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Abstract
The Northeast India and its adjacent areas converge among the three different plates, viz. Eurasia, India and Sunda plates. 
The tectonic interaction of Northeast India and underlying dynamics of the Himalayas as well as the Indo-Burma Ranges 
might cause the Assam Syntaxis. The area of study is located between latitude 23°–28°N and longitude 88°–96°E and situ-
ated in one of the most seismically active tectonic provinces in the world with seismic zone-V. This area had demonstrated 
several thrust faults activities and tectonic evident accomplishments during the recent past. The complicated geotectonic 
setups inspirits various smaller magnitude earthquakes, and the current seismicity shows seismic activities are still enduring 
in the Shillong Plateau, Arakan-Yoma fold belt, Bengal Basin, Naga Hills, Mikir Hills, Upper–Lower Brahmaputra Valley 
and Mismi Hills of Himalayan foothills. It is imperative to obtain wide-ranging learning tectonic configuration, thrust faults 
delineation for improved geoscientific study. Parts of the areas are extremely unreachable, and very limited thrust faults 
were marked by studying GIS map received from the various agencies and field geological study. During the past studies, 
most of the prominent lineaments/thrusts are marked; however, many active and hidden thrust faults are still unidentified. 
Seismic data can provide better information about the thrust faults locations, but due to small number of seismic data, the 
information is not adequate. In this paper, attempt has been made to study and reinterpret the available ground gravity data 
of northeastern parts of India for understanding thrust fault locations using various applications of gravity derivatives like 
analytical signal, horizontal gravity gradient, tilt derivative, horizontal tilt angle derivative and Cos(θ) analysis. Source edge 
detection technique has also been premeditated to categorize thrust fault locations. It is understandable that the low gravity 
is observed at Assam Valley which contributed sediment accumulations and higher gravity anomaly observed at Shillong 
Plateau and Bengal Basin containing denser formations. Bouguer gravity data is used after isostatic correction assuming 
Airy’s isostasy root depth model and first-order trend removal using least square technique. The derived thrust fault loca-
tions from the present study are superimposed with the existing thrust-fault locations for correlation. Some additional thrust 
faults are narrated which are not previously mapped. It is also suggested that Brahmaputra Thrust, Dauki Fault, Naga Thrust, 
Disang Thrust and Kopili Fault have key responsibility for high seismicity and tectonic movement causing upliftment and 
depression that encouraged some anticlockwise rotation in the area.

Keywords Shillong plateau · Source edge detection (SED) · Total horizontal derivative (THDR) · Tilt derivative (TILT) · 
Horizontal tilt angle (TDