
less time than white-box (ukl94, ukl95 [6,7]). In
the case of secondary factors and interaction
effects:

— Software type. The time spent applying the
techniques was significantly affected by the
instrumented programs in umd82, umd84 [5]
and uokl11 [11].

— Expertise. The time spent applying the tech-
niques did not vary with regard to the level
of expertise (umd82, umd83, umd84 [5]).

— Technique application order (sequence). The
time spent applying the techniques is signif-
icantly affected by the order in which they
are applied (in ukl95 [6,7]).

— Interaction effects. A two-way interaction be-
tween techniques and instrumented programs
was observed in umd84 [5].

Defect isolation time (03.2). The experi-

ments in ukl94, ukl95 [6,7] and uok11 [11] report

a significant difference between the techniques,

however, a post-hoc analysis does not identify

pairwise significant differences. Code reading
seems to require less time for isolating defects
than the other techniques.

Cpu-time (03.3). Black-box required signif-

icantly more cpu-time than white-box (in

umd84 [5]).

Efficiency of Software Testing Techniques: A Controlled Experiment Replication and Network Meta-analysis 83

Connect time (03.4). Participants applying
black-box black-box spent significantly more
minutes of connect time than those applying
white-box (in umd84 [5]).
Number of program runs (03.5). This met-
ric did not show significant differences between
black-box and white-box (in umd84 [5]).

Summarizing. Secondary factors, such as
instrumented programs, expertise and the tech-
nique application order, may have an impact
on the cost of applying the testing techniques.
With regard to the the application time of these
techniques, it is hard to identify which of the test-
ing techniques incurs fewer costs. However, code
reading seems to require less time for isolating
defects. Concerning cpu-time and connect time,
black-box seems to demand more resources.

To conclude this section, Table 2 shows the
global summary of the findings found in this
family of experiments.

3. Baseline experiment

Following the proposed guidelines for report-
ing experiment replications [19], this section de-
scribes the original experiment. In [5], the au-
thors report results from three controlled ex-
periments which were conducted as controlled
experiments where different types of participants
(undergraduate, graduate students and practi-
tioners) applied three software testing techniques
(code reading, black-box testing and white-box
testing) to four instrumented programs.

The participants in these experiments were
representative of three levels of computer sci-
ence expertise: junior (0-2 years of experience),
intermediate (2.5-6.2 years of experience) and
advanced (10 years of experience). A total of 29,
13 and 32 people participated in three respective
experiments. In the first two experiments, the
participants were either upper-level computer
science majors or graduate students. In the third
experiment, the participants were programming
professionals from NASA and the Computer Sci-
ences Corporation.

The instrumented programs used in these
experiments were coded in Fortran and Simpl-T.

The four programs are related to a text pro-
cessor (pl), a mathematical plotting routine
(p2), a numeric abstract data type (p3) and
a database maintainer program (p4). Table 3
shows some characteristics of the used programs,
such as source lines of code (SLOC), cyclomatic
complexity (VG) and the number of defects
injected.

It is worth noting that the authors did not
use all the programs in the three experiments.
Programs pl, p2 and p3 were used in the first
experiment; programs pl, p2 and p4 were used
in the second experiment, and programs pl, p3,
and p4 were used in the third one.

The testing techniques examined in [5]
were code reading by stepwise abstraction [18],
black-box testing through equivalence parti-
tioning and boundary value analysis [20, 21]
and white-box testing through statement cov-
erage [21,22]. Table 4 shows the efficiency ob-
served (in terms of defects detected per hour) in
the experiments and their standard deviations.
The authors only report a significant difference
(at @ < 0.0003) in the third experiment. This
difference shows an enhanced efficiency for the
code reading technique.

Regarding the defect detection rates in the
instrumented programs used in the experiments,
Table 5 shows the defect detection rates per
program and their standard deviations. The
authors report a significant difference in the
first (at @ < 0.01) and third experiment (at
a < 0.0001). In both experiments, the testing
techniques showed higher levels of efficiency in
program p3 (Data type).

The authors also examined the efficiency of
the participants according to their differing lev-
els of expertise: junior, intermediate and ad-
vanced. Table 6 shows the efficiency rates of
these types of participants and their standard
deviations.

The athors report a significant difference only
in the first experiment. Intermediate participants
detected defects at a faster rate than junior
participants. In the remaining experiments, the
authors did not observe any significant differ-
ence in defect detection rates between expertise
levels.

Omar S. Gémez, Karen Cortés-Verdin, César J. Pardo

84

'§1090°] ATRPUOIIS SUIOS UIIMI(PUNOJ SIIM SUOTIIRINUI 10 ‘(onbruroe) §ur)se) 918mIJ0s) 10390] UTRTT ST} I TONORINUI JURIYIUSIS © UI POAJOAUT 9I0M SI10}0R] ATRPU0DDS JWOS 958D ST} U] *(T) SUOIjoRILIUL
*(bas) 1opio uoryeorydde
anbrurpay, ¢(dxe) ssrradxs urmreisord (3p) od4) 199J9(T {(A) uorsioa wreidord sremyjos pajuowMsy] ¢ (ms) weidord oremjos paIUOWINHSUT YAQNY 93 Ul 9OUSIDYIP JURIYIUSIS ® POMOTYS SI0J0R] A18pPUO000S IS T, “PaIpnis (J§) s10joej AIepuodog
"9OUAIDPIP JUROYIUSIS-UOU ‘(=) AvM IR[IUIS © UL SOARYD(anbIUpay oy, (<) 10139q Apuesyrusis soaetjaq onbruya) o1, ‘uorjusAuod suostredurod senbruyos) Suiysay,
“(O) xoq-o1g M\ ‘(M) Xoq-yoele {(3) Surpesz opo)) senbruype) Sur)se) aremijos
"(g go) suna suwreoxd jo roqumy ‘(F'go) auwr j0ouuo)) (g go) swry-nd) (g go) autry uorjelost y0o5a(] (T go) anbruypa) Surysey oy Surk(dde juads sy, “suoryezijeuorjerado 350D
*(g'go) moy 1d poyeost s30059(] ‘(T°g0) Moy 19d Pajoalap s199J9(] “suoiyezijeuoirerado AousrdUIH

*(8°T0) $190J0p PAIRIOST JO 9FRIUBDIDJ {(9°TO) 199J0p USAIS ® [[JIM PAJRIDOSSE SIN[TR] S} SIDAODUN JRY[} ASBI)$9) B 9jRIaUas 0) o[(e a1e jery) sywedorred jo afejuediod (G T0)

wre1801d pajULTINIISUT A1) UL J29Jop

oeD 10 199J9p WAAIS © 10930p oya sjurdiorired Jo 98eIu90I] {(F°TO) $109JOP 9[qRAISqO JO 98RIUIN] (g TO) SI109JOP S[qRAISqO JO DUINY (Z TO) S199J9P PIAIISO JO 9FRIMOId {(T'TO) SI09JOP PIAISS|O JO Boquny ‘suorjezijeuoryerodo SSOUSAIIIONH

O=m g'go
o<m 7'g0
o<m €eo
H<Oo<m H<O<m »=<0O<m ceo
Ms:]
MS:S bos: Ig M8 S MS: S
O=m=x B<O<)x O=m=% [O=m=% m=x<0 1
¢14pen TTon (IR coadn cospn ¢owudn Foudn eoudn zowudn Towmudn ooudn J6son S6PMm 1M epum egpum cgpum
LSOO
bos: 1S
x<(O=mw O<H<m O=m=x% Tee
\5m“H
mS: S bas:qg ms: S dxo‘ms: J§
O=m=x H<O<E O=m=x O=m=% [(=m< O=E=% O=m=wx 1%
¢Tdpen TT3on G030 goadn Gospn gourdn pourdn gourdn goudn Toudn oourdn L6son G6PMm 6P ygpumn gpum cgpum
ADNUIDIAAH
bas:1
G I Ms: IS ms: IS
O=m=% O<(m=y) O=m=x% 810
AP'MSIT APTMST AYpPiMST 1P msi] 1pMs] A‘MST 1P Ms] MS]
IP'MSIS IPMSIIS IPiMs: IS PRCHE S I1P:AS PRCHE S
O<m O=m O0=m O=m O=m O=m O=m O=m 910
Ipimsiy
Ip'asigS
2<(O=m x<O=m H<@O=m H<O=m x<@O=m x<@0O= gTo
O=m O=m O<m V1o
O=m O<m €10
dxo ‘ms:] M
M8 S M8 S dxo‘ms: Jg M8 S PRCHE IS
O=m=x O=m=n O=m=x O=m=% 0O0<mB< O0=m=% O0<@=% ¢I1°
?)m“H Quﬂwr.\r)m@ »/)m“H
Ms: IS dxo‘ms: g
*<O=m O<m<)x O=m=% O<(@=¥x 1710
e1dpen [13on GO0 gpadn Gospn goudn powdn eoudn gowdn roudn ooudn L6son G601 VeI pepun egpumn Zspum
SSUNTALLOHAAH

A[rurey s1U) Jo sSUIpPUY JO ATRWWNS [RAO[Y) g 9[qR],

Efficiency of Software Testing Techniques: A Controlled Experiment Replication and Network Meta-analysis

85

Table 3. Characteristics of instrumented
programs used in [5]

Table 4. Average and standard deviation of defect

detection rates per software testing technique

Program SLOC VG Defects Technique umd82 [5] umd83 [5] umd84 [5]
Formatter (pl) 169 18 9 Code reading 1.90 (1.83) 0.56 (0.46) 3.33 (3.42)
Plotter (p2) 145 32 6 Black-box 1.58 (0.90) 1.22 (0.91) 1.84 (1.06)
Data type (p3) 147 18 7 White-box 1.40 (0.87) 1.18 (0.84) 1.82 (1.24)
Database (p4) 355 57 12
Table 5. Average and standard deviation of defect
detection rates per software program
Program umd82 [5] umd83 [5] umd84 [5]
Formatter (pl) 1.60 (1.39) 0.98 (0.67) 2.15 (1.10)
Plotter (p2) 1.19 (0.83) 0.92 (0.71) -
Data type (p3) 2.09 (1.42) - 3.70 (3.26)
Database (p4) — 1.05 (1.04) 1.14 (0.79)
Table 6. Average and standard deviation of defect
detection rates according to level of expertise
Expertise umd82 [5] umd83 [5] umd84 [5]
Junior 1.36 (0.97) 1.00 (0.85) 2.14 (2.48)
Intermediate 2.22 (1.66) 0.96 (0.74) 2.53 (2.48)
Advanced - 2.36 (1.61)

4. Description of the studied software
testing techniques

The following subsections summarize the soft-
ware testing techniques known as code reading,
black-box and white-box testing which were used
in this experiment replication.

4.1. Code reading

The aim of code reading is to find defects in code
documents without executing the code or the
software (static approach).

The studied code reading technique is known
as stepwise abstraction [18]. In code reading by
stepwise abstraction, a software engineer identi-
fies methods (or functions) in the source code,
and then he or she abstracts from them the soft-
ware program functionality. A set of abstractions
builds up to other abstractions which represent
modules and so forth. This process is followed
until a conceptual understanding of the prime ab-
straction emerges and brings into view an overall
picture of the examined code. This abstraction is

then compared to the product specification with
the aim of finding inconsistencies or defects in
the source code.

4.2. Black-box testing

This type of software testing technique is based
on the software product specification. Once a soft-
ware engineer has the specification, he or she
starts to design a set of test cases. The software
to be verified is seen as a black-box whose be-
havior is only determined by studying its inputs
and examining its outputs. Nevertheless, because
examining all the possible inputs is impractical,
only a subset of inputs is selected for testing
during the software product verification.

The software engineer assumes that the soft-
ware product to be verified contains a set of in-
puts that will probably cause the product to fail.
As a consequence of introducing these inputs, the
product yields outputs which reveals the presence
of defects. Because exhaustive testing is imprac-
tical, the main goal is to find a set of data inputs
whose probability of belonging to the set of in-

86

Omar S. Gémez, Karen Cortés-Verdin, César J. Pardo

puts that produce a failure in the product is as
high as possible [21,23]. There are strategies for
designing test cases to reveal these inputs. Two
such strategies are known as: equivalence class
partitioning (ECP) and boundary-value analy-
sis (BVA). The authors worked with the ECP
approach, where an equivalence class represents
a set of valid or invalid states that are defined
as input conditions. A typical input condition
is a specified numerical value, a range of values,
a set of related values (such as categories) or
a logical condition.

4.3. White-box testing

It is also known as crystal or transparent testing,
the aim of this technique is to design test cases
that are able to exhaustively cover the software
code, examining all aspects of the structure and
logic of the software product. The main idea is to
design test cases that execute all code sentences
at least once and that also execute all branches
of code containing conditions (evaluating both
branches by using both true and false expres-
sions) [21,23]. Because examining all paths of the
software code can be impractical, various strate-
gies exist for achieving adequate code coverage.
Some of these strategies include: statement cover-
age, decision (or branch) coverage and condition
coverage. The authors worked with the branch
coverage approach where a set of test cases is
designed to ensure that each control structure is
executed at least once. To assess this technique,
the programs with the Java JCov coverage, a tool
which provides a means to measure and analyze
dynamic code coverage of Java programs, were
instrumented.

5. Experiment replication context

The experiment replication reported here is com-
posed of four comparative studies (controlled
experiments) carried out in December 2014 at
the Technical School of Chimborazo (ESPOCH)
as part of a software verification workshop. The
participants were undergraduate students in their
last semester of the software systems engineering

bachelor degree. According to [24], the partici-
pants were categorized as advanced beginners,
i.e. students having a working knowledge of the
key aspects of software development practice.

The workshop was offered at no cost and it
was intended for students in their last semester
so as to complement their technical skills with
a software verification course. Since the workshop
was voluntary and free of charge, coercion was
avoided. The participants were told that they
could leave the workshop at any moment. Verbal
consent was given from all the participants; the
main goals of the experiment were explained to
the participants and they were told that the
experiment was part of a software verification
workshop.

A differently instrumented software program
was used in each experiment. The program sizes
ranged between 253 and 392 SLOC. Programs
were coded in the Java programming language.
The average cyclomatic complexity (VG) of
programs was around 40. Each program had
the same type and number of defects injected
(6 defects). As reference, the defect classification
scheme of [25] was used, it is the same scheme as
the one used in the baseline experiment [5] and
also in the family discussed in Section 2. However,
regarding one of the defect classification schemes,
only three defect types (cosmetic, initialization
and control) were used instead of the six used
in [5] (cosmetic, initialization, control, data, in-
terface and computation). The change was made
to have better contol over experimental condi-
tions, and thus havie the same number and defect
types. The defects injected in each instrumented
program were as follows:

— omission — cosmetic (F1),

— omission — initialization (F2),

— omission — control (F3),

— commission — cosmetic (F4),

— commission — initialization (F5),
— commission — control (F6).

It can be seen that all defect types were
equally balanced in each software program, thus
there was more experimental control over the
instrumented programs.

The same defect counting scheme as the one
used here was also applied in [6,7], a failure is

Efficiency of Software Testing Techniques: A Controlled Experiment Replication and Network Meta-analysis 87

Table 7. Characteristics of instrumented programs
used in the study

Program SLOC VG Defects Session type n
Triangle 41 1 1 Training 16
Deviation 184 14 3 Training 15
Banking 253 28 6 Experiment 1 15
Nametbl 392 43 6 Experiment 2 13
Ntree 349 46 6 Experiment 3 13
Cmdline 300 45 6 Experiment 4 12

observed if the participant applying one of the
techniques records the deviate behaviour of the
instrumented program with regard to its specifi-
cation. In code reading, an inconsistency (analog
to a failure) is observed if the participant records
the inconsistency between his or her abstractions
and the specification. False positives which are
perceived defects reported by participants that
are not in fact defects were ignored.

The experiments were run as part of a soft-
ware verification workshop. This workshop con-
sisted of ten sessions conducted on alternate
days, where each session lasted between two and
three hours. The first sessions were used to teach
the use of the software testing techniques. Two
sessions were used for training, where the par-
ticipants applied the testing techniques to two
instrumented programs. Table 7 shows the used
program characteristics, the session type and the
number of participants per session.

Regarding program functionality, the Trian-
gle software program determines the type of tri-
angle defined given three input values. Devia-
tion calculates the average and standard devi-
ation of n numbers. The banking program im-
plements basic functions for managing bank ac-
counts. Nametbl implements basic functions for
managing a table of symbols. Ntree implements
functions for managing an N-ary tree. Finally,
cmdline implements the basic functionality of
a command line program. All the programs were
developed and instrumented by a student en-
rolled in his last year of the software engineering
bachelor degree, he was under our supervision
during a semester. The following programs were
used as reference: nametbl, ntree and cmdline
used in [10], these three programs were entirely
rewritten to the Java programming language and

instrumented with the previously mentioned de-
fects.

5.1. Experiment replication goal

Following the GQM approach [26] this controlled
experiment replication was defined as: “Analyze
the testing techniques black-box, white-box and
code reading for the purpose of comparison with
regard to their efficiency (defects detected per
hour) from the point of view of the researcher
in an academic controlled context using small
instrumented Java programs.”

5.2. Research questions

For this controlled experiment replication, the

following main research questions were stated:

— RQ1. Is efficiency affected by the studied
testing techniques?

— RQ2. Do instrumented software programs
impact the efficiency of the software testing
techniques?

— RQ3. Does the relationship between tech-
niques and programs affect the efficiency?
With the collected data of this experiment

replication it is possible to define a secondary

research question linked to a secondary analysis

(defect analysis). This secondary question seeks

to explore a possible impact on the software test-

ing techniques efficiency and the defect classifica-
tion schemes used in the instrumented programs.

This secondary research question (SRQ1) was

defined as follows:

— SRQ1. Do defect types (according to used
defect classification schemes) impact the ef-
ficiency of the studied software testing tech-
niques?

88

Omar S. Gémez, Karen Cortés-Verdin, César J. Pardo

Table 8. Factorial design structure used

Technique/ Exp. 1 Exp. 2 Exp. 3 Exp. 4
Program Banking (ba) Nametbl (na) Ntree (nt) Cmdline (cm)
Code reading (cr) cr, ba cr, na cr, nt cr, cm
Black-box (bb) bb, ba bb, na bb, nt bb, cm
White-box (wb) wb, ba wb, na wb, nt wb, cm

The efficiency construct is operationalized
according to the number of defects detected per
hour after applying the testing techniques. To
answer the previous research questions, three
hypotheses were defined. For RQ1, the null hy-
pothesis is defined as follows: All the testing
techniques studied have similar or equal levels of
efficiency. For RQ2, the null hypothesis to test
is as follows: The type of software program does
not affect the efficiency of testing techniques. For
RQ3, the null hypothesis is defined as follows:
Efficiency is not affected by the relationship be-
tween testing techniques and the type of software
program. With regard SRQ1 the null hypothesis
is defined as: the defect classification schemes
used in the instrumented programs do not affect
the efficiency of the testing techniques.

5.3. Design and execution

The four experiments constitute a factorial de-
sign (3 x 4) with two factors (technique and
program), where the factor technique is com-
posed of three levels (code reading, black-box
and white-box testing) and the factor program
is composed of four levels (banking, nametbl,
ntree and cmdline programs). A factorial design
allows for the study of several factors and the
interactions among them. The factorial design
layout for this replication is shown in Table 8.
A completely randomized design was used in each
experiment. At the beginning of each session,
treatments (techniques) were randomly assigned
to participants. In each session, every participant
applied a testing technique to an instrumented
software program.

The experiments were conducted in December
2014 as part of a workshop on software verifica-
tion at ESPOCH. Participants used a web appli-
cation for registering information regarding the
application of the software testing technique to

a given instrumented program. In a non-invasive
way, this web application collected the time that
participants spent performing the testing tech-
niques. Below, we provide an overview of how
each testing technique is applied on an instru-
mented program during the training and experi-
ment sessions.

Code reading. Participants used code reading
by stepwise abstraction [18]. Each participant
receives the source code of the software. Then
the participant inspects the code and starts to
generate abstractions in a natural language. Af-
ter the participant has constructed the prime ab-
straction, he or she is provided with the product
specification. Then the participant compares his
or her abstractions with the product specification
and any inconsistencies observed are registered
as defects. The time elapsed for carrying out the
previous activities is taken into account for com-
puting the number of defects detected per hour.
Black-box. Participants followed the equiva-
lence class partitioning approach. Each partici-
pant receives the software product specification
and then begins to generate valid and invalid
equivalence classes. Next, the participant designs
test cases from the equivalence classes defined
and registers the expected outputs. The partic-
ipant then executes the test cases by running
the software program and registers the observed
output from each test case. The participant then
compares the expected outputs to the observed
outputs, and any inconsistencies are registered
as defects.

White-box. Participants receive the source code
and the instrumented software program. Each
participant then starts to generate test cases with
the aim of achieving 100% branch coverage of
the source code. The participant then registers
the observed outputs after running the program.
For this testing technique, software programs
were instrumented with the Java JCov coverage

Efficiency of Software Testing Techniques: A Controlled Experiment Replication and Network Meta-analysis

89

Table 9. The collected defect detection rate measurements

Technique/ Exp. 1 Exp. 2 Exp. 3 Exp. 4
Program Banking (ba) Nametbl (na) Ntree (nt) Cmdline (cm)
Code reading (cr) 0, 1.56, 0.45 1.58, 0.67 0, 1.07 0, 0.71
0,0 0,0 1.86, 0.6 0, 0.72

Black-box (bb) 0.55, 2.26, 0.91 0.89,0 0.43,1.12, 0 0, 0.5
1.09, 1.07 0,0 0.44, 0 0, 0.47

White-box (wb) 1.1,05,0 1.28,1.38,0 1.03, 0 0.47, 0
1.1, 4.44 1.04, 0.26 0.52, 0 0,0

tool, so the participants using this technique were
able to see the percentage of coverage achieved
after each test case execution. Once a partici-
pant achieves the maximum coverage level, he or
she the gains access to the product specification.
Next, the participant registers the expected out-
puts as defined by the product specification. He
or she then compares the observed outputs with
the expected outputs, and any inconsistencies
are registered as defects.

In the case of the two dynamic techniques
(black-box and white-box), the time elapsed for
generating and running the test cases (which
encompasses the activities previously mentioned)
is taken into account for computing the number
of defects detected per hour.

With the aim of striving towards better re-
search practices in SE [27] all the collected mea-
surements are reported. These raw data will help
other researchers to verify or re-analyze [28] the
experiment results presented in this work. Table 9
shows all the efficiency measurements (defect de-
tection rates) collected during the experiment
sessions (the raw data is available in Appendix).
A total of 53 measurements were collected, this
sample size is slightly greater than the average
sample size used in software engineering experi-
ments [16].

6. Analysis and results

This section presents both the collected descrip-
tive and inferential statistics for the efficiency
measurements. Table 10 shows the mean defect
detection rates and their standard deviations
for the testing techniques assessed in the four
experiments.

As shown in Table 10, there is not a clear
distinction between the efficiency of the differ-
ent testing techniques. In the first and second
experiments, white-box testing seems to be more
efficient than black-box testing and code reading,
however, in the third and fourth experiments,
code reading performs better. With respect to
the instrumented programs, Table 11 shows the
mean defect detection rates and their standard
deviations for the instrumented programs used
in the four experiments.

As shown in Table 11, efficiency seems to
vary depending on the program. The software
program identified as banking, on average, yields
an efficiency rate of 1 defect per hour. This pro-
gram has the data point with the maximum
efficiency rate. Conversely, cmdline shows the
worst efficiency rate; on average, the efficiency
in this program yielded 0.24 defects detected per
hour.

Descriptive statistics give us an overview of
basic features of the collected efficiency measure-
ments, but at this point, it is not possible to
draw any confident conclusions with respect to
possible differences between treatments. Once
the overview of the data is provided, it is possi-
ble to continue testing the hypotheses previously
stated using inferential statistics The four exper-
iments can be arranged in a factorial experiment
design [3]. The statistical model employed ac-
cording to the factorial design (3 x 4) is defined
in Equation (1).

Yijk = B+ i + B + (af)ij + ey (1)

In this equation p is the grand mean, a; rep-
resents the effect of software testing technique
i, B; represents the effect of program j, (af);
is the interaction effect between treatments ¢

90

Omar S. Gémez, Karen Cortés-Verdin, César J. Pardo

Table 10. Average defect detection rates and standard deviations of
the software testing techniques

Technique Exp. 1 Exp. 2 Exp. 3 Exp. 4

Code reading 0.4 (0.68) 0.56 (0.75) 0.88 (0.79) 0.36 (0.41)
Black-box 1.18 (0.64) 0.22 (0.44) 0.4 (0.46) 0.24 (0.28)
White-box 1.43 (1.75) 0.79 (0.62) 0.39 (0.49) 0.12 (0.24)

Table 11. Average defect detection rates
and standard deviations per instrumented program

Program Exp.1 Exp. 2 Exp. 3 Exp. 4
Banking 1 (1.15) - - -
Nametbl - 0.55 (0.62) - -

Ntree - - 0.54 (0.58) -
Cmdline - - - 0.24 (0.31)

and j, k is the number of replications in each
treatment combination, and e is the random
error which assumes N(0,0%). The analysis of
variance (ANOVA) [2-4] is used to assess the
components of the model (such as technique,
program and the interaction between technique
and program).

Before drawing any conclusions related to the
components of the model, it is necessary to assess:
1) that the collected measurements are indepen-
dent (independence), 2) that the variance is the
same for all the measurements (homogeneity),
and 3) that the measurements follow a normal
distribution (normality).

The first assumption is addressed by the prin-
ciple of randomization used in the four experi-
ments; all the measurements of one sample are
not related to those of the other sample. The
second and third assumptions are assessed by
using the estimated residuals [2,3]. To assess
the homogeneity of variances, the Levene test
for homogeneity of variances was applied [29].
The Levene test allowed to obtain a p-value of
0.7043, which suggests that variance in all treat-
ment combinations (technique and program) are
equal (null hypothesis of this test). Thus, the
null hypotheses in favour of homogeneity were
accepted. The third assumption (normality) was
evaluated by applying the Kolmogorov-Smirnov
test for normality [30,31]. After applying this test,
a p-value of 0.2882 was obtained, which suggests
that the residuals fit a normal distribution (null

hypothesis of this test). Thus, the null hypothesis
in favour of normality was accepted.

Once there is a valid statistical model, it is
possible to draw reliable conclusions about the
model components (technique, program and the
interaction or relationship between technique and
program). Table 12 shows the ANOVA results of
the model stated in Equation (1).

If an « level of 0.05 is set, none of the compo-
nents shows a significant difference with respect
to efficiency. However, if the alpha level has the
value of 0.1, which represents a confidence level
of 90%, a significant difference is obtained with
respect to efficiency in the program component.
This suggests that at least one of the programs
has a different level of efficiency than the others.
To determine the significant difference the Tukey
test for treatment comparisons was used [32]. Ta-
ble 13 shows program comparisons with respect
to efficiency.

As shown in Table 13, it can be observed that
there is a significant difference with respect to
efficiency between the banking and cmdline pro-
grams. This difference has an estimated value of
0.76 defects detected per hour, and suggests that
the software program affects, to some degree, the
efficiency of the three assessed software testing
techniques, as shown in Figure 1.

Since the program component showed a sig-
nificant difference with respect to efficiency (at
a = 0.1), it is important to estimate the ex-
tent by which efficiency is affected by a software

Efficiency of Software Testing Techniques: A Controlled Experiment Replication and Network Meta-analysis 91

Table 12. Results of the analysis of variance (ANOVA)

Component Df Sum Sq Mean Sq F-value p-value
Technique 2 0.418 0.2089 0.359 0.7003
Program 3 4.072 1.3574 2.335 0.0879
Technique: program 6 3.933 0.6555 1.128 0.3636
Residuals 41 23.835 0.5813
Table 13. Pairwise comparisons with respect to the <
defect detection rates § o
E - g
Program comparisons Difference p-value < 2 - - wb
el
Banking — cmdline 0.7628 0.0621 - e
Nametbl — cmdline 0.4558 0.4022 T o | ¢
Ntree — cmdline 0.4581 0.3978 2 ©
Nametbl — banking —0.3069 0.7469 3 ".
Ntree — banking —0.3046 0.7512 3 o
Ntree — nametbl 0.0023 1.0000
banking cmdline nametbl ntree

program type. Cohen’s f was selected as the
coefficient for assessing the average effect in the
ANOVA program component across all its lev-
els [33]. This coefficient can take values from zero
to indefinitely large values. Cohen [33] suggests
that values of 0.10, 0.25, and 0.40 represent small,
medium, and large effect sizes, respectively. Af-
ter estimating this coefficient, an effect size of
f = 0.41 was obtained, which suggests a large
effect size regarding the type of the used program.
With the effect size f estimated, it is pos-
sible to assess how sensitive (power test) any
of the ANOVA components were in detecting
an effect. We applied a post-hoc test to assess
the degree of power achieved by the ANOVA
program component. The power in a statistical
test is equal to 1— 3, where § is the probability of
making a Type II error. For program component
we obtained a power of 0.79 (at a level = 0.1),
which suggests that the acceptable level of power
for the estimated effect size (f = 0.41) and the
used sample size (53 collected measurements).

6.1. Defect analysis

In order to extend the previous efficiency analysis,
the type of defects injected in the instrumented
programswere scrutinized. The aim of this sec-

Figure 1. Interaction plot between the technique
and the program

ondary analysis is to determine what classes
of defects are detected by the studied testing
techniques. As previously discussed in Section 5,
defects were characterized by two classification
schemes [5,25]: Scheme 1 consisting of omission
and commission defects, and scheme 2 consisting
of cosmetic, initialization and control defects.
Figure 2 shows the percentage of observed de-
fects of the testing techniques (black-box [bb],
white-box [wb] and code reading [cr]) split into
the two defect classification schemes.

Figure 2 shows that participants using the
code reading technique seem to observe more
initialization defects than participants using the
other techniques. Conversely, code reading and
white-box seem to behave worse detecting cos-
metic defects than black-box.

Similar to Figure 2, Figure 3 shows the per-
centage of observed defects by an instrumented
program and by a defect type. Asshown in Figure 3,
all the techniques seem to produce worse results in
the detection of cosmetic defectsthan black-box.
Conversely, cosmetic defects injected in nametbl
(na) and cmdline (cm) programs seem to negatively
impact the percentage of observed defects.

Figures 2 and 3 give us an overview of the
observed defects in these two schemes, however,
an inferential analysis is needed to examine pos-

92

Omar S. Gémez, Karen Cortés-Verdin, César J. Pardo

observed defects (%)

commission cosmetic initialization control

Defect classification schemes

omission

Figure 2. Types of defects observed by the testing
technique

:\; 30
j2]
©
Q
8 20 |
el
[0
2
(0]
(%]
o
O 10 H
0 — o
T I I I I
omission commission cosmetic initialization control

Defect classification schemes

Figure 3. Types of defects observed by instrumented
program

Table 14. Results of the analysis of variance (ANOVA) for defect
classification scheme 1 (omission and commission defects)

Component Df Sum Sq Mean Sq F-value p-value
Technique 2 62 30.9 0.052 0.9497
Program 3 4573 1524.2 2.548 0.0615
Schemel 1 168 167.7 0.280 0.5979
Technique: program 6 3577 596.1 0.997 0.4334
Technique: schemel 2 580 290.1 0.485 0.6175
Program: schemel 3 5250 1749.8 2.925 0.0387
Tech.: prog.: schemel 6 6086 1014.3 1.695 0.1325
Residuals 82 49056 598.2

sible significant differences. Next the ANOVA
results are presented according to the used defect
classification schemes.

6.1.1. ANOVA results for defect classification
scheme 1

The statistical model employed for this ANOVA
is shown in Equation (2).

Yijki = P+ ai+Bj + v + (aB)ij + (a)ik
+(B7)jk + (aBy)iji + €ijii -

In this equation p is the grand mean; «; repre-
sents the effect of software testing technique i,
ﬁj represents the effect of program j, v, repre-
sents the effect of defect type k& on the deffect
classification scheme 1, (of3);; is the interaction
effect between treatments i and j, () is the
interaction effect between treatments ¢ and k,
(B7v)jk is the interaction effect between treat-
ments j and k, ()i is the interaction effect

between treatments i, j and k, [is the number of
replications in each treatment combination, and
¢ is the random error which assumes N (0, 0?).
The ANOVA results of this model are shown in
Table 14.

As shown in Table 14 the program and the
program:schemel components show a significant
difference at alpha level of 0.1 and 0.05, respec-
tively. To inspect the significant differences in
these two components, the Tukey test for treat-
ment comparisons was used [32]. Table 15 shows
the pairwise comparisons of the program com-
ponent and the interaction component (this be-
tween program and scheme 1).

A significant difference of 18% is observed
between banking (ba) and cmdline (cm) pro-
grams. Participants applying the testing tech-
niques observed more defects in the banking
(ba) program. Another significant difference was
observed between the omission defects of the
banking program and the commission defects

Efficiency of Software Testing Techniques: A Controlled Ezperiment Replication and Network Meta-analysis 93

Table 15. Significant pairwise comparisons for defect classification scheme 1

Pairwise comparisons Difference (%) p-value
Banking — cmdline 18.3333 0.0374
Banking: omission — cmdline: commission 32.3414 0.0213075
Nametbl: omission — banking: omission —27.6415 0.0698521

of the cmdline program. Omission defects were
the most commonly observed in these two pro-
grams. The third significant difference was ob-
served between omission defects in the nametbl
and banking programs, omission defects were
the most commonly observed in the banking
program.

Concerning model assumptions, the Levene
test for homogeneity of variances [29] shows
a non-significant p-value (0.9292), suggesting
that variance in all treatment combinations (tech-
nique, program and defect classification scheme)
are equal (the null hypothesis of this test). The
assumption of normality was checked with the
Kolmogorov-Smirnov test for normality [30,31].
In this case the test showed a significant dif-
ference (p-value = 0.00012). Because measure-
ments are represented as proportions (or per-
centages), these kinds of measurements can be
prone to departures from normality, as shown
in Figure 4.

Normal Q-Q plot
.

o o

~
w
[
= -
c
©
=]
o o - -
Q@
Q
£
H \—.| - S—
%]

[
o .
°

I I I I I
-2 -1 0 1 2
Theoretical quantiles

Figure 4. Normal Q-Q plot of standardized residuals
given the model presented in Equation (2)

6.1.2. ANOVA results for defect classification
scheme 2

Next the inferential analysis concerning the sec-
ond defect classification scheme which is com-
posed of cosmetic, initialization and control de-

fect types is presented. Using the same statistical
model as in Equation (2), but changing 7, repre-
senting now the effect of the defect type k of the
defect classification scheme 2. Table 16 shows
the results of the analysis of variance.

The results presented in Table 16 suggest
a significant difference (at an alpha of 0.05) in
the program component. The Tukey [32] was run
to examine which of the program pairwise com-
parisons show significant differences. Table 17
shows the pairwise comparisons of the program
component.

Table 17 suggests a significant difference of
18% between the banking (ba) and the cmd-
line (cm) program. Participants using the testing
techniques observed a significantly larger number
of defects in the banking program than in the
cmdline program.

In relation to the model assumptions, the Lev-
ene test for homogeneity of variances [29] shows
a non-significant p-value of 0.7501 in favor of the
equality variances among treatments, however,
in the same way as in the previous analysis, some
departures from normality were observed with
the Kolmogorov-Smirnov test [30,31], a signifi-
cant p-value of 0.00012 was observed.

7. Network meta-analysis

The results of the replication reported here can
be incorporated in the existing evidence of re-
lated experiments. With the quantitative infor-
mation available in similar experiments [5-8,11]
it is possible to carry out a network meta-analysis
in order to offer better informed decisions on the
efficiency of the testing techniques reported in
previous experiments along with the one dis-
cussed in this work.

The network meta-analysis approach
(NMA) [34,35], also known as multiple treatment
comparison or mixed treatment comparison, has

94

Omar S. Gémez, Karen Cortés-Verdin, César J. Pardo

Table 16. Results of the analysis of variance (ANOVA) for scheme 2
(cosmetic, initialization and control defects)

Component Df Sum Sq Mean Sq F-value p-value
Technique 2 93 46.3 0.055 0.946
Program 3 6859 2286.3 2.727 0.047
Scheme2 2 2296 1147.8 1.369 0.258
Technique: program 6 5365 894.2 1.067 0.386
Technique: scheme?2 4 3826 956.6 1.141 0.340
Program: scheme2 6 5224 870.7 1.039 0.404
Tech.: prog.: scheme2 12 3904 325.3 0.388 0.966
Residuals 123 103125 838.4

Table 17. Significant pairwise comparisons for defect
classification scheme 2

Pairwise comparisons

Difference (%) p-value

Banking — cmdline

18.3333 0.0274

been increasingly widespread in recent years in
the health care arena [36-38].

The network meta-analysis approach can inte-
grate direct and indirect evidence in a collection
of studies (or experiments). This approach pro-
vides information on the relative effects of three
or more treatments for the same outcome [39].
Conversely to classical meta-analysis, NMA si-
multaneously compares the effects of three or
more treatments.

Given the evidence of the present replication
(pooling together the four experiments as one
experiment replication) along with the evidence
of seven related experiments [5-8,11], NMA with
the ‘netmeta’ R package [40] was performed to
assess the available evidence of the efficiency of
the testing techniques: black-box (bb), white-box
(wb) and code reading (cr). Table 18 shows the
sample sizes (n), average defect detection rates
(mean) and the standard deviations (sd) of the
three testing techniques examined in the afore-
mentioned experiments.

With the information available in Table 18
it is possible to carry out NMA. Asa result of
conducting all these experiments to examine the
same three testing techniques it can be concluded
that they conform to a single design providing
only direct evidence. NMA can also be applied to
estimate indirect evidence, however, not in this
case. For example, suppose there are experiments

examining treatments A and B and experiments
examining treatments A and C (for the same
outcome), these experiments can be pooled to-
gether in NMA to obtain an indirect estimate
for indirect comparison between treatments B
and C by means of a common comparator, that
is treatment A.

Table 19 shows the resulting NMA obtained
on the basis of the information of Table 18. The re-
sults are presented in the matrix of estimated over-
all effect sizes (with lower and upper confidence
limits) belonging to all the pairwise treatment
comparisons. Effect sizes were computed using
the standardized mean difference (Hedges’ g) [41].
The guidelines proposed by Cohen [33] suggest
that effect sizes of 0.2, 0.5 and 0.8 represent small,
medium and large effect sizes, respectively. Due to
possible context differences in these experiments,
the effect sizes shown in Table 19 were estimated
according to a random effects model, assuming
that the underlying effects in the experiments
of the same treatment comparison come from
a common normal distribution, i.e. an account
for unexplained heterogeneity was assumed.

To obtain valid conclusions from NMA, the
resulting network of treatments should be as-
sessed against the transitivity and consistency
assumptions [42-44]. In the case of the transitiv-
ity assumption, the network is assumed to main-
tain transitivity whenever pairwise treatment

Efficiency of Software Testing Techniques: A Controlled Experiment Replication and Network Meta-analysis

95

Table 18. Sample sizes, average defect detection rates and standard deviations of
the testing techniques examined in eight experiments

Experiment np, meanpy, sdpp NMwh Mmeanyp Sdwh N Mmeane sdep
umd82 [5] 29 1.58 0.90 29 1.40 0.87 29 1.90 1.83
umd83 [5] 13 1.22 091 13 1.18 0.84 13 0.56 0.46
umd84 [5] 32 1.84 1.06 32 1.82 1.24 32 3.33 3.42
ukl94 [6, 7] 27 4.67 227 27 292 159 27 2.11 1.12
ukl95 [6, 7] 21 3.08 128 18 2.00 159 17 1.74 0.67
10s97 [8] 47 2.47 1.10 47 2.20 094 47 1.06 0.75
uokl11 [11] 18 2.46 0.58 18 2.50 0.83 18 2.16 0.55
epchl4 18 0.54 0.60 18 0.73 1.06 17 0.54 0.64
Table 19. Pairwise treatment overall effect size estimates, lower and upper
95% confidence limits under a random effects model
Technique Black-box (bb) Code reading (cr) White-box (wb)

—0.576 (—1.042, —0.110)
—0.239 (—0.701,0.224)

Black-box (bb)
Code reading(cr)
White-box (wb)

0

337 (—0.127,0.802)

0.239 (—0.224,0.701)
—0.337 (—0.802,0.127

0.576 (0.110, 1.042)

effects are similarly distributed across the stud-
ies (experiments). For example, suppose some
studies assessing treatments A, B, C for the same
outcome, if treatment A performs better than B,
and treatment B performs better than C, then
treatment A has to perform better than C (transi-
tivity is met). Departures from transitivity arise
when significant heterogeneity is present across
one or more pairwise treatment comparisons in
the network. On the other hand, the consistency
assumption states that both direct and indirect
evidence in a given pairwise treatment compar-
ison (network edge) should be similar. This as-
sumption only applies to situations where there
is both direct and indirect evidence in one or
more edges of the network [42].

In a similar way when the @ statistic is used
in pairwise meta-analysis, a generalization of
such index is used in NMA. In NMA, the @
statistic measures the deviation from heterogene-
ity /inconsistency. Index @ can be separated into
parts for each pairwise treatment comparison and
a part for the remaining inconsistency between
all the treatment pairwise comparisons [43].

Given the resulting NMA in Table 19, the
statistical test for assessing the heterogene-
ity /inconsistency of the network is run. In the
same manner as in pairwise meta-analysis, in
NMA the used @ statistic follows a Chi-Squared

distribution. The test showed a @Q-value of 74.12,
corresponding with a significant p-value smaller
than 0.0001, thus suggesting a significant degree
of heterogeneity in the network. The I? index
that represents the percentage of heterogeneity
also showed a high value of 81.1%.

The heterogeneity found in the network sug-
gests that at least one pairwise treatment com-
parison contains contradictory effect size esti-
mates, yielding a significant heterogeneity in the
network edge. Because of this situation, it was
decided to assess the heterogeneity (under clas-
sical meta-analysis also using Hedges’ g [41]) in
each network edge, i.e. with the following pair-
wise comparisons: black-box (bb) vs. code read-
ing (cr), black-box (bb) vs. white-box (wb) and
code reading (cr) vs. white-box (wb). Table 20
shows the @ and I? coefficients in each network
edge.

Table 20. Assessment of
heterogeneity in each network edge

Edge Q@ p-value I?
bb, cr 60.81 <0.0001 88.5%
bb, wb 1140 0.1221 38.6%

cr, wb 4240 <0.0001 83.5%

According to Table 20 the pairwise compari-
son between black-box and white-box yields con-

96

Omar S. Gémez, Karen Cortés-Verdin, César J. Pardo

bb
Contrast to wb
bb
cr
wb wb
[]
cr

Figure 5. Network graph with
a consistent edge highlighted

sistent results (p-value is non-significant) suggest-
ing a degree of homogeneity among effect size
estimates of the eight experiments. The resulting
I? coefficient indicates that experiments in this
edge present a low level of heterogeneity which
is non-significant. As observed in Table 20, the
rest of pairwise comparisons show a significant
difference. Figure 5 shows the resulting network
graph with the pairwise treatments. The network
is laid out in a plane where nodes correspond to
the treatments (bb, wb and cr) whereas edges
represent the pairwise treatment comparisons;
the observed consistent edge is highlighted in
black. The thickness of the lines represents the
number of experiments available for each treat-
ment, in this case, eight experiments.

Figure 6 displays a forest plot of pairwise
overall effect size estimates using the white-box
technique as the reference treatment. As it was
discussed ealier, only the pairwise comparison
between black-box and white-box shows homo-
geneity in its effect size estimates. It is visible
that a small effect size of 0.24 is observed in
favour of the black-box technique, however, the
estimated confidence limits indicate that the over-
all effect size could be zero, thus suggesting that
both black-box and white-box yield similar defect
detection rates.

8. Discussion

Having presented the analysis, in this section the
findings in reference to the research questions
stated and previous work are discussed.
According to the evidence collected in the
four experiments, all the testing techniques
showed similar levels of efficiency (no significant

Random Effects Model

SMD 95%—ClI

0.24 [-0.22; 0.70]

~0.34 [-0.80; 0.13]
0.00

[|
-0.5 0 0.5

Figure 6. Forest plot with the overall effect size estimates
and confidence limits of the testing techniques

difference was observed); this suggests that effi-
ciency is not affected by the testing techniques
(RQ1). Evidence suggesting that the type of
used software program affects the efficiency of
the studied testing techniques has been found
(RQ2). In addition, the current evidence sug-
gests that efficiency is not affected by the relation-
ship between techniques and software programs,
i.e. both factors are independent (RQ3).

In relation to the baseline experiment, the
results support the results presented in experi-
ments umd82 and umd83 [5], the three testing
techniques behave in a similar way. With regard
to the efficiency of testing techniques, Table 21
shows a comparison between the reported results
in [5] and the pooled results. These results indi-
cate the average number of defects detected per
hour.

As shown in Table 21, this replication sup-
ports the results of the umd82 and umd83 ex-
periments [5]. In these experiments, the null hy-
pothesis is accepted because the three testing
techniques do not show significant differences in
the defect detection rates. However, this differ-
ence is significant in umd84 [5]. One possible
reason for this significant difference could be the
participants’ expertise. In the third experiment
reported in [5], participants were programming
professionals with high levels of technical skill.

As noted in Table 21, the obtained rates of
efficiency were lower than those reported in [5],
perhaps the number of defects injected in the
instrumented programs (six per program) or the
participants’ expertise yielded a lower efficiency
rate. One point worth noting about the umd82
and umd83 experiments in [5] is that although
similar kinds of participants were used, the effi-
ciency measurements in the first experiment are

Efficiency of Software Testing Techniques: A Controlled Experiment Replication and Network Meta-analysis 97

Table 21. Average defect detection rates per a testing technique
reported in [5] and in replication

Technique umd82 [5] umd83 [5] umd84 [5] epchl4
Code reading 1.90 0.56 3.33 0.54
Black-box 1.58 1.22 1.84 0.54
White-box 1.40 1.18 1.82 0.73

slightly higher than those in the second experi-
ment. One possible reason for this is that both
the software type and the injected defects af-
fected the efficiency. In the three experiments re-
ported in [5], the authors did not use the same in-
strumented programs in all experiments. It is also
important to note that in [5], each program had
a different number of defects with respect to both
defect classification schemes; i.e. the used pro-
grams were not equally balanced regarding the
number of defects and defect types. It is highly
probable that differences in the program type and
the used defects produced an interaction effect
with the testing techniques, as mentioned in [5].
With the aim of avoiding this effect interaction,
the same number and the same type of defects
were employed in the instrumented programs,
and only the type od software program varied.

With respect to the average defect detection
rate per program, the obtained results support
those in umd82 and umd84 [5], the type of soft-
ware impacts on the efficiency of the testing
techniques. Table 22 shows the average defect
detection rates of umd82, umd83, umd84 and
the results obtained here, the efficiency seems to
vary depending on the software type.

It is possible that the low rates of efficiency
observed in the replication are due to the exper-
tise level of the participants. According to our
evidence, it seems that participants had a bet-
ter understanding of the domain related to the
banking instrumented program than the domains
related to the other programs. Cyclomatic com-
plexity is discarded as a possible factor that could
affect efficiency. Programs nametbl, ntree and
cmdline have similar levels of VG (43, 46 and
45, respectively), however, cmdline still showed
the worst efficiency rate. This evidence seems
to reinforce the idea that the knowledge of the
program domain could affect the efficiency of
software testing techniques.

Concerning the defect analysis (secondary
research question, SRQ1), no significant differ-
ences in the two defect classification schemes
were observed in the case of the testing tech-
niques. The results in the baseline experiment [5]
suggest that participants applying code reading
and those applying black-box observed signifi-
cantly more omission defects than those applying
white-box. In the case of the conducted experi-
ments no significant difference between omission
and commission defects was observed.

With regard to the second defect classifica-
tion scheme the authors in [5] observed that
participants using code reading and those us-
ing black-box observed significantly more ini-
tialization defects than those using white-box.
Participants using code reading observed signif-
icantly more interface defects than those using
either black-box or white-box. Participants using
black-box observed significantly more control de-
fects than those using the other two techniques.
Participants using code reading observed signifi-
cantly more computation defects than those us-
ing white-box. With regard to data and cosmetic
defects the authors in [5] did not observe signifi-
cant differences. In the case of the experiments
described here, it was observed that code read-
ing seemed to detect more initialization defects
than white-box and black-box but the difference
was not significant. It was also found out that
white-box and black-box seemed to detect more
control defects than code reading, but again, this
difference was not significant.

However, with respect to the instrumented
programs, significant differences were observed,
more omission defects were detected in the bank-
ing program compared to cmdline program (de-
fect classification scheme 1). Similarly there were
more cosmetic, initialization and control defects
(defect scheme 2) observed in the banking pro-
gram than in the cmdline program. Although

98

Omar S. Gémez, Karen Cortés-Verdin, César J. Pardo

Table 22. Average defect detection rates per program
reported in [5] and in replication

Program umd82 [5] umd83 [5] umd84 [5] epchl4
Formatter 1.60 0.98 2.15 -
Plotter 1.19 0.92 — —
Data type 2.09 - 3.70 -
Database — 1.05 1.14 -
Banking - - — 1
Nametbl - - - 0.55
Ntree — - - 0.54
Cmdline - - - 0.24

same defect types (for both schemes) were equally
injected in the four instrumented programs, they
were observed in a similar way, perhaps these
findings suggest that the knowledge of the do-
main of the program to be tested may impact
the efficiency of the testing techniques.

The replication results along with the related
existing ones allowed to carry out a quantita-
tive synthesis using the network meta-analysis
(NMA) approach. Taking into account the quan-
titative information of eight experiments run in
five countries (USA, Germany, UK, India and
Ecuador) only consistent results were observed
among black-box and white-box techniques, both
techniques yielded similar efficiency rates. The
code reading technique compared with either
black-box or white-box techniques showed in-
consistent results (presence of heterogeneity).
These results suggest that the code reading tech-
nique shows a greater level of sensitivity. In
umd84 [5], code reading was significantly more
efficient than black-box and white-box, probably
in this experiment the expertise had an impact
on this technique. In the umd84 experiment, par-
ticipants were programming professionals with
an overall average of ten years of professional
experience. However, the expertise factor does
not seem to significantly affect the efficiency of
the black-box and white-box, in this treatment
comparison (bb vs. wb), participants used in
the pooled experiments spanned different ex-
pertise levels, such as undergraduate, graduate
and professionals. In the case of the other treat-
ment comparisons (cr vs. bb, and cr vs. wb),
further subgroup analyses [45,46] can be per-

formed to identify moderators affecting the out-
comes.

For the purpose reporting this experiment
replication, the guidelines of [19] were taken as
reference, however, it is not so clear how to pro-
ceed when reporting a replication in the con-
text of a family of related experiments. In this
sense, the authors propose that the family of
experiments be explained in terms of the main
treatments studied along with the contextual
information. It is also proposed that the find-
ings of the family be organized, first, according
to the cause and effect constructs and, second,
according to the cause and effect operational-
izations that the related experiments address.
The findings of the family can be presented as
a narrative or quantitative synthesis (or both
of them).

The authors also propose to describe the
baseline experiment, this activity underlies the
essence of the replication, which refers to the
repetition of a previously run experiment [14],
it is recomended to describe the main findings
and contextual information of the baseline ex-
periment. Once the family and the baseline have
been described, the replication and the analysis
of the results should be described. Next, the
replication findings should be analyzed in rela-
tion to the baseline experiment along with the
related experiments of the family. Depending
on the type of analysis done, this activity can
be performed as a qualitative or quantitative
synthesis (or both of them). Finally, a discussion
of the consistency or inconsistency of the findings
should be addressed.

Efficiency of Software Testing Techniques: A Controlled Experiment Replication and Network Meta-analysis 99

Regarding the limitations of the experiment
replication reported here, below the strategies
used to minimize the threats to validity are de-
scribed [47]. With respect to conclusion validity,
the measurements collected in these experiment
sessions satisfy the principles of independence,
homogeneity and normality. With respect to in-
ternal validity, participants were randomly as-
signed to treatments, which reduced learning
effects. Boredom or fatigue was reduced by us-
ing alternate sessions. Participants were in the
same classroom, working under the same con-
ditions, and sitting apart with no interaction.
With respect to construct validity, cause and ef-
fect constructs were operationalized in the same
way as is reported in [5] and in [9]. With re-
spect to external validity, the use of students
instead of practitioners might have compromised
this type of validity. However, there exists some
evidence suggesting that in some contexts, the
results of empirical studies that employ students
with enough technical skills are equivalent to the
results of empirical studies that use practition-
ers [48]. For example, using students in their last
academic year of an undergraduate program as
experiment participants may be comparable to
using junior practitioners as participants. In fact,
it is common for students in their last academic
year to work part-time in IT-related companies.
In this sense, the results presented here may be
generalizable to junior practitioners.

9. Conclusions

In this work the efficiency of three software test-
ing techniques has been assessed. The replication
was composed of four experiments where several
instrumented software programs were used. The
obtained results suggest that software testing
techniques perform in a similar way, but the do-
main related to the software to be tested might
have an effect on the defect detection rates of
the testing techniques. We suggest that software
verification activities such as software testing
be performed only after software engineers have
a clear understanding of the software product
domain.

The main contributions of this work are the
following: 1) the execution of a controlled ex-
periment replication in order to verify previous
findings, and 2) the realization of a quantitative
synthesis with the aim of consolidating the find-
ings belonging to a family of related experiments.

Acknowledgements

This research study received support from the
Prometeo project 20140697BP funded by the
Government of the Republic of Ecuador’s De-
partment of Higher Education, Science, Technol-
ogy and Innovation (Senescyt). Special thanks to
Jahzeel J. Coss who developed and instrumented
the programs used in the experiment replication
reported here. César Pardo acknowledges the
contribution of the University of Cauca, where
he works as an assistant professor.

References

[1] S. McConnell, Code Complete, 2nd ed. Redmond,
WA, USA: Microsoft Press, 2004.

[2] G.E.P.Box, W.G. Hunter, J.S. Hunter, and W.G.
Hunter, Statistics for Experimenters: An Intro-
duction to Design, Data Analysis, and Model
Building. John Wiley & Sons, Jun. 1978.

[3] R. Kuehl, Design of Experiments: Statistical
Principles of Research Design and Analysis,
2nd ed. California, USA: Duxbury Thomson
Learning, 2000.

[4] N. Juristo and A.M. Moreno, Basics of Software
Engineering Experimentation. Kluwer Academic
Publishers, 2001.

[5] V. Basili and R. Selby, “Comparing the effec-
tiveness of software testing strategies,” IFEFE
Trans. Softw. Eng., Vol. 13, No. 12, 1987, pp.
1278-1296.

[6] E. Kamsties and C.M. Lott, An Empirical Fval-
uation of Three Defect-Detection Techniques.
Berlin, Heidelberg: Springer, 1995, pp. 362-383.

[7] E. Kamsties and C. Lott, “An empirical evalua-
tion of three defect detection techniques,” Dept.
Computer Science, University of Kaiserslautern,
Kaiserslautern, Germany, Tech. Rep. ISERN
95-02, 1995.

[8] M. Roper, M. Wood, and J. Miller, “An empir-
ical evaluation of defect detection techniques,”
Information and Software Technology, Vol. 39,
No. 11, 1997, pp. 763-775.

100

Omar S. Gémez, Karen Cortés-Verdin, César J. Pardo

[9]

[10]

[12]

[13]

[14]

[15]

[16]

[17]

N. Juristo and S. Vegas, “Functional testing,
structural testing and code reading: What fault
type do they each detect?” in Empirical Meth-
ods and Studies in Software Engineering, ser.
Lecture Notes in Computer Science, R. Conradi
and A. Wang, Eds. Berlin, Heidelberg: Springer,
2003, Vol. 2765, pp. 208-232.

N. Juristo, S. Vegas, M. Solari, S. Abrahao,
and I. Ramos, “Comparing the effectiveness of
equivalence partitioning, branch testing and code
reading by stepwise abstraction applied by sub-
jects,” in IEEFE Fifth International Conference
on Software Testing, Verification and Validation
(ICST), Apr. 2012, pp. 330-339.

S.U. Farooq and S. Quadri, “An externally repli-
cated experiment to evaluate software testing
methods,” in Proceedings of the 17th Interna-
tional Conference on Evaluation and Assessment
in Software Engineering, ser. EASE '13. New
York, NY, USA: ACM, 2013, pp. 72-77.

0.S. Gomez, R.A. Aguilar, and J.P. Ucan, “Efec-
tividad de técnicas de prueba de software apli-
cadas por sujetos novicios de pregado,” in Fn-
cuentro Nacional de Ciencias de la Computacion,
(ENC), M.D. Rodriguez, A.I. Martinez, and J.P.
Garcia, Eds., Ocotlan de Morelos, Oaxaca, Méx-
ico, Nov. 2014.

0.S. Gémez, N. Juristo, and S. Vegas, “Under-
standing replication of experiments in software
engineering: A classification,” Information and
Software Technology, Vol. 56, No. 8, 2014, pp.
1033-1048.

N. Juristo and O.S. Goémez, “Replication of
software engineering experiments,” in Empirical
Software Engineering and Verification: LASER
Summer School 2008-2010, ser. Lecture Notes
in Computer Science, B. Meyer and M. Nordio,
Eds. Berlin, Heidelberg: Springer, Nov. 2011, Vol.
7007, pp. 60-88.

0.S. Gémez, “Tipologia de replicaciones para
la sintesis de experimentos en ingenieria del
software,” Ph.D. dissertation, Facultad de Infor-
matica de la Universidad Politécnica de Madrid,
Campus de Montegancedo, 28660, Boadilla del
Monte, Madrid, Espana, May 2012.

D. Sjgberg, J. Hannay, O. Hansen, V. Kampenes,
A. Karahasanovic, N.K. Liborg, and A. Rekdal,
“A survey of controlled experiments in software
engineering,” Software Engineering, IEEE Trans-
actions on, Vol. 31, No. 9, Sep. 2005, pp. 733-753.
F. da Silva, M. Suassuna, A. Franca, A. Grubb,
T. Gouveia, C. Monteiro, and I. dos Santos,
“Replication of empirical studies in software engi-
neering research: A systematic mapping study,”

[18]

[19]

[23]

[24]

Empirical Software Engineering, Vol. 19, No. 3,
2014, pp. 501-557.

R.C. Linger, B.I. Witt, and H.D. Mills, Struc-
tured Programming; Theory and Practice the Sys-
tems Programming Series. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.,
1979.

J. Carver, “Towards reporting guidelines for ex-
perimental replications: A proposal,” in Pro-
ceedings of the 1st International Workshop on
Replication in Empirical Software Engineering
Research (RESER), Cape Town, South Africa,
May 2010.

W. Howden, “Functional program testing,”
IEEE Transactions on Software Engineering,
Vol. 6, 1980, pp. 162-169.

G.J. Myers, The Art of Software Testing. New
York: John Wiley & Sons, 1979.

B. Marick, The craft of software testing:
subsystem testing including object-based and
object-oriented testing. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1995.

B. Beizer, Software testing techniques, 2nd ed.
New York, NY, USA: Van Nostrand Reinhold
Co., 1990.

H.L. Dreyfus and S. Dreyfus, Mind over Machine.
The Power of Human Intuition and FExpertise
in the Era of the Computer. New York: Basil
Blackwell, 1986.

V. Basili and B. Perricone, “Software errors and
complexity: An empirical investigation,” Com-
mun. ACM, Vol. 27, No. 1, 1984, pp. 42-52.

V. Basili, G. Caldiera, and H. Rombach, “Goal
question metric paradigm,” in Encyclopedia
of Software Engineering, J.J. Marciniak, Ed.
Wiley-Interscience, 1994, pp. 528-532.

P. Louridas and G. Gousios, “A note on rigour
and replicability,” SIGSOFT Softw. Eng. Notes,
Vol. 37, No. 5, Sep. 2012, pp. 1-4.

0.S. Gémez, N. Juristo, and S. Vegas, “Replica-
tion, reproduction and re-analysis: Three ways
for verifying experimental findings,” in Inter-
national Workshop on Replication in Empirical
Software Engineering Research (RESER), Cape
Town, South Africa, May 2010.

H. Levene, “Robust tests for equality of vari-
ances,” in Contributions to probability and statis-
tics, 1. Olkin, Ed. Palo Alto, CA: Stanford Univ.
Press, 1960, pp. 278-292.

A.N. Kolmogorov, “Sulla determinazione em-
pirica di una legge di distribuzione,” Giornale
dell’Istituto Italiano degli Attuari, Vol. 4, 1933,
pp- 83-91.

Efficiency of Software Testing Techniques: A Controlled Experiment Replication and Network Meta-analysis

101

[31]

[32]

[33]

[34]

[38]

N.V. Smirnov, “Table for estimating the good-
ness of fit of empirical distributions,” Ann. Math.
Stat., Vol. 19, 1948, pp. 279-281.

J. Tukey, “Comparing individual means in the
analysis of variance,” Biometrics, Vol. 5, No. 2,
1949, pp. 99-114.

J. Cohen, Statistical power analysis for the be-
havioral sciences. Hillsdale, NJ: L. Erlbaum As-
sociates, 1988.

T. Lumley, “Network meta-analysis for indirect
treatment comparisons,” Statistics in Medicine,
Vol. 21, No. 16, 2002, pp. 2313-2324.

G. Lu and A.E. Ades, “Combination of direct
and indirect evidence in mixed treatment com-
parisons,” Statistics in Medicine, Vol. 23, No. 20,
2004, pp. 3105-3124.

T. Greco, G. Biondi-Zoccai, O. Saleh, L. Pasin,
L. Cabrini, A. Zangrillo, and G. Landoni, “The
attractiveness of network meta-analysis: A com-
prehensive systematic and narrative review,”
Heart, Lung and Vessels, Vol. 7, No. 2, 2015,
pp.- 133-142.

A. Bafeta, L. Trinquart, R. Seror, and
P. Ravaud, “Reporting of results from net-
work meta-analyses: Methodological system-
atic review,” BMJ, Vol. 348, 2014. [Online].
http://www.bmj.com/content /348 /bmj.g1741
A. Nikolakopoulou, A. Chaimani, A.A. Veroniki,
H.S. Vasiliadis, C.H. Schmid, and G. Salanti,
“Characteristics of networks of interventions: A
description of a database of 186 published net-
works,” PLoS ONE, Vol. 9, No. 1, Dec. 2014, pp.
1-10.

A. Chaimani and G. Salanti, “Visualizing as-
sumptions and results in network meta-analysis:
The network graphs package,” Stata Journal,
Vol. 15, No. 4, 2015, pp. 905-950.

G. Riicker, G. Schwarzer, U. Krahn, and
J. Konig, netmeta: network Meta-Analysis us-
ing Frequentist Methods, 2016, R package ver-

Appendix: Experiment replication raw

data

sion 0.9-0. [Online]. https://CRAN.R-project.
org/package=netmeta

L.V. Hedges and 1. Olkin, Statistical methods for
meta-analysis. Orlando: Academic Press, 1985.

F. Song, Y.K. Loke, T. Walsh, A.M. Glenny, A.J.
Eastwood, and D.G. Altman, “Methodological
problems in the use of indirect comparisons for
evaluating healthcare interventions: Survey of
published systematic reviews,” BM.J, Vol. 338,
2009.

J.P.T. Higgins, D. Jackson, J.K. Barrett, G. Lu,
A E. Ades, and I.R. White, “Consistency and in-
consistency in network meta-analysis: Concepts
and models for multi-arm studies,” Research Syn-
thesis Methods, Vol. 3, No. 2, 2012, pp. 98-110.
J.P. Jansen and H. Naci, “Is network
meta-analysis as valid as standard pairwise
meta-analysis? it all depends on the distribu-
tion of effect modifiers,” BMC Medicine, Vol. 11,
May 2013, pp. 159-159.

M. Borenstein, L.V. Hedges, J.P. Higgins, and
H.R. Rothstein, Introduction to Meta-Analysis.
United Kingdom: John Wiley & Sons, Ltd, 2009.
M. Ciolkowski, “What do we know about
perspective-based reading? An approach for
quantitative aggregation in software engineer-
ing,” in Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering
and Measurement, ser. ESEM ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp.
133-144.

T. Cook and D. Campbell, The design and con-
duct of quasi-experiments and true experiments
in field settings. Chicago: Rand McNally, 1976.

P. Runeson, “Using students as experiment sub-
jects — an analysis on graduate and freshmen
student data,” in Proceedings of the 7th Inter-
national Conference on Empirical Assessment
in Software Engineering, Keele University, UK,
2003, pp. 95-102.

In this appendix we provide the measurements collected in our experiment replication. Table A
shows the defects observed and the time that participants spent applying the testing techniques.

102 Omar S. Gémez, Karen Cortés-Verdin, César J. Pardo

Table A. Observed defects and time spent applying the testing techniques

Case Technique Program F1 F2 F3 F4 F5 F6 Minutes

1348 white-box cmdline ° 127
1349 white-box cmdline 94
1350 white-box cmdline 116
1351 white-box cmdline 280
1343 black-box cmdline 106
1342 black-box cmdline ° 120
1344 black-box cmdline 105
1345 black-box cmdline . 127
1355 code reading cmdline 79
1356 code reading cmdline) 84
1358 code reading cmdline 163
1357 code reading cmdline ° . 166
1291 white-box banking e . 109
1292 white-box banking) 120
1293 white-box banking 219
1294 white-box banking ° ° 109
1295 white-box banking e ° e o 54
1285 black-box banking . 110
1286 black-box banking e e e o 106
1287 black-box banking e ° 132
1288 black-box banking ° ° 110
1289 black-box banking ° 56
1297 code reading banking 138
1298 code reading banking . e o o 154
1299 code reading banking . 134
1300 code reading banking 137
1301 code reading banking 87
1312 white-box nametbl e ° 94
1310 white-box nametbl e ° 87
1311 white-box nametbl 142
1314 white-box nametbl e ° 115
1313 white-box nametbl ° 230
1306 black-box nametbl e ° 135
1304 black-box nametbl 146
1305 black-box nametbl 134
1307 black-box nametbl 134
1316 code reading nametbl e o) 114
1319 code reading nametbl e 89
1317 code reading nametbl 72
1318 code reading nametbl 250
1329 white-box ntree) . 116
1331 white-box ntree 141
1330 white-box ntree ° 115
1332 white-box ntree 285
1323 black-box ntree ° 141
1324 black-box ntree . . 107
1327 black-box ntree 113
1325 black-box ntree ° 137
1326 black-box ntree 108
1336 code reading ntree 85
1335 code reading ntree o o 112
1338 code reading ntree e o o 97

1337 code reading ntree . 100

e-Informatica Software Engineering Journal, Volume 11, Issue 1, 2017, pages: 103-116, DOI 10.5277/e-Inf170105

NRFixer: Sentiment Based Model for Predicting
the Fixability of Non-Reproducible Bugs

Anjali Goyal*, Neetu Sardana*
*Jaypee Institute of Information Technology, Noida, India

anjaligoyall9@yahoo.in, neetu.sardana@jiit.ac.in

Abstract

Software maintenance is an essential step in software development life cycle. Nowadays, software
companies spend approximately 45% of total cost in maintenance activities. Large software projects
maintain bug repositories to collect, organize and resolve bug reports. Sometimes it is difficult
to reproduce the reported bug with the information present in a bug report and thus this bug is
marked with resolution non-reproducible (NR). When NR bugs are reconsidered, a few of them
might get fixed (NR-to-fix) leaving the others with the same resolution (NR). To analyse the
behaviour of developers towards NR-to-fix and NR bugs, the sentiment analysis of NR bug report
textual contents has been conducted. The sentiment analysis of bug reports shows that NR bugs’
sentiments incline towards more negativity than reproducible bugs. Also, there is a noticeable
opinion drift found in the sentiments of NR-to-fix bug reports. Observations driven from this
analysis were an inspiration to develop a model that can judge the fixability of NR bugs. Thus
a framework, NRFixer, which predicts the probability of NR bug fixation, is proposed. NRFixer was
evaluated with two dimensions. The first dimension considers meta-fields of bug reports (model-1)
and the other dimension additionally incorporates the sentiments (model-2) of developers for
prediction. Both models were compared using various machine learning classifiers (Zero-R, Naive
Bayes, J48, random tree and random forest). The bug reports of Firefox and Eclipse projects were
used to test NRFixer. In Firefox and Eclipse projects, J48 and Naive Bayes classifiers achieve
the best prediction accuracy, respectively. It was observed that the inclusion of sentiments in
the prediction model shows a rise in the prediction accuracy ranging from 2 to 5% for various
classifiers.

Keywords: bug report, bug triaging, non-reproducible bugs, sentiment analysis, mining
software repositories

1. Introduction

A software bug is an error or fault in a program
which causes the software to behave in unin-
tended ways. Software bugs are usually annoying
and inconvenient for developers, often leading
to serious consequences. Large software projects
use bug tracking repositories where the users and
developers report all the bugs they encounter.
The developers try to reproduce the bugs with
the help of information provided by a reporter in
a bug report and then make the required correc-
tions in the source code to rectify the issue. How-
ever, sometimes it is not possible to reproduce
the reported bug with the information specified

in a bug report. In such a scenario, the bug is
marked with resolution “Non-Reproducible” or
“works for me”.

NR bugs account for approximately 17% of
all bug reports and 3% of these bugs are later
marked as fixed [1]. There could be various rea-
sons behind this fixation of NR bugs. It may
be due to any new code patch that might be
made available by the reporter, user or devel-
oper which could help to reproduce the cause of
a bug, or there may be various ways of fixing
it. Thus the choice of the solution tested by the
developer to reproduce or fix the bug could be
wrong [2] and either a new solution or a new
developer can reproduce and fix the NR bug.

104

Anjali Goyal, Neetu Sardana

Another reason could be that the developer had
initially marked the bug as NR erroneously due
to negligence or, possibly, in reluctance to re-
duce his or her workload. Thus at later times,
a new or previously assigned developer solves
the bug. If there was a mechanism which could
provide information to the developer beforehand
whether the bug report currently marked as NR
would be fixed in the future or not, it would not
only provide insights to a triager, but also help
developers to predict if a bug report marked as
NR could be fixed in the future or not. This
would save time, effort and cost incurred in
those NR bugs in the case of which there is
low probability of fixing. With the use of such
a mechanism, developers and a triager can ac-
tually devote their precious time and efforts to
those bugs that are regarded as fixable by the
proposed mechanism. This would also raise the
level of interest among developers towards NR
bugs.

The objective of this work is to establish if it
is possible that a bug report, currently marked as
NR, will get fixed in the future or not. Thus, the
investigation of bug reports is carried out at two
different levels. At the first level, the sentiments
of comment messages in NR bugs are mined to
investigate whether there is any difference be-
tween the sentiments of NR-to-fix bug reports
and NR bug reports that do not get fixed. At
the second level, the NRFixer framework that
predicts the probability of NR bug fixation is pro-
posed. NRFixer is evaluated with two dimensions.
The first dimension considers the meta-fields of
bug reports, such as a component, hardware,
a platform, etc., to develop a prediction model-1.
Another dimension additionally incorporates sen-
timents along with the existing meta-fields of
a bug report to develop prediction model-2. In
this work, the investigations were carried out
with reference to six research questions (RQs)
to attain two research objectives (ROs). RO1 in-
vestigates the sentiment analysis of bug reports
using (RQ1-RQ4), whereas RO2 examines the
performance of NRFixer using (RQ5-RQ6).
Research Objective 1 (RO1): Exploring sen-
timents in bug reports.

— RQ1. Do sentiments exist in the NR bug
reports?

— RQ2. What is the difference between senti-
ments of reproducible (R) bugs and NR bugs?

— RQ3. Do the sentiments of developers vary
in different categories of NR bugs?

— RQA4. Compare the developer’s sentiments for
the bug report passing through the stages:
‘Newbug-to-NR’ and ‘NR-to-fix’?

Research Objective 2 (RO2): The fixability

prediction of NR bugs.

— RQ5. What is the probability of NR fixing
with the use of different classifiers?

— RQ6. Does the inclusion of the category of
an NR bug and the sentiments of developers
affect the accuracy of a prediction model?
For experimental evaluation, bug reports ex-

tracted from Eclipse and Firefox projects of

Bugzilla repository were used to gauge the pres-

ence of sentiments. Bugzilla is the most popular

open source bug repository used by different pop-
ular projects, such as Firefox, Eclipse, Linux, etc.

Both prediction models (model-1 and model-2)

were evaluated using various machine learning

classifiers. It was observed that model-1 achieved
an accuracy of 70.2% for Firefox and 66.4% for
the Eclipse project. The inclusion of sentiments

(model-2) further achieved an increase of 2-5%

in precision values.

The remainder of this paper is structured as
follows. Section 2 illustrates the related work. Sec-
tion 3 discusses certain preliminaries. Section 4
presents the proposed architecture for NRFixer.
Section 5 provides experimental details. Section 6
presents the results of experimental evaluation.
Section 7 discusses various threats to validity. Fi-
nally, section 8 concludes the paper and discusses
future directions for research.

2. Background

This section presents the previous works closely
related to the areas: a) Sentiment analysis of
bug reports and b) Prediction models in bug
repositories.

2.1. Sentiment analysis of bug reports

Sentiment analysis is becoming an important
area in the field of natural language analysis.

NRFizer: Sentiment Based Model for Predicting the Fizability of Non-Reproducible Bugs

105

It comprehends the natural language processing,
text analysis, computational logistics with the hu-
man psychology to gain an individual’s attitude
to or feeling about a particular situation or prod-
uct. It is the “task of identifying positive and neg-
ative opinions, emotions and evaluations” [3]. Ju-
rado et al. [4] confirmed that developers do leave
sentiments in the textual units of issue reposito-
ries. Murgia et al. [5] analysed the existence of
emotions in software artefacts, such as issue re-
ports. Their finding confirms the presence of var-
ious emotions, such as joy, love, surprise, anger,
sadness and fear in issue reports. They also re-
ported that emotions have an impact on software
development activities, such as bug fixing. A de-
veloper possessing negative emotions may not be
able to fix the bug and, thus, it should be assigned
to some other developer. Tourani et al. [6] evalu-
ated automatic sentiment analysis in open source
mailing lists of the Apache project. The manual
study of the emails performed by them contains
19.77% positive sentiments and 11.27% contains
negative sentiments. Garcia et al. [7] presented
a case study on the Gentoo project of the Bugzilla
repository to mine the role of emotions in the
contributor’s activities. Their study found that
a contributor become inactive after experiencing
strong positive or negative emotions.

Pletea et al. [8] gauged the presence of emo-
tions in the security related discussions on the
GitHub repository. They found that more neg-
ative emotions are expressed in security related
discussions than in other discussions. The results
obtained reflect the reluctance of developers
towards the sensitive issue of security. Guzman
et al. [9] analysed the sentiments of commit
comments in the GitHub repository with respect
to four parameters: programming language, day
of the week and time of writing the comment,
geographic distribution of a team and project
approval. Destefanis et al. [10] showed that
politeness in developers’ comments affects the
time to fix an issue.

2.2. Prediction models in bug
repositories

As for the prediction model, Garcia et al. [11]
built a model to predict blocking bugs. This

work is similar to the work on using various
machine learning classifiers for prediction. They
utilized 14 different parameters to discriminate
between blocking and non-blocking bugs and
then compared the efficiency of a decision tree,
Naive Bayes, kNN, random forest and Zero-R
classifier. They achieved an F-measure of 15-42%
by tenfold cross validation on various different
bug datasets. The prediction analysis described
in this paper is similar to their work. However,
there is a difference in the manner of predicting
the NR bugs that may get fixed in the future.

Shihab et al. [12] addressed the nature of
bugs that get reopened. They used 22 different
factors categorized under four dimensions: (1)
the work habits dimension, (2) the bug report
dimension, (3) the bug fix dimension, and (4)
the team dimension. Their model achieved a pre-
cision of 52.1% to 78.6% and a recall of 70.5%
to 94.1% when predicting whether a bug will
be reopened or not. They also found a comment
text and the last status to be the most influential
factors for predicting the possibility of reopening.
Hewett et al. [13] predicted the time required to
repair software defects. Their model achieved an
accuracy of 93.44% on medical software system
dataset. Guo et al. [14] proposed a statistical
model to predict the possibility of fixing a newly
arrived bug. Their model achieved 68% precision
and 64% recall on the Windows Vista project.
They further validated their model by conduct-
ing a survey among 1773 Microsoft employees.
Zimmermann et al. [15] also investigated and
characterized the reopened bugs in Microsoft
Windows to find the possible causes of reopening
bugs and their impact.

3. Preliminaries

This section summarizes the basic information
about a bug report, sentiment analysis technique
and various machine learning classifiers used in
this paper.

3.1. Bug report

A bug report is a document containing complete
specification related to a bug. A bug report may

106

Anjali Goyal, Neetu Sardana

be created by an end user, developer or beta
tester of the software project. A bug report con-
stitutes various predefined meta-fields and free
form textual contents. The predefined meta-fields
include bug id, product, component, operating
system, platform, milestone, severity, version,
status, resolution, reporter, reported date and
time, assigned to, etc. The textual contents in-
clude keywords, summary (or tagline), descrip-
tion and comments. “Summary” refers to the
one-line short definition about the bug. “Descrip-
tion” refers to the complete detailed specification
submitted by the reporter regarding the submit-
ted bug. It forms the main body of the bug
report that generally incorporates the steps to
reproduce the issue. “Comments” refers to the
open discussion by a group of people to discuss
and review the solutions for the reported bug.
This group of people generally comprehends some
expertise in the related area of the bug.

3.2. Sentiment analysis

Sentiment analysis is a technique to extract, iden-
tify or characterize the sentimental content of
a text unit. It assigns a quantitative value rep-
resenting the contextual polarity of the text. To
analyse the sentiments in bug reports natural
language text processing (NLTK) toolkit was
used [16]. NLTK takes a text unit as an input
and performs a two-level classification. Level 1
determines whether the text is neutral or polar.
A text unit may or may not contain sentiments.
If the probability of the lack of sentiment is
greater than 0.5, the text is labelled as neutral.
Otherwise, if the probability of the presence of
sentiments is greater than 0.5, the text is labelled
as polar, and the second level classification is per-
formed to determine whether the text expresses
positive or negative sentiment. The label with
higher probability is finally assigned to the input
text.

3.3. Machine learning classifiers

1. Zero-R: Zero-R (or no rule classifier) is
the simplest classification algorithm. It al-
ways predicts the majority class present in

the training dataset. Although it has no
predictability power, it is useful in the de-
termination of the baseline performance as
a benchmark. In this study, during each fold
of cross validation, the Zero-R classifier pre-
dicts the majority class among NR-to-NR and
NR-to-fix classes during that fold. The indi-
vidual fold efficiencies related to NR-to-fix
class are aggregated to compute the overall
efficiency of the Zero-R classifier for NR-to-fix
class.

Naive Bayes: Naive Bayes [17] is a simple
probabilistic classification algorithm based
on Bayes’ theorem. It classifies a new record
r=<1,...,Tp > to class k that maximizes
the conditional probability:

P(C=k/X)=<mz,...,2p >

Under the assumption that the factors are
randomly independent of each other, the
Naive Bayes classifier can be re-written as:
Here, P(C = k) is known as the class prior
probability and can be approximated with
the percentage of training files marked with
label k. The likelihood or conditional prob-
ability P(x;/C = k) can be estimated with
Ni, * i/ Ny, where the numerator is the num-
ber of records marked with label k for which
the i;,-factor is equal to and the denominator
is the number of records regarded with label k.
The probability P(X = z) is the predictor
of the prior probability and is constant with
respect to the different classes.

. J48: J48 is the open source Java implemen-

tation of the C4.5 algorithm [18] in the weka
data mining toolkit. C4.5 builds decision trees
from a set of training data in the same way
as ID3, using the concept of information gain
and entropy. The training data is a set

S =sl,82,...
of already classified samples. Each sample
consists of a p-dimensional vector
(95(1,1‘), L(2,4)s -+ fE(p,i)),

where the x; represent attribute values or
features of the sample, as well as the class
in which falls. At each node of the tree, C4.5

NRFizer: Sentiment Based Model for Predicting the Fizability of Non-Reproducible Bugs

107

algorithm selects the attribute of the data
that most efficiently splits the samples into
subsets enriched in one class or the other. The
criterion for splitting is the largest normalized
information gain. The attribute with the high-
est normalized information gain is selected
to build the decision. The C4.5 algorithm is
then run recursively on smaller sub lists until
data are classified [17].

4. Random Forest: Random forest [19,20] is
an ensemble learning algorithm for data classi-
fication. It is a meta estimator that makes the
prediction based on the majority vote of the
multitude of decision trees. This classification
algorithm reduces the variance of the indi-
vidual decision trees and makes the classifier
more resilient to noise in the training data
set. For constructing the Random Forests
of m decision trees, m bootstrap samples are
generated from the training data set and each
of them is utilized for training a decision tree.

5. Random Tree: Random decision tree algo-
rithm builds multiple decision trees randomly.
While building a decision tree, the classifica-
tion algorithm picks a “remaining” feature
randomly at each node without any accuracy
estimation procedure (such as cross valida-
tion). A categorical attribute (such as gen-
der) is considered “remaining” if the same
categorical attribute has not been selected
formerly in a particular decision path arising
from the root to the current node of the tree.
A continuous attribute (such as income), on
the other hand, can be selected more than
once in the same decision path. Every time
the continuous attribute is selected, a random
threshold is chosen.

4. NRFixer: proposed architecture

Objective: To find out if there is a possibility
that a bug report currently marked as NR will
get fixed in the future.

Input: To find out if there is a possibility that
a bug report currently marked as NR will get
fixed in the future.

Output: Predicted class: NR-to-fix or NR-to-NR.

Proposed approach: The proposed approach
uses bug reports currently marked as NR to
predict whether it will be fixed in the future
or not. Two prediction models were developed
and are compared. To develop the prediction
model-1, as shown in Figure 1, it extracts eight
bug report meta-fields such as product, com-
ponent, hardware, severity, priority, cc count,
number of comments and keywords to train ma-
chine learning classifiers (Zero-R, Naive Bayes,
J48, random forest and random tree). Prediction
model-2 additionally uses the extracted parame-
ters namely developer’s sentiments and NR bug
category along with the eight meta-fields consid-
ered in model-1 to train the machine learning
classifiers and predicts the class label (NR-to-fix
or NR-to-NR).

5. Experimental details

In this section, the experimental details for the
prediction of NR-to-fix bugs are presented. For
the Eclipse and Firefox projects, various bug re-
port meta-fields were used for prediction and
five different classifiers were compared. The
classifiers are Zero-R, Naive Bayes, J48, ran-
dom forest and random tree. In this experiment
a weka toolkit was used. The NR bugs were
investigated and the probability of their fixation
was predicted.

5.1. Dataset

The data for this study were extracted from the
dataset used by Joorabchi et al. [1]. The bug
reports of the Firefox and Eclipse projects were
used for experimentation. The sentiments of a to-
tal of 419 NR bug reports containing 4250 text
units were analysed. In the dataset, a single bug
report contains a varying number of comment
messages which ranges from 1 to 83.

5.2. Experiment parameters

Various meta-fields of bug reports were consid-
ered to determine the fixable NR bugs. All factors
are listed below:

108

Anjali Goyal, Neetu Sardana

Product
Component
Hardware —> @ —>| Predicted
R Severity @ Class
Priority
Cfc count Prediction
No. of comments Model 1
- Keywords
Bug NR Bug
Repository Reports
.| Sentiments
"] category
@ —>| Predicted
@ Class
Prediction
Model 2

Figure 1. NRFixer: Prediction model for NR bugs

1. Product: It refers to the general area the
bug belongs to.

2. Component: It refers to the second level
categorization of a product.

3. Hardware: It indicates the computing envi-
ronment where the bug originated.

4. Severity: It describes the impact of the bug.
This field offers options, such as severe, nor-
mal and minor.

5. Priority: The priority field is used to prior-
itize bug reports. The values of the priority
field ranges from P1 to P5 (P1 being the high-
est priority and P5 being the lowest priority
value).

6. CC Count: It defines the number of develop-
ers in the cc list of the bug report. It is usually
the number of developers participating in the
bug report.

7. No. of comments: It refers to the number
of comments made by the developers in order
to resolve the bug.

8. Keywords: It refers to the tags or catego-
rization of bug reports.

Two more parameters were added in the predic-

tion model:

1. Sentiment: It refers to the positive, negative
or neutral value expressed by a textual unit.

2. Category: It refers to the cause category
of the bug. The non-reproducible bugs are
classified into six cause categories namely,

inter-bug dependencies, environmental differ-

ences, insufficient information, conflicting ex-

pectations, non-deterministic behaviour and
others.

Once the aforementioned factors are ex-
tracted, they are used to train various machine
learning classifiers in order to predict the fixable
bugs from the currently NR marked bugs. The
different classifiers used for the prediction of NR
in the case of fixed bugs are discussed in the
following section.

5.3. Evaluation metrics

To evaluate the performance of the prediction

model, standard performance evaluation metrics

was used: precision, recall and F-measure.

1. Precision: It refers to the fraction of relevant
instances retrieved from the total instances
that are retrieved.

ip
tp+ fp
2. Recall: It refers to the fraction of relevant

instances retrieved from the total relevant
instances.

Precision =

tp

Recall = ———
cea tp+ fn

NRFizer: Sentiment Based Model for Predicting the Fizability of Non-Reproducible Bugs

109

3. F-Measure: It refers to the harmonic mean
of precision and recall.

2 x Precision * Recall
F-measure =

Precision + Recall

In the equations, tp represents the number of
positive samples correctly predicted, fp repre-
sents the number of negative samples incorrectly
predicted as positive, tn represents the number
of positive samples incorrectly predicted and fn
represents the number of negative samples cor-
rectly predicted. Table 1 shows the confusion
matrix.

The tenfold cross validation technique was
used in weka to measure the efficiency of NR-
Fixer. When only a limited amount of data is
available, cross validation is used to attain an
unbiased estimation of model performance. In
k-fold cross-validation, data is divided into k
subsets of equal size. Thus the model is built
k times, each time using sets of data for train-
ing the classifier and leaving out one subset as
a test set. In order to reduce the impact of the
class imbalance problem, the dataset re-sampling
technique was used.

6. Experimental results

This section addresses the experimental results
of the six identified research questions (RQs).
The RQs are classified under two research objec-
tives (RO). RO1 explores the sentiments in bug
reports and RO2 investigates the performance of
NRFixer.

6.1. Research objective 1 (RO1):
exploring sentiments in bug reports

This subsection answers four RQs (RQ1-RQ4)
which investigate the sentiments of developers.
Joorabchi et al. [1] claimed that a large pro-
portion of bug reports are marked as NR but
a small part of these NR bugs (approximately
3%) are fixed later. An empirical evaluation of
the sentiments of bug reports was conducted to
investigate the developer’s behaviour towards
R, NR and NR-to-fix bugs. The investigation

results of the sentiment analysis of bug reports
are presented as below.

RQ1. Do sentiments exist in the NR bug
reports? The analysis encompassed 419 NR bug
reports to detect whether bug report discussions
contain any sentiments or not. These reports con-
stituted a total of 4250 text units (419 taglines,
419 descriptions and 3412 commit comment mes-
sages written by software developers). A tagline
contains 5 to 10 words and offers a short summary
of the bug. A description contains detailed infor-
mation about the bug and usually constitutes the
steps required to reproduce the issue. Commit
comment messages contain the developer’s dis-
cussions regarding the steps that may be useful
in bug fixation. The statistics for the sentiment
analysis are shown in Figure 2. The percentage of
the analysed text units which had either positive
or negative sentiments was 65.66%. This confirms
the existence of sentiments in software artefacts,
such as issue reports as stated by [5].

On the other hand, 34.32% text units ex-
hibited no sentiments. In particular, the tagline
field exhibits 67.06% neutral sentiments. This
is because a tagline is a 5 to 10-word descrip-
tion of the bug report and thus it is difficult
for any sentiment analysis tool to extract the
polarity of sentiment in such a small amount of
text. Similarly, the description and comments
exhibit 39.85% and 29.63% neutral sentiments,
respectively. This is due to the fact that these
fields sometimes may contain a lot of technical
code to resolve the issue and thus may lack any
sentiments.

RQ2. What is the difference between sen-
timents of reproducible bugs and NR
bugs? To address this question, two categories
of bug reports were considered: the bug reports
which are marked as NR at least once in their
lifetime and fixed bug reports which are never
marked as NR, which are termed as R. For this
step, 200 R bug reports were considered (two
bug reports from this set contained textual units
in languages other than English and thus were
removed). Finally 198 R bug reports containing
1556 text units (198 taglines, 198 descriptions
and 1160 commit comment messages written by
software developers) were studied in addition

110

Anjali Goyal, Neetu Sardana

Table 1. Confusion Matrix

Positive (p)

Negative (n)

Positive (p)
Negative (n)

Ip

tn

80

70 67.06

60

50

40

30

20

10

Tagline Description

B Positive

W Negative

® Neutral

Comments Total

Figure 2. Sentiment distribution in NR bug reports

to 419 NR bug reports (containing 4250 text
units). Table 2 presents the statistics of senti-
ments in reproducible and NR bug reports. The
results show that the fraction of negative senti-
ments is higher in NR bugs (48.25%) than the
reproducible bugs (29.24%). Also the fraction of
positive sentiments is lower in NR bugs (17.41%)
than the reproducible bugs (20.24%). The results
confirm that developers have negative sentiments
while solving NR bugs. This may be due to the
smaller probability of fixing NR bugs.

RQ3. Do the sentiments of developers
vary in different categories of NR bugs?
To examine this research question, the sentiments
of 419 NR bug reports category wise were anal-
ysed. The NR bug reports are categorized into six
possible cause categories: conflict of knowledge
(32 bug reports containing 320 text units), depen-
dent bugs (83 bug reports containing 979 text
units), environmental settings (129 bug reports
containing 1192 text units), non-deterministic
bugs (16 bug reports containing 149 text units),
precise information required (113 bug reports
containing 1205 text units) and others (46 bug

reports containing 405 text units). The statis-
tics for sentiment analysis is shown in Table
3. It was found out that negative sentiments
dominated in all six categories of NR bugs. The
negative sentiments appear 29.8%-36.24% more
than positive sentiments in different cause cat-
egories. Among the various categories, the en-
vironmental setting contains maximum positive
textual units (18.62%) and the category oth-
ers contains minimum negative textual units
(37.17%).

RQ4. Compare the developer’s sentiments
for the bug report passing through the
stages ‘Newbug-to-NR’ and ‘NR-to-fix’?
To investigate NR-to-fix bugs, 100 bug reports
containing 1648 textual units (100 taglines, 100
descriptions and 1448 textual comments) were
considered, they were initially marked from reso-
lution Newbug to NR and were later marked as
fixed. NR bugs may go through various stages be-
fore being fixed. Stage 1 (Newbug-to-NR) depicts
a bug declared as NR and stage 2 (NR-to-Fix)
depicts NR being fixed. Figure 3 shows the stages
a normal NR bug usually passes through.

NRFizer: Sentiment Based Model for Predicting the Fizability of Non-Reproducible Bugs

111

Table 2. Percentage distribution of sentiments in various categories
of NR bug reports

Bug Reports

Positive (%)

Negative (%) Neutral (%)

Tagline 5.55 16.66 7777

. Description 11.11 22.22 66.66
Reproducible Comments 24.30 32.59 43.1
Total 20.24 29.24 50.51

Tagline 7.87 925.05 67.06

. Description 10.97 49.16 39.85
Non-Reproducible " s 19.37 50.99 29.63
Total 17.41 48.25 34.32

Table 3. Percentage distribution of sentiments in various categories
of NR bug reports

Category Positive (%) Negative (%) Neutral (%)
Conflict of Knowledge 16.56 52.18 31.25
Dependant Bugs 15.32 49.23 35.44
Environmental Settings 18.62 51.00 30.36
Non-Deterministic Bugs 16.10 52.34 31.54
Precise Information Required 17.75 47.55 34.68
Others 15.38 37.17 47.43

The investigation was conducted with two
different perspectives. For primary investigation,
the overall positive and negative percentage of
sentiments were searched for in comment mes-
sages during both stages. For secondary investiga-
tion, the change in sentiments during both stages
of each bug report was analysed. To address the
developer’s sentiments during stage 1 and stage
2, the sentiments of 1448 textual comments were
analysed. Table 4 shows the statistics of senti-
ments at different stages of NR-to-fix bugs.

The primary observation during stage 1
(Newbug-to-NR) comprised 511 textual com-
ments and shows that 13.89% comments have
positive sentiments whereas 57.73% comments
have negative sentiments. During stage 2
(NR-to-fix), 937 textual comments were anal-
ysed. At stage 2, the positive percentage in-
creased to 19.10% whereas negative percentage
declined to 47.91%. Thus, it was observed that
during stage 2, the positive percentage of sen-
timents increased by 6% and the negative de-
creased by 10% as compared to the stage 1.
This incline in positivity and decline in nega-
tivity reflect the enhanced confidence of develop-
ers towards bug reports during the NR-to-fix

stage and this optimism leads to fixing NR
bugs.

For the secondary investigation, each bug
report was analysed to find the change in the
positive and negative percentage of sentiments
during both stages. It was observed that there
is an opinion drift in the sentiments of bug re-
ports in Newbug-to-NR and NR-to-fix stages.
The statistics for opinion drift in sentiments dur-
ing the Newbug-to-NR and NR-to-fix stages is
shown in Table 5. This investigation result shows
that overall in 71% bug reports either the neg-
ativity decreased or positivity increased. It was
inferred that during the initial stage of triaging,
the developers were reluctant to solve the bug,
but this reluctance decreased and as a result NR
bugs were fixed.

Investigation summary (RQ1-RQ4). In
RO1, four investigations were conducted in the
context of the sentiment analysis of bug reports.
The investigations confirm that bug reports do
express sentiments. The textual units of NR bugs
are more inclined towards negative sentiments
as compared to reproducible bugs. It has been
also found that there is an opinion drift between
the Newbug-to-NR and NR-to-fix stages. There

112

Anjali Goyal, Neetu Sardana

New Bug
Report

Stage 1
(Newbug-to-NR)

Declared as
Non- Reproducible

e e

Stage 2
(NR-to-fix) _.-~

-

| Y.

Figure 3. Stages of NR bugs

Table 4. Percentage distribution of sentiments in two different stages
of bug reports: Newbug-to-NR and NR-to-fix

Negative (%) Neutral (%)

Stage Positive (%)
Newbug-to-NR(Stage 1) 13.89
NR-to-fix(Stage 2) 19.10

97.73
47.91

28.18
32.87

Table 5. Accuracy of NRFixer using various meta-fields of bug report

Opinion drift

% age of bug reports in which
Positivity increases

Total % age of bugs

Negativity decreases which observed change

Newbug-to-NR and NR-to-fix

(before and after declaring NR) 46%

62% 71%

is a significant drift towards increasing positivity
or decreasing negativity in the sentiments of NR
bugs during stage NR-to-fix as compared to the
Newbug-to-NR stage. This confirms the reluc-
tant behaviour of developers while marking the
resolution of a bug report as NR.

The observation of the sentiments of NR bugs
highly inclines towards the positive side, it has
been inferred that we need an automated way
(i.e. prediction model) for judging those NR bugs
that have high chances of being fixed. Further,
the sentiments can be incorporated to enquire
the prediction model’s behaviour. This predic-
tion model will not only build the confidence of
developers, but will also save time, effort and cost
incurred in debugging those bugs which are less
likely to be fixed. Thus the NRFixer framework
was proposed.

6.2. Research objective 2 (RO2):
prediction of the fixability of NR
bugs

In this subsection, the performance of NRFixer
is investigated (refer to RQ5-RQ6). The re-
sults of the research questions addressed in this
study are also presented by comparing the perfor-
mance of five different classifiers: Zero-R, Naive
Bayes, J48, random forest and random tree.
In this study, 419 NR bug reports containing
4250 textual units were considered for experi-
mentation. Among these bug reports, 319 bug
reports containing 2602 textual units are marked
as NR-to-NR (170 bug reports for Mozilla project
and 149 bug reports for the eclipse project)
whereas 100 bug reports (containing 1648 textual
units) are marked as NR-to-fix (50 bug reports

NRPFizer: Sentiment Based Model for Predicting the Fizability of Non-Reproducible Bugs

113

B Model-1 Model-2

80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

1

Zero-R

148 Random Random

Forest Tree

Naive
Bayes

B Model-1 Model-2

80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

i

Zero-R

148 Random

Tree

Random
Forest

Naive
Bayes

Figure 4. Comparing the accuracy of both models for different classifiers

for the Mozilla project and 50 bug reports for
the eclipse project).

RQ5. What is the probability of NR fixing
with the use of different classifiers? To ad-
dress this research question, the performance for
prediction model 1 is evaluated. Table 6 presents
the precision, recall and F-measure achieved by
various machine learning classifiers while using the
meta-fields of bug reports, namely product, com-
ponent, hardware, severity, priority, cc count, num-
ber of comments and keywords. For the Firefox
project, J48 presents the best precision, recall and
F-measure values and the component was found
to be the most influencing factor. For the Eclipse
project, Naive Bayes gives the best precision, recall
and F-measure values. In this project, severity
was found to be the most influencing factor.
RQ6. Does the inclusion of the category
of an NR bug and the sentiments of devel-
opers affect the efficiency of a prediction
model? To address this question, the perfor-
mance of prediction model-2 in NRFixer is eval-
uated. Table 7 presents the precision, recall and
F-measure achieved by various classifiers using
the meta-fields of a bug report, namely product,
component, hardware, severity, priority, cc count,
number of comments and keywords along with
the extracted parameters such as the sentiments
of developers and the category of NR bugs. For
prediction model-2, the J48 classifier presents the
best precision value in the Firefox project and
the component was found to be the most influenc-
ing factor. Similarly, for the Eclipse project, the
Naive Bayes classifier gives the best precision,
recall and F-measure values and severity was
found to be the most influencing factor.

The investigation in RO2 confirms that based
on bug report meta-fields and sentiment related
parameters, it is possible to predict whether the
NR bug will get fixed in the future or not. Among
different projects, Naive Bayes and J48 machine
learning classifiers achieved the best prediction
performance. Taking into consideration the pre-
cision metric, J48 is the most suitable classifier
for the Firefox project and the Naive Bayes clas-
sifier is the most suitable one for predictions in
the Eclipse project. Figure 4 depicts the com-
parison of accuracy for both prediction models.
The inclusion of the sentiments and category of
non-reproducible bugs presents better precision

of 2-5%.

7. Threats to validity

In this section, we present the various internal
and external threats to validity in this work.
External validity. In this work, the bug reports
used in experimental evaluation were collected
from two popular projects, Firefox and Eclipse
of open source bug tracking repository, Bugzilla.
Data collected from these projects may vary from
other open and closed source projects. Therefore,
the outcomes from this study may not general-
ize well to other commercial software projects.
Additional studies are required for other closed
source projects or projects that use different soft-
ware processes. Although we have examined large
open source projects which cover a wide range
of products, there may be other projects which
use different software processes. Thus, the results
may not generalize to all of them.

114

Anjali Goyal, Neetu Sardana

Table 6. Accuracy of NRFixer using various meta-fields
of bug report

Project Classifier Precision Recall F-measure

Zero-R 22.7% 22.7% 22.7%
Naive Bayes 68% 67.1% 66.6%
Firefox J48 70.2% 70.1% 70%
Random Forest 67.3% 67.3% 67.3%

Random Tree 61.8% 61.7% 61.7%

Zero-R 25.2% 25.2% 25.2%

Naive Bayes 66.4% 65.2% 65.79%

Eclipse J48 65.1% 64.9% 64.99%
Random Forest 61.3% 61.2% 61.1%

Random Tree 58.6% 58.6% 58.6%

Table 7. Accuracy of NRFixer using various meta-fields
of bug report, sentiments of developers and category of NR bugs

Project Classifier Precision Recall F-measure
Zero-R 22.7% 22.7% 22.7%
Naive Bayes 72.9% 77.5% 75.12%
Firefox J48 74.7% 73% 73.84%
Random Forest 66% 66% 66%
Random Tree 62.8% 62.5% 62.3%
Zero-R 25.5% 25.2% 25.2%
Naive Bayes 68% 65.3% 66.62%
Eclipse J48 66.9% 65% 65.6%
Random Forest 60.5% 60.5% 60.5%
Random Tree 57% 57% 57%

Internal validity. In this work, it was assumed
that the data obtained from a bug repository
are optimal. However, there is a possibility of
errors or noise in the extracted data, which may
affect the results of this study. To mitigate this
threat, the bug reports used in this study were
obtained from the most widely used projects
of the Bugrzilla repository. These projects are
long lived and are actively maintained, hence
it is safe to assume that the extracted data
are acceptable (if not optimal). Also, the used
dataset suffers from a class imbalance problem
and so the re-sampling of dataset was used to
overcome this effect. Moreover, the categories
of NR bugs may be erroneous. But since the
studies related to NR bugs are in their initial
phase, this threat was considered to be minor
and careful cross-checks of the data and the tech-
nique was conducted to eliminate errors in the
best possible way.

Five different classifiers were explored:
Zero-R, Naive Bayes, J48, random forest and
random tree for the performance evaluation of
NRFixer. However, there are many other clas-
sifiers (such as genetic algorithms [21], neural
network, etc.) and ensemble based techniques
[18] (such as stacking, bagging, boosting) which
have not been explored in this work. Nevertheless,
it is possible that a different set of algorithms
would provide better results for NR-to-fix bug
prediction as compared to the set of algorithms
explored in this work.

Further, in this work, the python NLTK
toolkit was utilized [16] for the sentiment analysis
of textual contents in bug reports. However, there
are many other toolkits available for sentiment
analysis, such as SentiStrength, Stanford NLP,
etc. Jongeling et al. [22] evaluated various senti-
ment analysis tools for software engineering stud-
ies. They observed that sentiments obtained from

NRFizer: Sentiment Based Model for Predicting the Fizability of Non-Reproducible Bugs

115

various tools neither agree with each other, nor
with manual labelling. They suggested a need for
a sentiment analysis tool that specifically caters
to the software engineering domain. Therefore,
the results of this study may improve with the
domain specific tailoring of sentiment analysis.
But since such a toolkit is not available, we are
considering one of the most popular sentiment
analysis toolkit, NLTK for experimentation.

8. Conclusion and future work

Non-reproducible bugs are generally frustrating
for developers due to the uncertainty of their
fixation. To minimize this uncertainty, we have
mined the sentiments of textual data present in
the non-reproducible bug reports. Mining is done
for both categories of bug reports NR-to-fix and
NR-to-NR. It was done to find out any clue to
assist the developer during the initial stages of
bug triaging. The study is being carried out at
two different levels. At the first level, the sen-
timents of bug reports were mined and at the
second level framework NRFixer which predicts
the probability of NR bug fixation is proposed.

The first level of the study confirms that
bug reports do express sentiments. It was found
out that the developers possess more negative
sentiments for non-reproducible bugs than re-
producible bugs. As long as bugs are marked
as non-reproducible, the percentage of negative
sentiments is 66% bigger than the reproducible
bugs. This confirms the reluctant behaviour of
developers towards the non-reproducible bugs. It
was also found out that there is a major opin-
ion drift found in the sentiments of NR-to-fix
bugs. In 71% NR-to-fix bug reports, either there
was a decrease in the percentage of negative
comments or an increase in the percentage of
positive comments when the bug is reopened and
is near fixation. This reveals that the developers
may have marked the bug as non-reproducible
erroneously or it could be due to the lack of some
code patch.

The second level of the study deals with the
prediction of the possibility of non-reproducible
bugs getting fixed using NRFixer. It is evalu-

ated with two dimensions. In the first dimension,
we considered various meta-fields of bug report
(prediction model-1). In the second dimension,
the sentiments of developers were additionally
incorporated along with the existing meta-fields
of a bug report (prediction model-2). The results
of this investigation show that NRFixer could effi-
ciently predict bugs marked as non-reproducible.
It was observed that the inclusion of sentiments
in prediction model-2 shows an additional rise
in the prediction accuracy ranging from 2 to 5%
for various classifiers.

For future work, it is planned to explore NR-
Fixer on more machine learning classifiers and
software projects, such as closed source applica-
tions. Work will also be conducted on improv-
ing the performance of NRFixer using ensem-
ble based machine learning techniques. There
are also plans to perform a qualitative analysis
on domain specific NR-to-fix bug prediction us-
ing different textual factors of bug reports. In
addition to this work, a fix suggestion tool for
non-reproducible bugs that could be fixed will
be built.

References

[1] M. Erfani Joorabchi, M. Mirzaaghaei, and
A. Mesbah, “Works for me! characterizing
non-reproducible bug reports,” in Proceedings of
the 11th Working Conference on Mining Software
Repositories. ACM, 2014, pp. 62-T71.

[2] E. Murphy-Hill, T. Zimmermann, C. Bird, and
N. Nagappan, “The design space of bug fixes and
how developers navigate it,” IEEE Transactions
on Software Engineering, Vol. 41, No. 1, 2015,
pp. 65-81.

[3] T. Wilson, J. Wiebe, and P. Hoffmann, “Recog-
nizing contextual polarity in phrase-level senti-
ment analysis,” in Proceedings of the Conference
on Human Language Technology and Empirical
Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, 2005, pp.
347-354.

[4] F. Jurado and P. Rodriguez, “Sentiment analysis
in monitoring software development processes:
An exploratory case study on GitHub’s project
issues,” Journal of Systems and Software, Vol.
104, 2015, pp. 82-89.

[5] A. Murgia, P. Tourani, B. Adams, and M. Ortu,
“Do developers feel emotions? an exploratory

116

Anjali Goyal, Neetu Sardana

[7]

analysis of emotions in software artifacts,” in
Proceedings of the 11th working conference on
mining software repositories. ACM, 2014, pp.
262-271.

P. Tourani, Y. Jiang, and B. Adams, “Moni-
toring sentiment in open source mailing lists:
Exploratory study on the apache ecosystem,” in
Proceedings of 24th Annual International Con-
ference on Computer Science and Software En-
gineering. IBM Corp., 2014, pp. 34—44.

D. Garcia, M.S. Zanetti, and F. Schweitzer, “The
role of emotions in contributors activity: A case
study on the Gentoo community,” in The Third
International Conference on Cloud and Green
Computing (CGC). IEEE, 2013, pp. 410-417.
D. Pletea, B. Vasilescu, and A. Serebrenik, “Se-
curity and emotion: Sentiment analysis of secu-
rity discussions on GitHub,” in Proceedings of
the 11th working conference on mining software
repositories. ACM, 2014, pp. 348-351.

E. Guzman, D. Azécar, and Y. Li, “Sentiment
analysis of commit comments in GitHub: An em-
pirical study,” in Proceedings of the 11th Work-
ing Conference on Mining Software Repositories.
ACM, 2014, pp. 352-355.

G. Destefanis, M. Ortu, S. Counsell, S. Swift,
M. Marchesi, and R. Tonelli, “Software develop-
ment: Do good manners matter?” PeerJ Com-
puter Science, Vol. 2, 2016, p. e73.

H. Valdivia Garcia and E. Shihab, “Charac-
terizing and predicting blocking bugs in open
source projects,” in Proceedings of the 11th Work-
ing Conference on Mining Software Repositories.
ACM, 2014, pp. 72-81.

E. Shihab, A. Thara, Y. Kamei, W.M. Ibrahim,
M. Ohira, B. Adams, A.E. Hassan, and K. Mat-
sumoto, “Studying re-opened bugs in open

[15]

source software,” Empirical Software Engineer-
ing, Vol. 18, No. 5, 2013, pp. 1005-1042.

R. Hewett and P. Kijsanayothin, “On modeling
software defect repair time,” Empirical Software
Engineering, Vol. 14, No. 2, 2009, p. 165.

P.J. Guo, T. Zimmermann, N. Nagappan, and
B. Murphy, “Characterizing and predicting
which bugs get fixed: An empirical study of
Microsoft Windows,” in ACM/IEEE 32nd In-
ternational Conference on Software Engineering,
Vol. 1. IEEE, 2010, pp. 495-504.

T. Zimmermann, N. Nagappan, P.J. Guo, and
B. Murphy, “Characterizing and predicting
which bugs get reopened,” in Proceedings of the
84th International Conference on Software En-
gineering. IEEE Press, 2012, pp. 1074-1083.
Python NLTK sentiment analysis with
text classification demo. [Online]. http:
/ /text-processing.com/demo/sentiment/ [Ac-
cessed September 2016].

A. Padhye, Classification methods.
[Online]. http://www.d.umn.edu/~padhy005/
Chapter5.html [Accessed September 2016].

J.R. Quinlan, C4.5: programs for machine learn-
ing. Elsevier, 2014.

L. Breiman, “Random forests,” Machine learn-
ing, Vol. 45, No. 1, 2001, pp. 5-32.

J. Han, J. Pei, and M. Kamber, Data mining:
concepts and techniques. Elsevier, 2011.

M. Mitchell, An introduction to genetic algo-
rithms. MIT press, 1998.

R. Jongeling, S. Datta, and A. Serebrenik,
“Choosing your weapons: On sentiment analysis
tools for software engineering research,” in IEEFFE
International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE, 2015, pp.
531-535.

e-Informatica Software Engineering Journal, Volume 11, Issue 1, 2017, pages: 117-141, DOI 10.5277/e-Inf170106

Machine Learning or Information Retrieval
Techniques for Bug Triaging: Which is Better?

Anjali Goyal*, Neetu Sardana*
*Jaypee Institute of Information Technology, Noida, India

anjaligoyall9@yahoo.in, neetu.sardana@jiit.ac.in

Abstract

Bugs are the inevitable part of a software system. Nowadays, large software development projects
even release beta versions of their products to gather bug reports from users. The collected bug
reports are then worked upon by various developers in order to resolve the defects and make the
final software product more reliable. The high frequency of incoming bugs makes the bug handling
a difficult and time consuming task. Bug assignment is an integral part of bug triaging that aims
at the process of assigning a suitable developer for the reported bug who corrects the source code
in order to resolve the bug. There are various semi and fully automated techniques to ease the
task of bug assignment. This paper presents the current state of the art of various techniques
used for bug report assignment. Through exhaustive research, the authors have observed that
machine learning and information retrieval based bug assignment approaches are most popular in
literature. A deeper investigation has shown that the trend of techniques is taking a shift from
machine learning based approaches towards information retrieval based approaches. Therefore, the
focus of this work is to find the reason behind the observed drift and thus a comparative analysis
is conducted on the bug reports of the Mozilla, Eclipse, Gnome and Open Office projects in the
Bugyzilla repository. The results of the study show that the information retrieval based technique
yields better efficiency in recommending the developers for bug reports.

Keywords: bug triaging, bug report assignment, developer recommendation, machine

learning, information retrieval

1. Introduction

The explosive growth in size and scale of software
systems has led to the creation of various open
source bug tracking repositories. Bug tracking
repositories gather, organize and keep track of
all the reported bugs. Although, a large number
of bug reports help to make the final software
product error free, it is really challenging for the
bug triager to handle such a large volume of re-
ported bugs. When a new bug is reported, a bug
triager analyses the feasibility of bug to verify
if the reported bug is not a mere duplicate and
contains enough information to be reproduced.
If the bug is found to be feasible, it is assigned
to a developer for resolution. For effective bug
resolution, it is extremely important to assign
the reported bug to a suitable developer. Bug

assignment is an integral part of bug triaging
whose goal is the process of assigning a suit-
able developer to the reported bug. The assigned
developer performs various checks and changes
in the source code to rectify the reported issue.
The selection of a suitable developer for the bug
report is a challenging process as it significantly
affects time and cost incurred in the project.
Thus, it is imperative to make an appropriate
developer assignment who is an expert in the
area of the reported bug.

In the past, software projects were small
in size and the count of bugs was minimal. In
those days, it was possible for the bug triager
to perform developer assignment manually but
with passing time software projects grew in scale
and size. Subsequently, software projects became
more complex and in the current scenario, it has

118

Anjali Goyal, Neetu Sardana

become really cumbersome for the bug triager
to be aware of the expertise of all the develop-
ers in a triaging team. To ease the task of the
bug triager, various semi and fully automated
bug assignment approaches have been proposed
in the literature. These approaches gather the
information related to developer expertise from
various sources and utilize it to make developer
recommendations. However, the availability of
a huge amount of bug assignment approaches
appeals for a comprehensive overview.

At present there is no in-depth and focused
survey available specifically in the area of bug
triaging. It has been observed that only J. Zhang
et al. [1] and T. Zhang et al. [2] reported short
discussions on bug triaging in their broad cate-
gory survey on bug handling. This paper per-
forms a systematic, in-depth and focused lit-
erature survey on bug triaging. In this paper,
75 papers from peer reviewed, refereed confer-
ences and journals published during years 2004
to 2016 are summarised in an organized manner.
The existing approaches are classified into seven
categories: machine learning (ML), information
retrieval (IR), auction, social network, tossing
graphs, fuzzy set and operational research based
techniques. The authors further perform an anal-
ysis of these approaches in two perspectives: cu-
mulative frequency distribution and year wise
trend analysis. In addition, they compare the
identified bug triaging techniques inferred from
analytical analysis to find the best bug triaging
technique.

The rest of this paper is organized as follows:
Section 2 presents the anatomy of a bug report
and its life cycle. Section 3 describes the system-
atic survey process. Section 4 reviews the work
on bug report assignment and presents a compar-
ative study on two most popular bug assignment
techniques. Section 5 concludes this paper and
provides some interesting future research direc-
tions.

2. Anatomy of a bug report

A bug report is a detailed record constituting
a full description related to a bug discovered

in any software. It is generally created by the
customers, users, developers or testers of software
system. A decent bug report ought to comprise
three underlying components:

1. Steps to replicate the bug.

2. What is the reporter expected to see?

3. What did the reporter actually see?

A bug report constitutes a collection of vari-
ous categorical and free form textual data. The
categorical data (or meta-fields) constitute fields,
such as bug id, product, component, resolution,
status, version, priority, creation date, operat-
ing system. The free form textual fields contain
keywords, summary, description and comments
posted by the developers for discussing a proba-
ble solution for fixing the bug report. Figure 1
shows an instance of a bug report in the Mozilla
project.

Throughout its lifetime, a bug report goes
through a number of stages. Various fields, such
as status and resolution, vary many a times.
When a bug is reported, the status of bug report
is marked as New. The triager then assigns the
bug to a developer and its status is marked as
Assigned. The developer then fixes the issue and
the bug is marked as Resolved. If the tester finds
the fix to be correct, the bug is marked as Verified
and if not, it is Reopened. After the verification
of the bug, it is Closed. At the Resolved status,
there are multiple resolutions such as Fixed, Du-
plicate, Won’t Fix, Non-reproducible and Invalid.
Figure 2 shows the basic life cycle of a bug report.

3. Systematic review process

This section presents the survey process used in
this work. The guidelines of the systematic lit-
erature review (SLR) by Kitchenham and Char-
ters [3] were used in this work.

3.1. Survey process

The review process was started with an initial
search where the renowned journals and confer-
ence proceedings which contained papers con-
cerning bug triaging were selected. Other used
materials encompassed even e-sources relevant to

Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better?

119

Bug 185122 - View > Character Encoding > Auto-Detect options are confu-:.ing‘__ Summary
Status LVED FIXED
a fixed by bug 805374
Bug D Keywords
Product Fire x)
Component: Mer
Version £
Platform: Al &
Importance: P4 minor with
Target Milestone: r
Assigned To,
QA Contact,
Mentors
unL
Duplicates b e (
Depends on
Blocks
Attachments Attachments
E te t
eu-Age touiila - on-U3: Ja) Geshe/30031307 Pheenin
onsifier: Mesilla -4 - 3a) Geshes/30031307 Fheenin
o Res
eiecves o3 as saiie : o
cFf- -1 @ PS—— es iv mean shas ausedeve e
be * when I sheess -shinese Yhae oot seaoe
Figure 1. An instance of bug report
Assigned Resolved
FIXED
INVALID
. WONTFIX
litzopenss Verified l DUPLICATE
NON-
REPRODUCIBLE
Closed

Figure 2. Life cycle of a bug report

software engineering: IEEExplore, ACM Digital
library, Google scholar, Citeseer library, Inspec,
ScienceDirect and EI Compendex. Selecting such
venues ensured that the selected articles meet
worthy standards.

To further ensure that no important papers
in bug assignment are missed, certain keywords
closely related to bug report assignment were
identified in the articles obtained from the above
venues. A google search was performed to find the
identified keywords: bug triaging, bug fixing, bug
resolution, bug report assignment and bug AND

developer recommendation. These keywords were
intentionally broad enough to cover as many arti-
cles as possible, although many were less relevant
to the present scope of the study. After perform-
ing the preliminary keywords and venue search,
the studies that propose new bug assignment
algorithms were identified. A large number of pa-
pers in the keyword search also resulted in papers
other than bug report assignment, such as bug du-
plication, bug localization, severity/priority pre-
diction. All such papers were excluded from this
review. After reviewing the titles, abstracts and

120

Anjali Goyal, Neetu Sardana

Table 1. Distribution of reviewed papers among various sources

Type Acronym Description No. of papers
JSEP Journal of Software: Evolution and Process 3
JSS Journal on Systems and Software 2
JSW Journal of Software 2
Journal . . .
TSE IEEE Transaction on Software Engineering 2
Others 7
Total 16
APSEC Asia Pacific Software Engineering Conference 2
ESESC/FSE European Software Engineering Conference/ ACM 3
SIGSOFT Symposium on the Foundations of Software Engineering
ICSEA International Conference on Software Engineering Advances 2
ICSE International Conference on Software Engineering 5
ICPC International Conference on Program Comprehension 2
ICSM International Conference on Software Maintenance 3
ICT-KE International Conference on ICT and Knowledge Engineering 2
MSR Mining Software Repository 7
Conference PROMISE International Conference on Predictive Models in Software Engineering 2
SAC ACM Symposium on Applied Computing 3
SEKE International Conference on Software Engineering and Knowledge 2
Engineering
ESEM International Symposium on Empirical Software Engineering 3
and Measurement
COMPSAC International Conference on Computers, Software and Applications 2
Others 21
Total 59
TOTAL PAPERS (16 + 59) 75

skimming through full articles wherever required,
finally 75 papers were reviewed in this study.
Each paper was thoroughly verified to assure
its the correctness and relevance. Table 1 enlists
the distribution of papers across various sources
concerning bug report assignment. The venues
at which only one surveyed paper was published
are grouped together in the “Others” category.

3.2. Inclusion and exclusion criteria

This paper surveys the articles meeting the fol-

lowing inclusion and exclusion criteria:
Inclusion criteria:

1. Papers must relate to developer assignment
in bug repositories.

2. Papers must describe the methodology and
experimental evaluation of proposed algo-
rithms.

3. Papers must be published in peer reviewed
journals and conferences.

Ezxclusion Criteria:
1. Papers that are duplicates of similar work.

2. Papers that do not describe the methodology
and experimental evaluation.

3. Papers that are not published in peer re-
viewed venues.

3.3. Related surveys

In the past, J. Zhang et al. [1] and T. Zhang
et al. [2] performed surveys closely related to
this work. These surveys cover all the stages
of bug handling, i.e. bug report analysis, bug
triaging and bug fixing as shown in Figure 3.
Short discussions related to all these stages were
carried out in their respective studies. However,
a comprehensive overview on each individual
stage of bug handling is still missing. This paper
focuses on the second stage of bug handling, i.e.
bug triaging (or bug report assignment). Bug
triaging is an integral stage of bug handling which
focuses on the selection of a suitable developer
for bug fixing. Hence, this work presents the first
large-scale, in-depth, and focused study of bug
report assignment. J. Zhang et al. [1] reviewed

Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better?

121

Bug Report Analysis

* Bug report
summarization

* Duplicate detection

* Severity Prediction

* Bug report prioritization

Bug Triaging

* Bug report assignment

Bug Fixing

* Bug localization
* Fix time prediction

Figure 3. Classification scheme for bug handling process

14 papers whereas T. Zhang et al. [2] reviewed
21 papers related to bug report assignment in
their respective studies. The range of surveyed
papers covered in this work is larger than in these
earlier works. This investigation encompassed the
reviews of 75 papers on bug report assignment.
It covers papers published before July 2016..
Hence, this study is more comprehensive and
up-to-date as compared to the other surveys.

3.4. Research contribution

The following new research contributions differ-

entiate this work from the prior studies:

1. This paper presents the first in-depth, sys-
tematic and focused survey on bug triaging
considering 75 papers from peer reviewed,
refereed conferences and journals published
during years 2004 to 2016.

2. Inference drawn from the systematic litera-
ture review illustrates ML and IR to be the
most popular bug triaging techniques. Thus,
a comparison of these popular techniques was
done to identify the best bug triaging tech-
nique.

3. The paper presents the experimental results
of the empirical analysis of two four scale
open source projects, Mozilla, Eclipse, Gnome
and Open Office of the Bugzilla repository.

4. Bug report assignment

Numerous researchers proposed different bug as-
signment approaches to semi or fully automate

the developer recommendation process. Bug as-
signment approaches can be classified by the
methodology used in the recommendation pro-
cess. It can be divided into two broad categories:
activity profiling of developers [4-8] and location
based techniques [9,10]. The general idea behind
the activity profile based techniques is to develop
an expertise profile of each developer by using
topic modelling. A list of topics is made on the
basis of historically fixed bug reports and a mem-
bership score is computed for each developer with
respect to each topic. This score represents the
involvement of a developer in a particular topic
in the past. For any new bug report, the topics
are extracted and the developer with maximum
score corresponding to the obtained topics is
recommended. The activity profiling of develop-
ers suffers from two major problems: a) Obso-
lete profiles after some time, b) The developers
switch teams or new developers are added, which
changes the developer profiles to a major extent
thus reducing the recommendation accuracy after
some time. However, the high efficiency achieved
by activity profile based approaches when the
profiles are updated cannot be overlooked.

The location based bug triaging techniques,
on the other hand, locate the source code files
that need to be updated in order to resolve the
issue. The developers who had earlier worked
upon these files are considered to be suitable for
further updating of these files. These approaches
usually make use of the version control repository
of the project and thus the data source is more re-
liable. However, the two-level predictions, firstly
the source code files that need to be changed in

122

Anjali Goyal, Neetu Sardana

Machine Learning,

Information Retrieval,

Tossing Graphs,

Fuzzy Sets,

Euclidian Distance.

J. Zhang et al. [1]

Machine Learning,
Topic Model,

Expertise Based Models,
Tossing Graphs,

Social Networks.

J. Zhang et al. [2]

e Machine Learning,

e Information Retrieval,

e Tossing Graphs,

e Fuzzy Sets,

e Social Networks,
e Topic Model,

e Auction based model,

e Operational Research.

Present study

Figure 4. Classification categories in different studies

order to fix the bug and secondly the developer
choice, limit the accuracy of the location based
approaches as compared to the activity profile
based approaches. Therefore, the activity pro-
file based approaches are more popular for bug
report assignment in industry.

4.1. Classification based on
popular techniques

J. Zhang et al. [1] conducted their study in 2015
and identified bug triaging into five categories:
machine learning, information retrieval, tossing
graphs, fuzzy set and the Euclidean distance.
T. Zhang et al. [2] conducted their study in 2016
and identified bug triaging into the categories:
machine learning, topic model, tossing graphs,
social networks and expertise model based tech-
niques. In this study, seven categories for bug
report assignment were identified after careful
inspection. The categories considered first are
the ones which were present in both studies, i.e.
machine learning and tossing graphs. Next, the
papers related to topic modelling and the ex-
pertise based model in the category information
retrieval were added. The categories which are

present in either of the previous studies, i.e. fuzzy
sets and social networks, were also considered. In
addition, two new categories were identified: auc-
tion based techniques and operational research
(OR) based approaches. Further, the OR based
category include the work related to the areas:
Euclidean distance, genetic algorithm and greedy
optimization. Hence, after a systematic evalua-
tion of literature, finally seven categories for bug
report assignment were inferred: machine learn-
ing, information retrieval, auction, social net-
work, tossing graphs, fuzzy set and operational
research based techniques. Figure 4 shows the
classification categories considered in different
studies. Among the seven identified categories,
machine learning and information retrieval based
techniques are automated and the others are
semi-automated. The literature was classified
and reviewed under these seven heads as follows:
Machine learning based approaches (see
Tab. 2). These approaches train a supervised or
unsupervised machine learning classifier with bug
reports fixed in the past and then use it for the
selection of prominent developers for new bug re-
ports. Cubranic et al. [11] presented one of the few
initial bug report assignment approaches based on

Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better?

123

supervised machine learning classification. They
considered the report developer assignment as
a text classification problem and trained the ma-
chine learning classifier using the tokens obtained
from a textual description of fixed bug reports.
They correctly classified 30% of Eclipse bug report
assignments using supervised Bayesian learning.
Xuan et al. [12] highlighted a drawback resulting
from the deficiency of labelled bug reports in bug
repositories. They first labelled all the unlabelled
bug reports using a combination of Naive Bayes
and the Expectation Maximization algorithms
and then used the labelled data for training
machine learning classifiers.

Anvik et al. [13] recommended to use eight
information sources for developer assignment in
contrast to the usage of tokens obtained only
from a textual description of bug reports. They
proposed to use the textual description, compo-
nent, operating system, hardware, version, de-
veloper who owns the code, current workload of
developers and developers actively participating
in the project to select a prominent developer
for a new bug report. They classified bug reports
using the support vector machine algorithm and
obtained 57% precision for the Eclipse project
and 64% precision for the Mozilla project [14]. Al-
though, the inclusion of eight information sources
augmented the proficiency of bug assignment se-
lection, sometimes it is still not probable that all
the designated eight parameters from each bug
tracking system will be obtained.

For instance, large open source bug reposi-
tories do not distribute the data concerning the
workload of their developers. Thus, it is not al-
ways practical to incorporate all the eight fields.
Anvik et al. [15,16] extended their work in order
to equate various machine learning classifiers,
such as Naive Bayes, Support Vector Machine
(SVM), C4.5, Expectation Maximization, Con-
junctive Rules and the Nearest Neighbour (NN)
algorithm. Their experimental results exhibited
that SVM is the most efficient tool for bug as-
signment. Similarly, Lucca et al. [17] compared
k-NN, SVM and the probabilistic model for bug
report assignment.

Bhattacharya et al. [18] surveyed the influ-
ence of different dimensions on bug report as-

signment. They studied how different dimensions
such as the choice of a classifier, feature selection,
the inclusion of tossing graphs and incremental
learning affects bug triaging. Their investigation
showed that the Naive Bayes classifier and the
product-component pair as the parameters and
the inclusion of tossing graphs along with in-
cremental learning are the best suited dimen-
sions for bug triaging. Their approach achieved
significant reduction in tossing lengths. Hu et
al. [19] presented a developer-component-bug
based bug triaging framework, BugFixer. Xuan
et al. [20] focused on the problem of using large
datasets for bug assignment, thereby increas-
ing the computation time and complexity of
different algorithms. They utilized the combi-
nation of feature and instance selection algo-
rithms to choose a dataset for the training of
a classifier. Their results demonstrated that scal-
ing down the dataset significantly diminishes
the computation complexity and also increases
the classification accuracy. Xia et al. [21] pro-
posed DevRec, a dual analysis model which
consists of bug report (BR based) and devel-
oper (D based) analysis. DevRec is tested on
five large projects: GNU, Compiler Collection,
Open Office, Mozilla, NetBeans and Eclipse. The
precision@5 and precision@10 of DevRec vary
from 21.00% to 31.96% and 13.31% to 18.59%,
respectively [22].
Machine Learning based approaches consider
bug report assignment as a single-label learn-
ing problem. In the previous studies, Naive
Bayes is the most popular classifier in ma-
chine learning based approaches and it is ex-
tensively experimented on in the bug reports
of the Bugzilla repository.
Information retrieval based approaches
(see Tab. 3). These approaches consider bug re-
ports as documents and transform them to fea-
ture vectors which are then processed for optimal
developer assignment. These approaches work on
the principle that developers with similar exper-
tise towards a certain kind of bugs are proficient
enough to solve the new bug report of a similar
kind. These techniques consider developer’s past
expertise towards historically fixed bug reports
so as to select a prominent developer.

124

Anjali Goyal, Neetu Sardana

Moin et al. [23] presented an n-gram based
string matching algorithm for bug triaging in
the Eclipse JDT project. They transformed the
historically fixed bug reports to n-gram tokens.
The proposed an approach which matches the
n-grams of a new bug report to the n-grams of
historically fixed bug reports and allows to find
the related fixed bug report. The developer who
had fixed the historically similar bug report is
designated for the new bug report as well. Matter
et al. [4] utilized vocabulary obtained from the
source code contributions of developers to build
a term-author matrix. Each entry in the matrix
represents the frequency of term with respect
to a developer. This frequency is considered the
expertise of a particular developer with respect
to a particular term. For a new bug report, the
vocabulary obtained from the textual description
of new bug report is matched with the vocabulary
of the term-author-matrix and a developer with
the highest expertise is designated for the new
bug report. Similarly, other researchers used the
smoothed unigram model [24], latent semantic
indexing [7,25,26], similarity computation [27,28],
vector space modelling [28-30] and topic or term
modelling approaches [5,6,31-37] for developer
recommendation. Ahsan et al. [25] implemented
dimensionality reduction using feature selection
and latent semantic indexing in the expertise
matrix.

Somasundaram et al. [38] merged information
retrieval with a machine learning based technique
for effective developer recommendation. They re-
viewed three algorithms, SVM-TF-IDF (Support
Vector Machine-Term Frequency—Inverse Docu-
ment Frequency), SVM-LDA (Latent Dirichlet
Allocation) and LDA-KL (Kullback Leibler Di-
vergence) and determined LDA-KL to be most
effective for developer selection. Shokripur et
al. [39] mined information from the version con-
trol repository of the project to propose a lo-
cation based technique for bug triaging. Unlike
other approaches, they did not utilize the in-
formation obtained from bug tracking systems.
Their approach allowed data to be used in new
projects also as the underlying data used for rec-
ommendation which does not get obsolete after
some time.

Shokripur et al. [9] used only the index of
unigram noun terms for bug triaging. They con-
cluded that using only unigram noun terms short-
ens the token index and does not affect the recom-
mendation accuracy. They associated the noun
terms with the source code files of the project and
then fetched developers who had earlier worked
on the linked files for recommendation. Time
based expertise decay is also efficient for devel-
oper selection in bug report assignment [40-43].
The knowledge of a developer degrades with time.
Hence, the calculation of developers’ expertise
should also comprise time usage as a factor for
frequency normalization. This normalization low-
ers the weight for terms that were previously used
and keeps the training data updated. This capa-
bility of information retrieval based techniques
makes them popular for optimal bug report as-
signment.

The information retrieval based approaches

consider the developer’s expertise for bug re-

port assignment. They utilize a large number
of the meta-fields of bug reports along with
tokens obtained from textual contents. Term
frequency modelling is the most popular IR
based bug assignment approach.
Auction based approaches (see: Tab. 4). Hos-
seini et al. [44] proposed an auction based tech-
nique for developer recommendation in bug repos-
itories. Upon receipt of a new bug report, the
bug triager auctions off the bug report to de-
velopers. The software developers who want to
work on the auctioned bug report bid to gain it.
The bug report is assigned to one of the inter-
ested developers on the basis of their bids and
current workload status. These techniques are
advantageous as the chances of success in such
approaches are high as the bidders themselves
desire to take the responsibility for fixing the
bug. Such approaches usually benefit by moving
the style from ‘doing the job right’ to ‘doing the
right job’. However, they usually suffers from time
delays as the time required for suitable developer
assignment is long.

The auction based approach leads to a slower

developer assignment process. However, this

increases developer’s confidence towards

a bug.

Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better?

125

Social network based approaches (see
Tab. 5). A social network refers to the network of
social interactions and personal relationships. So-
cial network approaches utilize the relationships
between developers and bug reports for the selec-
tion of a suitable developer. They compute the
developer expertise based on various influencing
factors of the network. Various past studies used
social network based approaches for bug report
assignment [45-49].
The social network based approaches are a re-
cent development in bug triaging. They con-
sider various parameters for decision making
and additionally incorporate complex compu-
tations in bug triaging task.
Tossing graph based approaches (see
Tab. 6). In a normal scenario, a bug triager as-
signs a bug report to a software developer who
makes source code changes in order to fix the bug.
If the assigned developer is not able to resolve
the bug, then a new developer is assigned for the
bug report. Such a process of switching over the
bug to new developers is known as bug tossing.
Bug tossing is a major problem in bug triaging
as approximately 93% of bug reports are tossed
at least once in their lifetime [50]. Various re-
searchers propose the use of tossing graph based
approaches for bug report assignment in the lit-
erature [50-52]. These approaches consider the
historical tossing chains illustrating the switching
of developers in the past. For a new bug report,
the developer is selected on the basis of previous
expertise and then tossing chains are checked to
identify the most suitable developer.
The tossing graph based approaches help
to significantly reduce tossing path lengths.
They use various bug meta-fields and topics
obtained from textual parameters for similar-
ity calculation and then use historical tossing
chains to find the most suitable developer.
Fuzzy set based approaches (see Tab. 7).
Fuzzy sets are sets whose elements have de-
grees of membership. Fuzzy set based bug
triaging approaches compute the expertise (or
membership score) of developers with respect
to various topics obtained from bug param-
eters. Tamrawi et al. [53, 54] proposed the
fuzzy set based approaches in the past. These

approaches formulate the term frequency val-
ues of IR based approaches into fuzzy set
memberships. When a new bug report arrives,
matching tokens are obtained and the corre-
sponding membership scores are aggregated.
The fuzzy set based approaches use the fuzzy
set theory in which the most descriptive terms
characterizing each developer are collected
and then used to measure the suitability of
a developer for a new bug report.
Operational research based approaches
(see Tab. 8). Bug report assignment is an NP
hard problem. Hence, different practitioners and
researchers have used mathematical techniques,
such as greedy optimization, genetic algorithm,
the Euclidean distance, to resolve the problem
of bug report assignment. Niknafs et al. [55] pre-
sented a study on using the genetic algorithm
and the multi criteria decision making technique
in the personnel assignment problem. Rahman
et al. [56] proposed the usage of the greedy opti-
mization technique for developer assignment in
bug tracking systems. Xia et al. [21] proposed
a machine learning based approach for bug as-
signment where the similarity between developer
and bug report is calculated using the Euclidean
distance. Panagiotou et al. [57] proposed the
STARDOM approach for bug report assignment
and concluded that the analytic hierarchy process
(AHP) should be used for the profile construction
of developers and for the ranking of developers.
The operational research based approaches
utilize mathematical models for bug report as-
signment. However, scalability issues in such
models for large scale open source projects
are still questionable.

4.2. Key observations

In this work, the authors have reviewed 75
research papers published during the years
2004-2016. As a result seven categories of bug
assignment approaches have been identified. The
categories, as mentioned earlier, are: machine
learning, information retrieval, auction based,
social network, tossing graphs, fuzzy set and
operational research based techniques. Based on
this in-depth survey, this study is analysed from

Anjali Goyal, Neetu Sardana

126

‘SoInyeof

9IOUWL SPodU)]
‘UOT)eNeAd IO0J Posn
ST j9se)Rp 9SIUIY))
Arejorrdoad oy T,

‘goeordde

poseq x99 o1} pauriojradino yoroxdde
poseq 1xo3 -UOU o[} Je)} PIYRIISUOUWSD I]
“josejep Snq oseury))

oY} 10} [epow juotusisse Snq e pasodoid 9]

(6) A9urotad Snq

‘PI o[npow ‘Iojjruqns
‘pI oseyd ‘sseo

8nq ‘edA) 3nq ‘degs

‘uorydrosep ‘Aremrng

1988IRD
asauIy)
Arejorurdorg

[12]
TR 90 ury

*SOIN)RAJ SIOUWL SPIdU
Os[e puesjosejep
aIo0W UO

porpdde aq 09 spesu
91 ‘uoryejuLWILIdXe
103 3nq osdipoy

o) A[uo pesn 9]

"900foxd esdi[oy o1} 10] %G 0}

dn Aq poaoxdwr st WYILIOSR SoAeq dAIRN
[eurstio jo 9ouruwIojiad oY, "UOIIONPII

Jes Jururer) ege ssng Jjo 9,()G PIAOWLI 1]
“’)ep

As10U FUTAOWDI I0] POSN ST UOIJID[OS DINIRI]

(z) uorydriosop
pue Arewrung

osdrpo

(87r)
gurureo ouryoej\ 600g
(sofeg
QATRN] ‘UOI109[0S
QouR)sUl
‘70190908 21N)edJ)
gurureo[ouIyoRIN 110G

[02]
‘e 30 noy,

1500 pue awr)
reuoryeinduod Y3y

‘[)8Us] SUISSO) PooNPal A[JUROYIUSIS
"JULWIUSISS® SN I0] [opout

pogns 4s0q 9Y) Se SUINIRd] [RIUSUISIOUL
aIm sydei8 Sursso) Jo 9sn oY) pur SaInjes]
105 ared quouoduwoo-jonpord ‘I1oyIssero

I0J POPN[OUOD ST W)LIOS[R Soheq SAIRN 9T,
“Surserr) Sng uo SUILILY] [RIUSUISIOUT PUR
sydersd Sursso} Jo UOISNOUL ‘UOIJIS[AS NI
‘TOT)09[9S IOTISSL[D SB [ONS SUOISUDWIP
snotreA Jo 30eduwll o) POUTUIRXd]

(¢)

yuouodwos ‘yonporg

osdrpoy
pue B[[IZ0N

SUTUIRS] SUIYDRIA

(NAS

‘8P SI0MIN
ueIsoAe(
‘sofeq oATeN)

[8T] Te 30

¢T0G eATeyRRIYRYg

IShais
110dsa1 8nq e Jo [eqe[

* IOYISSB[D
soked aAreN oY} A[uo uisn 0} paredurod
se 919 Aq posoadur ASUSIOIJO UOIIRIYISSR))

UOT}RZTWIX BT
uorjejoadxs

oY} 93e[MO[RD 09 "paIapIsuod st syrodar Snq (z) uwonydriosop ‘sofeq oAreN) [21]

PeOYISA0 [RUOTHIPPY po[qe[Jo Aoustoyep oy jo werqoid oy T, pue Lrewrming osdioyy Surures] surReRN (T0Z T8 30 ueny

syrodar Snq asdide PaISPISUOD oIk UOTRIYISSE[D I0] SIojotuered (z) uorpdriosep (sakeg aareN) [11] ‘T 70

10] AoRINDO®R 0G (OE [eN9)X0) 91} WOIJ PojeIdUS SUOT, pue Lrewruing osdipoy Surures] ouryIRN F00Z oTuRIQN))
(s1ogourRIeJ#) Jose)ep

SLIDUIAP /S IRUIDY] S)LIOW pUR ATRUINS POYIOIN smojoureIe [eyuowiiodxy — posn onbruyod], Ieox 1odeq

soyoreordde poseq SuUILILd] dUIYDRW JO UOSLIRdWO)) g O[qRL

127

Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better?

-gurssiur ore RI[IZOIN
‘Uor3007es IojouwreIed ‘posodoad ‘TPouIay[
ur jueuoduod ST AoeInooe SUDYLIDRS AJJURIYIUSIS (y) uonydrrosep Xnur (urepowt
ons ‘soInjesy INOYIIM 1SOD SOONPOI YOTYM [OPOW [eNIxo) ‘Ouojso[Iu ‘osdrpoy 01d0Y) [eASLIJOI (2]
3nq juejrodwy SULIOY[SATYRIOQR[[0D POISO0(] JUSIUOD Y ‘urrojyerd ‘UOISIOA ‘otpedy uoryeuwLIoju] 10 € 30 OOA\
19s83Rp
(s1ogoumreIe J#) e}
SILIOUIOD /S IR SJLIOW pue AIRWUWINS POYIDTA slojowrered — -UowLIDAXH posn onbruyoo], Ieax Todedq
soyoeoldde paseq [BASLIOI UOTIRULIOJUI JO uosLredwo)) ¢ o[qe],
‘poxmbai joseIep
98IR[U0 JUI)so}
STIOIOSII SIOTN] RI[IZO]N (Bururuu
"SUOT}RPUSTTOIT ‘SIS O[TLI UOIJRIDOSS®)
¢-doy 103 918 01 dn ‘wy3LI03[e Surder) Snq uo paseq (¢) Aremring uoppy ‘parg Surureo| [7L] Te 10
Aoeanooe pojrodoy —Sururw ol uorpeosse [paou e pasodoid 9] ‘Aot ‘AIeseg Iopuny,J, QUIYORIN GT0% RULIRYS
"(sy10do1 8nq Ie[uuls puy o9) 003
‘uorpe[nofed sisAreue peaseq jrodar 8nq pue (siedofessp ‘o1 wad(
Ayrerruns quoutwiold Jo 99s e puy 07) peseq 1odopasp (g) p1 1odofosep ‘suraIoN (moquStoN
8nq I0J saInjes] :s1sATeur Jo sod4y omg) surrojrad ypoIym ¢ uoryduosep ‘Arewrns ‘osd1or] 159IRON-Y) [12]
9IOW SPOdU 4] [epowt o3sodwod ' ‘0o1a9(] posodoad 3] ‘guouodwiod ‘ponpoid ‘@[[IZOJN SUIUIRI[SUIYIRIN E£T0T ‘Te 190 'ry
-osdrporg
10 gg pue 20N (8¥r ‘INAS
103 (LT ‘Trews "900(oxd asdr[of o1 10] % F9 pue R[[IZO]\ () worpduosep 008 ‘esdrog ‘safeq oAleN) [eL]
00} ST 9ZIS 195 1597, 91 10] 9 .G sem UOISIaId paure)qo oy, pue Arewrung ‘“e[[1ZO]N SUIULIRS] SUIYIRIN 9007 'TB 10 AUy
dogsso(] 991
‘s19jounreIed JULUIUIISS® ‘sueagI1oN
UOI}BT eAD 8nq ur 1ejourered reryuSNpuI jsow (¢) yueuoduroo ‘osdrpoy (saheg aareN) [c2] T 1
9IOUI SPadu 9] oY} SI JuauoduIod 9y} ey} POIRIISUOWIP 3] ‘19310d01 ‘ATRMITUNG ‘“e[[1ZO]\ SUIULIRd] SUIYIRIN £T0F ugejueq

Anjali Goyal, Neetu Sardana

128

-os1)10dx0 (stsATeue
9sed o1} 03 SUIPIOIOR poUSISSe U[) OIJURUWIOS
‘popoau ST Jur)so) aI1e s1odoPadp oY], "s310dal Snq Ie[IWIS (1) Ju9Ye]) TeAdLIOT [L] Te 10
SNOJOSLI oI0[N 9NdWIod 0 XIIJeW ULIdY Snq ® Pa[[opow 1] uondLIosop [enixay, osdrjory uonjewtioju] 110z gelely
‘UOT)RULIOUT [enjnur pue Aouonboig (9)
-onbruryosy ooueAs[aYy Aduenboalg wre], ‘erenbg-y) jusuodwo)) ‘Arewrming OUIORAl (Burepow
189q 93} 9q 0} PUNOj ‘o1peY] SPPO 80T A[PwRU ‘Spoyjoun ‘paduey)) ‘pouad() ‘sueag 1N ordoy) Tesstriax [ce] Te 1o
sem orenbg-1y) UOIJOS[dS ULISY INOJ JO 9SN 9} POIRSIISOAU] ‘9oudIssy ‘(I Sng ‘osdrIporg UOIJRULIOIU] €T(7F VA EI A
‘spr0daI
8N PoXY [BILIO)SIY WO} J[IN(S[EPOUT (Burepowm
"SoInyes) o1doy uo paseq asipradxo s 10do[eAdp 9Y) (1) y0dex p,r esdipyg ordoy) Tesstriax [1€]
alow soamboy — sppowr wojar(] yoreoidde pasodord oyy uy 8nq ur sordoy juenbor] pue e[[IZO]N uoljRULIONU] 107 TR 10 OrX
HSVOINN
‘LMId
uorjejyuowIIRdxo asdrppy (Aouenbay
10] sjosejep ‘Juemrugisse 310dal 8nq 10j onbruryooy (g) uorydriosep ‘uorponI)s WLI0Y) [RADTIIOI [9] Te 10
[[BWS PaIopISUO)) poseq o[goid A1a130€e Ue pesodoid pue jueuodwio)) -U0IY SB[IY UOIIRWLION] £T(F qmsgey
‘%811 0%
[rews 009 josejep dn juowRA0IdWI AO€INIOR SMOYS UOIJRNeAd TINNOSTY (Aouenbay
oy} ur rodopaaop reyuowittodxy ‘yorordde Suryydrom ‘suraIoON ULI9}) [RASLIIDT [0F] Te 1o
anbrun jo ‘oN wLe) yoeordde poseq-owr) e posodoid 4] (1) sueg UNON ‘osdrporg uorjeuLIoju] G107 Inodijoyg
Rall
A[uo uorjepuewnodsl ¢-dog 103 100foxd e[Izoy
LG pue § :jesejep 10] 9492°6G pue 9sdIdF oY) 10] % TH 68 O
ur stodopessp dn Aoeinooe pojiodoy -siodopasp oiqeqoid
onbrun jo ‘oN oY) s3s1] oseyd puooes pue pojepdn oq (1) sI0yIIULPI pPUR (enbrutey
00T:0ZIS 99 1S9, 01 SO[J 9P0d 92IN0s oY) s1o1paId oseyd 9s1y SO8eSSOUW JUSUIOD pose(uoIyes0y)
‘[rews 003 oy, “juswudIsse j10dor 3nq I0J onbruyps) ‘S8 SPOO 90INOS WOIJ osdipoy [eAQLIJOI [6] Te 10
S19SB)ep UOTYen[eAr] poseq uoryeoo] paseyd-om) e posodord 3] PojORIIXD SULIOY UNON PUe B[[IZOJ\ uorjewrioju] ¢1(0g JInoduioyg
(¢) s1odojonop (opout
(100lo1g esdrior o1 ‘syjuow ¢ St sI0do[oAdp 10} J1090%] Jo uornyedmornred poseq os1rodxo
ur ozIs 9s1] 1odo[eadp Aedop owr) pasnh oY T, “ejep 9] Ulel) 01 POl oAT10® ‘UO1)dII0Sop Arengeson)
1-dog 10] %9°¢g) ON "oIoy pouloo sem siedo[easp Jo osijredxe pue 9pod pajeIdIosse [eAdLIYOI [7] Te 10
anyea uotsoald mor oY} [opOW 0} XLIJeW JIOY)HNe UL} oY, O} Sumo 19do[esdp Y asdrjory UOIYRUWLION] GOOT, I033eIN

129

Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better?

“poofoxd eyizoy

a9} I10J)9°() 03 dn ST oNyeA [[BDDI POUIRIQO
9y, "I0M)9U [RID0S © WO SI0dO[oAsD
JUel 0} SOLIJOUL SSOUSSO[d PUR SSOUUIMID]

‘s1ojourered ‘S{uel o8ed ‘0o139p-Ino ‘9oI3op-url SOSTL UL}
oruIy)LIoSR Jsnlpe pue yoIess ImMoquSN JsoreaN-y o) Jo d[oy (g) uorydriosep [s7]
09 9S00 [RUOIYPIPPY 9} YIMm s110dol Snq Ie[IUIS [ROLIO)SIY SPUY 1] pue Arewrung R[[IZOJ NIOMIOU [RI00S TT0Z 'TB 10 A
jose)ep
(s1oj0mRIRg#) [RjUL
SYLIOUIOP /S IR} SILIOW puR AIRTIWINS POYISA siojemreIRg -Ldxy pesn enbruypa], Ieax Todeg
soyoeordde paseq YI0m)oU [RIDOS JO uostreduro)) G s[qey,
(gg) syuawtod jo Iaquunu
pue swWeU 0} PAUSISSe ‘DUl I9310dal ‘S9j0A
"AToA10odsar oull) UOIJROYIJIal SN SoARS ‘Paydo[q ‘ssnq juapuadap ‘ouojss[iu jo31e)
‘syoolord osdi[oy pur R[[IZO[N POYIOW oY} [[RISA() "SUISSO)} ‘Ay110a0s 3nq ‘Ajurorid ‘spromAay ‘Uor3eso[
o[} I0J paure)qo %FI'Gg SNq JO SedURYD YY) SOONPAT o[y Snq ‘pr oyeor[dnp ‘uornjosel ‘snjels
pue %yeree 03 dn sonyea 9] -os1y10dx0 /1s0109TT 8nq ‘welsAs gurjerodo ‘wrojjerd ‘uorsioa osdroyy enbrurpey
£oeImooy mor ‘ssedoid umo Iy} 1od se Spiq umo “yueuoduod ‘onpord ‘pr UoIpROYISSL[D pue poseq [7¥] T8 10
Juotudisse Iodoeasp mo[g I} dorld siedofeasp o T, ‘ogep pojepdn jse[‘ojep uoIjeaId ‘pr sng R[[1ZOIN uonony gr0g — TUessoy
jose)ep
SILIOT [RIUOT posn
S)LIOWaP /S IRIUSY] pue Arewruns poyIa (s19jomrRIRJ#) SI9jOUIRIR] -tiodxs onbruype], Ie9x Todeq
yoroxdde peseq uonony ‘§ 9[qe],
‘ouIly 98esn 1se[oY) 0} SUIPIOIDR POPRISIP
U9} oI XLIJeUW oYY} Ul sonfes Aouonbaiy
9, 'XII}eW IOYjNe WLId} © 938dID 0} (y) wogshs (Aouenbay
‘popedu SplRy-elaw 3nq sosn YOIYM Julserr} Snq 1o Suryerado ‘Ajrrorad osdrporg ULI9}) [RASLIIDI [17] Te 1
9I® S9INJed] 910N onbuyoo) paseq Aedop owrg ' pasodoid 3] ‘Ajrresss ‘yuouodwio) pue R[[IZOJA UOIYRUWLIONU] 9T(F, eluy

Anjali Goyal, Neetu Sardana

130

syders 3urssoy

%98 01 dn yjSuo| Sursso)
Poonpay “IopUSTOIAI Snq & JO AOUSIIJo

(9) uondriosep
pue Arewrns woIj

JO UOT}ONLIISU0D 9} o[} aroxdwr pue syj3ue] yjed 3uissoy pourejqo spromAey osdipy
I0J poppe 9¢ P[NOYS oY) 90NPAI 0} SIOYISSe[O SUTUIRS] SUMDRW M ‘yueuodwod ‘gonpoid pue [0g] Te ¥
s1ojowrered 8nq o1ofy Suoe sydeis Sursso) aInjes-1jnw paziin 9 ‘pI odopeasp ‘pT Sng eI[IzolN ydeid Sursso], (107 RAIeydR)RUG
19581Rp
(sogomrered#) [ejuow
SILIOWOD /S IR} SILIOW puR AIRTIWNS POYIOIA sojowreIRg -Lodxy] posn onbruype], Ieax Todeq
soyoeoidde poaseq ydeid Sursso} jo uostreduro)) g o[qr],
(@)
‘s300[qo osoy) Fuoure
SUOT)R[DI JUSIOPIP
gurjouop syuly
‘so11091s0da1 Snq aremijos ul sjueuoduwiod se [Pm se ‘sjusuoduod
09 s10do[PAdD WOI] UOTINLIYUOD Jo sodA) pur ‘syuewrmnod ‘sgnq osdIpoy
‘sseo01d xo[durod ordiynur o) [PpOUW 0} YIOMIDU UOIINGLIUOD ‘s1odoToAep se ons pue [67] e 20
A[reuoryeinduro)) Jodo[eAdp SN0dULS0I019Y © POONPOIIUT 1] s300(qo pozmn 37 e[[IZON NIOM)OU [RIO0S €T0T sueyy,
“Suryojewt “Suryojewr plomAsy pue jusuodurod (9) queuodumoo ‘(7
AjLre[Tuals 10J posn TeIWIS WO} POJORIIXS 9I€ SIOINLIJU0D Iodo[eAdp ‘solrewruuns
9q poys sijowrered [eULJ0J “juewugisse jr0dor Snq 10j yorordde ‘syuowItod JO Ioquunu [8¥] e 20
8nq reuonIppy peseq yIomjou rodopasp nmu e pasodoid 97 ‘morydrmsep ‘(T Sng ssoq [JIom)ou [e0S F10G suex
‘uoryezirrorrd ur pasn
U9} ST YOIYM YIOMIDU [RIJOS € JONIISUOD 09 (2)
posn st s1odoeAdp JO 99189p-1n0 o1 ‘Yoeordde SHUSWIUIOD PUR ‘QUIT)
posodoad oy uy ‘yoroxdde [ROIUYDIV}-OIO0S B uorpeard ‘uonydumosep osdippy
(%06 01 dn) Surpuejxe Aq welqord uorjeziyroud edofeasp ‘Arewiuns ‘Ioxy pue [27] Te w0
sonyes AdeInooe Mo oY} se juomuGisse 310dol Snq oY) S[EPOW] ‘1oy10da1 ‘(T Sng e[[IZOIN JI0M39U [e100S ZT0T ueny
"OATSUOUI
A[reuoryeinduro)) ‘Surxy Jjo Ayiqeqold)soySIy oYy YHm
‘s1odo[oAdp JO JI0M)oU Iodopaaop o) puy 09 s19do[eAdp JO JI0M)oU
[BIDOS UTRJUIBWL [BIDOS 9} SOST USY} pue sjrodol 8nq Jo suLIo) (g) uorydirosep [9%] Te 10
07 1509 [RUOIPPY ordoy a3 yjm orgoad 3deouod oYy spinq 11 pue Arewrung ssoq JIom3ou [e100S g10T ueyy

131

Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better?

zZe[pue J9x)

"TOTYeOYISSBD Paseq INAS ‘dogs{so(1oo1q

‘sToqUUINU oY} 0} paredwod se AdoeINdOe 193)9q pue (¢) ‘sueagIoN

Azzny Surjemored owr) osuodsel 1emor] -esrredxe 1edofessp oI} SUIXY/UOIIRAIO ‘otpedy
pue Surepouw 21doy JO uorjyemored 9Y) I10j a1zang ‘yorordde ‘uondrrosep ‘Areurmns ‘asdio [7g] Te 10
Ul PEeST[I0AO [RUOIYIPPY POse(dyoed pur 19s Azznj oy} padofossp 3] ‘(T 1odopasp ‘1 Sng “RI[1ZOTN s10s AzZzng 10 IMeIWe],

‘suorouny diysioquiota §2)

sursn Aq uorjepuswtodar wdopasp 10f uordLosep ‘Arewrmuns [eg] Te 10
%18 LE AdRINDOR MOTT [9POW Paseq jes Azznj oY) peonpoxjur 17 ‘(I Iodoeasp ‘([Sng asdrfony s10s AzZzng 110 IMeIWe],

(s1egourere J#) joseep
S)LIOWOP /Sy IRUIOY] SJLIOW puUe AIRWUIWNS POYIDTA spjoweIed — [RIUOWILIOAXF Posn onbruyoo], Ieox odeq

soyproxdde peseq jos Azznj jo uostredwo))), 9[qe],
(9) Arewruns pue
jonpoid ‘queunodurod
‘pofordura ‘([opowt 9oeds 10900A) AJLIR[IUIIS ‘woryeoyrssed osdI[or]
aq pmoo senbruyoey 3nq pue ydeid Sursso) Snq e SUISH JUSWUSISS® ‘1o910dor ‘stodofosop pue [zg]
ALre[rwars 8nq I9330g 8nq asoxduar oy yoeordde we peonporjur 4] Jo uorjewniojur Sursso], ®[zolNy ydersd Suissol, 110¢ IR 10 ULy)
“I0XTJ [eUY o1
07 UOTIRPUWIIOIIT "4 01 dn
18I oY} Aq SYUOAS BUISSO) PIONPaY] "UOI}ePUSTITIOIDT asdr[ony

wolj yyed a3 ureqo 1odofeasp juamdre 10f sydeild Sursso} uo (1) s1odorenap pue [19]
07 1S00 [RUOIIPPY POSkq SUIRYD AONIRJA JO 9STL 9} POONPOIJUI 3] JO UOIjewIojul Suisso], ®e[[izoly ydeis Suisso], 600z ‘e 30 Suoor

Anjali Goyal, Neetu Sardana

132

U)X 18IS © 09
Area s10dO[AdD JO SOTA)S
Surpoo o) sk uoryorpard

(uoryezrurgdo

Apoa13) onbrutpoy

JO pury Aue I0J OLIOUT ‘quotrugisse 110dol 8nq I0J WIS R (1) poseq YoIeasal [92] e 20
YeOM B ST 9POD JO dUI'] uorjpeziurydo Apeaid o) pesodoid 91 9pOoO JO soulr| asdrjoy reuonperod() (007 — uewyRy
WY LIOS[R O130Ud3 oY)
“AoeInooe SOSTL WYJLIOB[e Juowugisse 1odopasp oy T, (urjrrodre
ot} sezrururut (10dofosdp *(3500 pue owIl} X SN JO UOTYRZIWITUII) (¢) -owmy xy o110ue8) enbrutpoey
JueuroId pue ouwr) 9A1900[qo-1q sk pue (owr} Xy 8nq jJo ‘seurypd o[y Jo poseq yoIeasal [zg] e 10
X[J) wororpaid [0A9] OMT, UOIYeZIWIIUIW) 9AI309(qo o[3urs e pasodoid 3] -ou ‘yusuoduwo)) asdrjoy reuoryerod() 9107 wires|
‘sorjzadoad
SnoLIeA Jo siseq oy} uo poazijriorid
‘s1ofourered IDUIIN] OIv UDIYM SoInjes] snorres () Auodol pue (uoryezrurydo
PO1ORIJXO SNOLIRA U0 Pose(q Pajemoed st s10do[esdp JO 1030€] SSOTOAT)IOJO Apooa18) enbrutpo)
JO UOI}R[MO[ED 91} 0} anp oourejrodwil ST, "O[NPOW OURTIUTRUL ‘UOTINLIJUOD 199foxd poseq yoIeasal [9g] Te 10
quowe[dwl 03 NI pue uoryeaid a[goid e pasodoid 31 ‘Louany g [eLI}sSnpuf [euonperad() TI0g Uewyey
syoofoad (uryyrIo3ye
(1) stodopasep [elgsnpur o1jeued) enbrurooe)y
"UoTyeneAd [ejUWIINdXo "UOTYePUITIOId] I10dO[oAdD 10] anbrutyoa) JO peopjIom om) pue poseq YoIeasal [gg] Te 10
SNOJOSLI soImboy] poseq wyjLIo3e o1peuas oYy pasodorg juerm)) T,(r osdioy reuonyerod() (010% SJUeIN
joseIRp
(s1oyoureIeg#) el
SYLIOWOP /S IRUINY] SLIOW puR AIRWIWNS POYIIN smojoweIed — -UowWIAXG] posn anbruyos], Ieax rodeg

soyprordde peseq yoressar [euorjerado jo uostredwo)) g 9[qR],

Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better?

133

two perspectives: the frequency wise distribution
of techniques and the year wise distribution of
each technique.

— Frequency wise distribution of each bug
assignment technique: In this perspective,
the popularity of all bug triaging techniques
identified in this study was analysed. The
frequency of each technique was accumu-
lated and the cumulative frequency distribu-
tion was developed. The resultant histogram
is presented in Figure 5b. A similar analy-
sis was performed on the papers from the
existing surveys [1, 2]. The frequency dis-
tribution of techniques in their studies is
shown in Figure 5a. The conducted analy-
ses show, Figure 5a and 5b, that the ma-
chine learning and information retrieval based
techniques are most popular for bug assign-
ment.

Another analysis was done in order to check the
year wise trend of the bug assignment techniques
in the last two decades.

— Year wise distribution of each bug as-
signment technique: a) From the above
analysis, ML and IR were identified to be
the most popular techniques among all cate-
gories of bug triaging. To further analyse the
on-going trend among the popular techniques,
the year wise frequency distribution of ML
and IR based techniques was plotted. Figure
6a shows the year wise frequency distribu-
tion of ML and IR based techniques in the
existing study [2]. Since, J. Zhang et al. [1]
surveyed very few papers on bug triaging, the
trend analysis will not give any significant
insights. Hence, it is believed that this sur-
vey is not useful for this analysis. Figure 6b
represents the year wise trend analysis of ML
and IR based techniques in the current study.
It was observed that there is a considerable
trend shift from ML to IR. Researchers pre-
fer to use the IR based technique for bug
triaging.

To further examine the reason behind this trend
shift, an empirical study on two most popular
techniques, ML and IR for bug triaging, was
performed.

4.3. Comparative study of machine
learning and information retrieval
techniques

To evaluate the efficiency of the machine learn-
ing and information retrieval based techniques,
the techniques based on the bug reports of four
large scale popular projects of Bugzilla repository,
Morzilla, Eclipse, Gnome and Open Office, were
applied. Bugzilla is the most popular open source
bug repository used by many varied size software
projects. The projects selected for the compara-
tive study contain large number of bug reports
and are widely used in Bugzilla. They have been
developed for years and thus now they are aged.
This increases the confidence of researchers in the
use of these projects for experimental evaluations
in their work.

The datasets for the comparative study were
collected from the issue tracking system (ITS)
of the Mozilla, Eclipse, Gnome and Open Office
projects. Bug reports submitted over the span
of 6 years (from January 01, 2011 to December
31, 2016) were collected in this study. Only bug
reports with their resolution marked as fixed
and the status marked as resolved, verified or
closed were extracted. This extraction scheme
will ensure the presence of developers who had
actually fixed the bug. In this study, four most
important bug meta-fields were used: component,
severity, priority and operating system. These
parameters are selected as they contain the most
important information related to a bug and are
extensively used in literature [13,77]. Moreover,
these fields generally do not contain any missing
values for both fixed and new bug reports. This
allows enough training and testing tokens for op-
timized bug report assignment. Initially, a total
of 68,904 bug reports was obtained for all the
four projects (20,483 bug reports for the Mozilla
project, 39,758 for the Eclipse project, 6,326 for
the Gnome project and 2,337 for the Open Office
project). The collected bug reports were fixed
by 3,301 unique developers (1,218 developers for
the Morzilla project, 1,342 for the Eclipse project,
611 for the Gnome project and 130 for the Open
Office project).

134

Anjali Goyal, Neetu Sardana

T, Zhang [72]

¥ Zhang [71]

4
3 3
3
2
1
1
0 0 0 0 . 0
0
Machine learning Information Auction based Social network Tossing graph Fuzzy sets Operational
retrieval techniques based techniques based techniques research based
techniques
(a) Past studies
45 a2
40
35
30
25
20 17
15
10
5 5
o I
Machine learning Information Auction based Social network Tossing graph Fuzzy sets Operational
retrieval techniques based techniques based techniques research based
techniques

(b) Present study

Figure 5. Frequency distribution

For pre-processing, the bug reports in which
the assigned-to field was unspecified were re-
moved. In the Bugzilla repository, there are de-
velopers who had fixed few bugs. The inclu-
sion of such developers would deteriorate the
model performance so the parameter was fur-
ther tuned, (N > 10), i.e., the number of bug
reports fixed by a developer in the past. Hence,
finally a total of 59,448 bug reports were ob-

tained for all four projects (15,017 bug reports
for the Mozilla project, 37,425 for the Eclipse
project, 4,947 for the Gnome project and 2,059
for the Open Office project). The pre-processed
bug reports were fixed by 940 unique developers
(267 developers for the Mozilla project, 505 for
the Eclipse project, 140 for the Gnome project
and 28 for the Open Office project). Table 9
shows various details of the datasets used for

Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better?

135

7
6 .
Information
5 — Retrieval
4
3 +—Machine
Learnin
2 N
:) \7/ '
0 T = T . T T . T T T T T . T T 1
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
(a) Past study (T. Zhang et al. [2])
14
12 .
Information
10 — Retrieval
8
6 ——Machine
Learnin
4 [\ g
2 NM
0 - I y T T v T T T T T v T T T T T T T v
o - m < n O N~ 0 O O =« N M < n O
o o O O O O O O o O - L R e B | -
o o O O O O O O o O O O O O O O O
o~ (o] o~ o~ (o] o~ o~ o~ o~ o~ (] (o] o~ o~ o~ o~ o~

(b) Present study

Figure 6. Year wise distribution

comparison: start date, end date, number of col-
lected bugs, number of distinct assignees (or de-
velopers), number of bug reports with N > 10,
number of assignees who have fixed more than
10 bug reports in the past, unique number of
tokens in various meta-fields of bug reports,
such as component, severity, priority and op-
erating system. A total 500 fixed bug reports
randomly selected from each project were used
for testing.

For the machine learning based classification,
the use of four machine learning algorithms was
investigated: Naive Bayes, J48, Random tree and
Bayes Net. These algorithms were selected as

they covered different categories of supervised
machine learning algorithms. The Weka toolkit
was used for experimentation. Table 10 shows
the results of the 10-fold cross validation of the
machine learning based approach. Different clas-
sifiers achieved the best classification accuracy
among different projects. For instance, in the
Morzilla project the J48 classifier obtained the
best classification accuracy of 44%, whereas the
Naive Bayes, Random Tree and Bayes net clas-
sifiers achieved 35%, 40% and 39% accuracy, re-
spectively. Similarly, for the Eclipse project J48
and Random Tree obtained the best classifica-
tion results of 44% accuracy. For the Gnome

136

Anjali Goyal, Neetu Sardana

Table 9. Dataset Details

Mozilla Eclipse Gnome Open Office
Start Date 01/01/2011 01/01/2011 01/01/2011 01/01/2011
End date 31/12/2016 31/12/2016 31/12/2016 31/12/2016
#bug reports collected 20,483 39,758 6,326 2,337
#assignees 1,218 1,342 611 130
#bug reports (N>=10) 15,017 37,425 4,947 2,059
#assignees(N>=10) 267 505 140 28
#component 367 498 400 100
#severity 7 7 7 6
#priority) 5) 5
#operating system 27 30 11 28

project, the J48 classifier obtained an accuracy
of 53% and for the Open Office project the
Random Tree classifier achieved the best accu-
racy of 45.2%. Overall, it was found out that
a single classifier could not be declared as the
best one for all the projects and different classi-
fiers perform variably for different projects. How-
ever, it was observed that tree based classifiers,
J48 and Random Tree are best suitable for bug
report assignment.

For the information retrieval based technique,
the term frequency (TF) based approach was
used as it is most widely used in the literature
[5,6,40]. First a term-author-matrix was created,
MTi, j], from the tokens obtained from the dif-
ferent meta-fields of bug reports (component,
severity, priority and operating system). In the
term-author-matrix, M denotes all the unique
developers, ¢ are authors and all the values in
the various tokens in the meta-fields of a bug
report are considered as terms, j. Each entry
in the matrix represents the frequency, f;; of
developer, 7 with respect to a term, j. Frequency
fij represents the expertise of a developer, ¢ with
respect to a term, j based on the work done
by the developer in the past. Figure 7 shows
an instance of a term-author-matrix. In the fig-
ure, gui, general, regression represents various
distinct terms (or tokens) obtained from the var-
ious meta-fields of bug report and pollman, jaze
and rick are the developers in the bug repository.
The numeric values in the matrix represent the
expertise values of developers while w.r.t. the
terms in the past fixed bug reports.

To identify a suitable developer for a new
bug report, its terms are extracted from the

meta-fields and are considered as a search query.
Columns from term-author-matrix matching the
terms in the search query are extracted. To cal-
culate the final expertise score for each devel-
oper, the frequency values of each developer
are aggregated. The developer with a higher
score is considered to be suitable as they have
more expertise in the areas of the new bug re-
port. Table 10 shows the results of the top-k
(k=5 and 10) recommendation list sizes in the
informational retrieval based approach. In the
Mozilla project, the achieved maximum accuracy
is 52% for the top-10 list size. Similarly, the
maximum achieved accuracy is 49.6%, 72% and
87% for the Eclipse, Gnome and Open Office
projects, respectively.

Comparing the results of the machine learn-
ing and information retrieval based techniques,
it was found out that the information retrieval
based techniques yield better accuracy as com-
pared to the machine learning based technique.
Thus, information retrieval is a better technique
for activity profile based bug report assignment
approaches. In the Mozilla project, the J48 ma-
chine learning algorithm gives 44% accuracy
which increases by 6% for the top-10 recommen-
dation list in information retrieval. Similarly, in
the Eclipse, Gnome and Open Office projects
the accuracy of the information retrieval based
technique is significantly higher than in the ma-
chine learning based approach. This supports the
view that the information retrieval based tech-
nique achieves better accuracy and thus there
is a trend shift in bug assignment approaches
from the machine learning based techniques to
the information retrieval based technique.

Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better?

137

Terms
gui general regression
Pollman 8 6 5 Expert values of
Developers/
Authors Jaze 4 1 8 developers w.r.t.
Rick 3 4 2 terms

Figure 7. An instance of term-author-matrix

Table 10. Classification accuracy of Machine Learning and Information Retrieval algorithms

Morzilla Eclipse Gnome Open Office
Naive Bayes 35% 33% 43% 44.2%
Machine Learnin J48 44% 44% 53% 42.3%
& Random Tree 40% 44% 52% 45.2%
Bayes Net 39% 35% 47% 44.2%
Information Top-5 47% 45.2% 60% 62%
Retrieval Top-10 52% 49.6% 72% 87%

5. Conclusion and future work

Bug report assignment is a time consuming and
tedious task for a bug triager. This paper presents
a review and classification of 75 research pa-
pers in the area of automated bug assignment.
Seven categories of bug assignment approaches
have been identified in this study. The identified
categories are machine learning, information re-
trieval, auction, social network, tossing graph,
fuzzy set and operational research based tech-
niques. We systematically organized 75 surveyed
papers in one of the seven identified techniques
of bug triaging. Further, we analysed the sur-
veyed papers in two perspectives: the frequency
wise distribution of techniques and the year wise
distribution of each technique. Interesting facts
are captured in this analytical study. First, the
machine learning and information retrieval based
techniques are most popular for automatic bug
report assignment. Second, the current trend of
bug assignment approaches is shifting from ma-
chine learning to the information retrieval based
techniques.

To examine the reason behind this shift,
an empirical study was performed on the ma-
chine learning and information retrieval based
bug triaging technique. The study was done
on real time, large scale, open source projects,
Morzilla, Eclipse, Gnome and Open Office. The

results of the analysis showed an increase of
up to 12.8% in the efficiency for the top-5 list
size in the information retrieval based tech-
nique. Thus, the information retrieval based tech-
niques are the best choice for bug triaging. The
possible reasons for this shift are better effi-
ciency, ability to consider the current expertise
of developers and the ability to cooperate with
other techniques.

Although a high volume of literature is avail-
able in the area of automated bug assignment,
there is still a deficiency of a technique which
presents an acceptable efficiency to be used in
the real time environment. There are three ma-
jor difficulties in bug handling. a) Sheer volume
of information available in bug repositories, b)
collaborative work by developers for bug rectifica-
tion, and c) continuous evolvement of project or
software systems. These difficulties lead to a se-
ries of open issues in bug assignment approaches,
such as profiling new developers, maintaining up-
dated profiles, workload balancing, assignment
of reopened bugs and most importantly the reli-
ability of the data in bug tracking repositories.
In the future, we plan to implement an informa-
tion retrieval based technique which considers
the time-based expertise computation and to
test it on a large dataset considering a huge
number of developers as is the case in real time
environment.

138

Anjali Goyal, Neetu Sardana

References

1]

J. Zhang, X. Wang, D. Hao, B. Xie, L. Zhang,
and H. Mei, “A survey on bug-report analysis,”
Science China Information Sciences, Vol. 58,
No. 2, 2015, pp. 1-24.

T. Zhang, H. Jiang, X. Luo, and A.T. Chan,
“A literature review of research in bug resolu-
tion: Tasks, challenges and future directions,”
The Computer Journal, Vol. 59, No. 5, 2016, pp.
741-773.

B. Kitchenham and S. Charters, “Guidelines
for performing systematic literature reviews
in software engineering,” Software Engineering
Group, School of Computer Science and
Mathematics, Keele University and Depart-
ment of Computer Science, University of
Durham, Tech. Rep. EBSE 2007-001, 2007.
[Online]. https://pdfs.semanticscholar.org/e62d/
bbbbe70cabcde3335765009¢94ed2b9883d5. pdf
D. Matter, A. Kuhn, and O. Nierstrasz, “As-
signing bug reports using a vocabulary-based
expertise model of developers,” in 6th IEEFE
International Working Conference on Mining
Software Repositories. IEEE, 2009, pp. 131-140.
A.S.K. Singh, “Bug triaging: Profile oriented de-
veloper recommendation,” International Journal
of Innovative Research in Advanced Engineering,
Vol. 2, 2014, pp. 36-42.

H. Naguib, N. Narayan, B. Briigge, and D. Helal,
“Bug report assignee recommendation using ac-
tivity profiles,” in 10th IEEE Working Confer-
ence on Mining Software Repositories (MSR).
IEEE, 2013, pp. 22-30.

I. Aljarah, S. Banitaan, S. Abufardeh, W. Jin,
and S. Salem, “Selecting discriminating terms
for bug assignment: a formal analysis,” in Pro-
ceedings of the 7th International Conference on
Predictive Models in Software Engineering. ACM,
2011.

A. Sureka, H. Kumar Singh, M. Bagewadi, A. Mi-
tra, and R. Karanth, “A decision support plat-
form for guiding a bug triager for resolver rec-
ommendation using textual and non-textual fea-
tures,” in 3rd International Workshop on Quan-
titative Approaches to Software Quality, 2015,
p- 25.

R. Shokripour, J. Anvik, Z.M. Kasirun, and
S. Zamani, “Why so complicated? simple term
filtering and weighting for location-based bug
report assignment recommendation,” in Proceed-
ings of the 10th Working Conference on Min-
ing Software Repositories. IEEE Press, 2013, pp.
2-11.

[10]

[19]

[20]

F. Servant and J.A. Jones, “WhoseFault: au-
tomatic developer-to-fault assignment through
fault localization,” in Proceedings of the 34th In-
ternational Conference on Software Engineering.
IEEE Press, 2012, pp. 36-46.

G. Murphy and D. Cubranic, “Automatic bug
triage using text categorization,” in Proceed-
ings of the Sixteenth International Conference on
Software Engineering & Knowledge Engineering,
2004.

J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo,
“Automatic bug triage using semi-supervised text
classification,” in 22nd International Conference
on Software Engineering and Knowledge Engi-
neering (SEKE), 2010, pp. 209-214.

J. Anvik, “Automating bug report assignment,”
in Proceedings of the 28th International Confer-
ence on Software Engineering. ACM, 2006, pp.
937-940.

J. Anvik, L. Hiew, and G.C. Murphy, “Coping
with an open bug repository,” in Proceedings of
the 2005 OOPSLA Workshop on Eclipse Tech-
nology Fxchange. ACM, 2005, pp. 35-39.

J. Anvik and G.C. Murphy, “Reducing the ef-
fort of bug report triage: Recommenders for
development-oriented decisions,” ACM Transac-
tions on Software Engineering and Methodology
(TOSEM), Vol. 20, No. 3, 2011, pp. 10:1-10:35.
J.K. Anvik, “Assisting bug report triage through
recommendation,” Ph.D. dissertation, University
of British Columbia, 2007.

G.A. Di Lucca, M. Di Penta, and S. Gradara,
“An approach to classify software maintenance re-
quests,” in International Conference on Software
Maintenance. IEEE, 2002, pp. 93-102.

P. Bhattacharya, I. Neamtiu, and C.R. Shelton,
“Automated, highly-accurate, bug assignment us-
ing machine learning and tossing graphs,” Jour-
nal of Systems and Software, Vol. 85, No. 10,
2012, pp. 2275-2292.

H. Hu, H. Zhang, J. Xuan, and W. Sun, “Effec-
tive bug triage based on historical bug-fix infor-
mation,” in IEEE 25th International Symposium
on Software Reliability Engineering (ISSRE).
IEEE, 2014, pp. 122-132.

J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou,
Z. Luo, and X. Wu, “Towards effective bug triage
with software data reduction techniques,” IEFEE
Transactions on Knowledge and Data Engineer-
ing, Vol. 27, No. 1, 2015, pp. 264-280.

X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate
developer recommendation for bug resolution,’
in 20th Working Conference on Reverse Engi-
neering (WCRE). IEEE, 2013, pp. 72-81.

9

Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better?

139

[22]

23]

[29]

[30]

[31]

M.R. Karim, G. Ruhe, M. Rahman, V. Garousi,
T. Zimmermann et al., “An empirical investiga-
tion of single-objective and multiobjective evo-
lutionary algorithms for developer’s assignment
to bugs,” Journal of Software: Evolution and
Process, Vol. 28, No. 12, 2016, pp. 1025-1060.
A. Moin and G. Neumann, “Assisting bug triage
in large open source projects using approximate
string matching,” in Seventh International Con-
ference on Software Engineering Advances (IC-
SEA), Lisbon, Portugal, 2012.

T. Zhang and B. Lee, “A hybrid bug triage al-
gorithm for developer recommendation,” in Pro-
ceedings of the 28th Annual ACM Symposium on
Applied Computing. ACM, 2013, pp. 1088-1094.
S.N. Ahsan, J. Ferzund, and F. Wotawa, “Auto-
matic software bug triage system (BTS) based
on latent semantic indexing and support vector
machine,” in Fourth International Conference
on Software Engineering Advances. IEEE, 2009,
pp. 216-221.

G. Canfora and L. Cerulo, “How software reposi-
tories can help in resolving a new change request,”
in IEEE International Workshop on Software
Technology and Engineering Practice (STEP),
2005, pp. 99-103.

H. Kagdi, M. Gethers, D. Poshyvanyk, and
M. Hammad, “Assigning change requests to soft-
ware developers,” Journal of Software: Fvolution
and Process, Vol. 24, No. 1, 2012, pp. 3-33.
N.K. Nagwani and S. Verma, “Predicting expert
developers for newly reported bugs using fre-
quent terms similarities of bug attributes,” in 9th
International Conference on ICT and Knowledge
Engineering (ICT & Knowledge Engineering).
IEEE, 2012, pp. 113-117.

O. Baysal, M.W. Godfrey, and R. Cohen, “A bug
you like: A framework for automated assignment
of bugs,” in IEEE 17th International Conference
on Program Comprehension. IEEE, 2009, pp.
297-298.

K. Kevic, S.C. Miiller, T. Fritz, and H.C. Gall,
“Collaborative bug triaging using textual similari-
ties and change set analysis,” in 6th International
Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE). IEEE, 2013, pp.
17-24.

X. Xie, W. Zhang, Y. Yang, and Q. Wang,
“Dretom: Developer recommendation based on
topic models for bug resolution,” in Proceedings
of the 8th International Conference on Predictive
Models in Software Engineering. ACM, 2012, pp.
19-28.

[32]

[33]

[34]

[35]

[36]

[40]

[41]

M. Alenezi, K. Magel, and S. Banitaan, “Efficient
bug triaging using text mining,” JSW, Vol. §,
No. 9, 2013, pp. 2185-2190.

G. Canfora and L. Cerulo, “Supporting change
request assignment in open source development,”
in Proceedings of the 2006 ACM Symposium on
Applied Computing. ACM, 2006, pp. 1767-1772.
T. Zhang, G. Yang, B. Lee, and E.K. Lua, “A
novel developer ranking algorithm for automatic
bug triage using topic model and developer rela-
tions,” in 21st Asia-Pacific Software Engineering
Conference (APSEC), Vol. 1. IEEE, 2014, pp.
223-230.

E. Linstead, P. Rigor, S. Bajracharya, C. Lopes,
and P. Baldi, “Mining eclipse developer contribu-
tions via author-topic models,” in Fourth Inter-
national Workshop on Mining Software Reposi-
tories. IEEE, 2007, pp. 30-30.

G. Yang, T. Zhang, and B. Lee, “Towards
semi-automatic bug triage and severity predic-
tion based on topic model and multi-feature of
bug reports,” in IEEE 38th Annual Computer
Software and Applications Conference (COMP-
SAC). IEEE, 2014, pp. 97-106.

X. Xija, D. Lo, Y. Ding, J.M. Al-Kofahi, T.N.
Nguyen, and X. Wang, “Improving automated
bug triaging with specialized topic model,” IEEE
Transactions on Software Engineering, Vol. 43,
No. 3, 2017, pp. 272-297.

K. Somasundaram and G.C. Murphy, “Auto-
matic categorization of bug reports using latent
dirichlet allocation,” in Proceedings of the 5th
India Software Engineering Conference. ACM,
2012, pp. 125-130.

R. Shokripour, Z.M. Kasirun, S. Zamani, and
J. Anvik, “Automatic bug assignment using in-
formation extraction methods,” in International
Conference on Advanced Computer Science Ap-
plications and Technologies (ACSAT). IEEE,
2012, pp. 144-149.

R. Shokripour, J. Anvik, Z.M. Kasirun, and
S. Zamani, “A time-based approach to automatic
bug report assignment,” Journal of Systems and
Software, Vol. 102, 2015, pp. 109-122.

D. Mohan, N. Sardana et al., “Visheshagya:
Time based expertise model for bug report as-
signment,” in Ninth International Conference on
Contemporary Computing (IC3). IEEE, 2016, pp.
1-6.

S. Zamani, S.P. Lee, R. Shokripour, and J. An-
vik, “A noun-based approach to feature location
using time-aware term-weighting,” Information

140

Anjali Goyal, Neetu Sardana

[43]

[44]

[45]

[46]

[49]

[50]

[51]

and Software Technology, Vol. 56, No. 8, 2014,
pp- 991-1011.

T.T. Nguyen, A.T. Nguyen, and T.N. Nguyen,
“Topic-based, time-aware bug assignment,” ACM
SIGSOFT Software Engineering Notes, Vol. 39,
No. 1, 2014, pp. 1-4.

H. Hosseini, R. Nguyen, and M.W. Godfrey, “A
market-based bug allocation mechanism using
predictive bug lifetimes,” in 16th European Con-
ference on Software Maintenance and Reengi-
neering (CSMR). IEEE, 2012, pp. 149-158.

W. Wu, W. Zhang, Y. Yang, and Q. Wang,

“Drex: Developer recommendation with
k-Nearest-Neighbor search and expertise
ranking,” in 18th Asia Pacific Software

Engineering Conference (APSEC). IEEE, 2011,
pp. 389-396.

T. Zhang and B. Lee, “An automated bug
triage approach: A concept profile and social
network based developer recommendation,” in
International Conference on Intelligent Comput-
ing. Springer, 2012, pp. 505-512.

J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Devel-
oper prioritization in bug repositories,” in 34th
International Conference on Software Engineer-
ing (ICSE). IEEE, 2012, pp. 25-35.

G. Yang, T. Zhang, and B. Lee, “Utilizing a
multi-developer network-based developer recom-
mendation algorithm to fix bugs effectively,” in
Proceedings of the 29th Annual ACM Sympo-
sium on Applied Computing. ACM, 2014, pp.
1134-1139.

W. Zhang, S. Wang, Y. Yang, and Q. Wang,
“Heterogeneous network analysis of developer
contribution in bug repositories,” in Interna-
tional Conference on Cloud and Service Com-
puting (CSC). IEEE, 2013, pp. 98-105.

P. Bhattacharya and I. Neamtiu, “Fine-grained
incremental learning and multi-feature tossing
graphs to improve bug triaging,” in IEEFE Inter-
national Conference on Software Maintenance
(ICSM). IEEE, 2010, pp. 1-10.

G. Jeong, S. Kim, and T. Zimmermann, “Im-
proving bug triage with bug tossing graphs,” in
Proceedings of the the 7th Joint Meeting of the
European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering. ACM, 2009, pp.
111-120.

L. Chen, X. Wang, and C. Liu, “An approach
to improving bug assignment with bug tossing
graphs and bug similarities,” JSW, Vol. 6, No. 3,
2011, pp. 421-427.

[53]

[55]

[59]

[60]

[61]

A. Tamrawi, T.T. Nguyen, J. Al-Kofahi, and T.N.
Nguyen, “Fuzzy set-based automatic bug triag-
ing: NIER track,” in 33rd International Con-
ference on Software Engineering (ICSE). IEEE,
2011, pp. 884-887.

A. Tamrawi, T.T. Nguyen, J.M. Al-Kofahi, and
T.N. Nguyen, “Fuzzy set and cache-based ap-
proach for bug triaging,” in Proceedings of the
19th ACM SIGSOFT Symposium and the 15th
European Conference on Foundations of Software
Engineering. ACM, 2011, pp. 365-375.

A. Niknafs, J. Denzinger, and G. Ruhe, “A sys-
tematic literature review of the personnel assign-
ment problem,” in Proceedings of the Interna-
tional Multiconference of Engineers and Com-
puter Scientists, 2013.

M.M. Rahman, S. Sohan, F. Maurer, and
G. Ruhe, “Evaluation of optimized staffing for
feature development and bug fixing,” in Pro-
ceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering
and Measurement. ACM, 2010, p. 42.

D. Panagiotou, F. Paraskevopoulos, and
L. Stojanovic, Specifications of developer
profile, (2010). [Ounline]. http://www.alert-
project.eu/sites/portal2-alert.atosorigin.es/
files/content-files/download /Specification%
200f%20Developer%20Profile.pdf

N.K. Nagwani and S. Verma, “Rank-me: A Java
tool for ranking team members in software bug
repositories,” Journal of Software Engineering
and Applications, Vol. 5, 2012, pp. 255-261.

D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where
should we fix this bug? a two-phase recommenda-
tion model,” IEEE Transactions on Software En-
gineering, Vol. 39, No. 11, 2013, pp. 1597-1610.
M. Linares-Vasquez, K. Hossen, H. Dang,
H. Kagdi, M. Gethers, and D. Poshyvanyk,
“Triaging incoming change requests: Bug or com-
mit history, or code authorship?” in 28th IEEE
International Conference on Software Mainte-
nance (ICSM). IEEE, 2012, pp. 451-460.

B. Ashok, J. Joy, H. Liang, S.K. Rajamani,
G. Srinivasa, and V. Vangala, “DebugAdvisor: a
recommender system for debugging,” in Proceed-
ings of the the 7th Joint Meeting of the Furopean
Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of
Software Engineering. ACM, 2009, pp. 373-382.
H. Kagdi and D. Poshyvanyk, “Who can help me
with this change request?” in 17th International
Conference on Program Comprehension. IEEE,
2009, pp. 273-277.

Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better?

141

[63]

J. Anvik and G.C. Murphy, “Determining imple-
mentation expertise from bug reports,” in Pro-
ceedings of the Fourth International Workshop on
Mining Software Repositories. IEEE Computer
Society, 2007, p. 2.

S. Minto and G.C. Murphy, “Recommending
emergent teams,” in Fourth International Work-
shop on Mining Software Repositories. IEEE,
2007, pp. 5-12.

G. Gousios, E. Kalliamvakou, and D. Spinellis,
“Measuring developer contribution from software
repository data,” in Proceedings of the 2008 In-
ternational Working Conference on Mining Soft-
ware Repositories. ACM, 2008, pp. 129-132.

T. Zhang, G. Yang, B. Lee, and A.T. Chan,
“Guiding bug triage through developer analysis
in bug reports,” International Journal of Soft-
ware Engineering and Knowledge Engineering,
Vol. 26, No. 03, 2016, pp. 405—431.

T. Zhang, G. Yang, B. Lee, and I. Shin, “Role
analysis-based automatic bug triage algorithm,”
IPSJ SIG Technical Report, Tech. Rep., 2012.
X. Xia, D. Lo, X. Wang, and B. Zhou, “Dual
analysis for recommending developers to resolve
bugs,” Journal of Software: Evolution and Pro-
cess, Vol. 27, No. 3, 2015, pp. 195-220.

J. Helming, H. Arndt, Z. Hodaie, M. Koegel,
and N. Narayan, “Automatic assignment of work
items,” in International Conference on Evalua-
tion of Novel Approaches to Software Engineer-
ing. Springer, 2010, pp. 236-250.

W. Zou, Y. Hu, J. Xuan, and H. Jiang, “Towards
training set reduction for bug triage,” in IEEFE
35th Annual Computer Software and Applica-
tions Conference (COMPSAC). IEEE, 2011, pp.
576-581.

Z. Lin, F. Shu, Y. Yang, C. Hu, and Q. Wang,
“An empirical study on bugassignment automa-

[72]

[75]

tion using Chinese bug data,” in 3rd Interna-

tional Symposium on Empirical Software En-
gineering and Measurement. IEEE, 2009, pp.
451-455.

S. Banitaan and M. Alenezi, “Tram: An approach
for assigning bug reports using their metadata,”
in Third International Conference on Communi-
cations and Information Technology. IEEE, 2013,
pp. 215-219.

J. Anvik, L. Hiew, and G.C. Murphy, “Who
should fix this bug?” in Proceedings of the 28th
International Conference on Software Engineer-
ing. ACM, 2006, pp. 361-370.

M. Sharma, M. Kumari, and V. Singh, “Bug as-
signee prediction using association rule mining,”
in International Conference on Computational
Science and Its Applications. Springer, 2015, pp.
444-457.

J. Park, M. Lee, J. Kim, S. Hwang, and S. Kim,
“Costriage: A cost-aware triage algorithm for
bug reporting systems,” in Proceedings of the
National Conference on Artificial Intelligence,
2011, p. 139.

M.M. Rahman, G. Ruhe, and T. Zimmermann,
“Optimized assignment of developers for fixing
bugs an initial evaluation for eclipse projects,” in
Proceedings of the 2009 3rd International Sym-
posium on Empirical Software Engineering and
Measurement. IEEE Computer Society, 2009, pp.
439-442.

R.K. Saha, S. Khurshid, and D.E. Perry, “An em-
pirical study of long lived bugs,” in Software Evo-
lution Week-IEEE Conference on Software Main-
tenance, Reengineering and Reverse Engineering

(CSMR-WCRE). IEEE, 2014, pp. 144-153.

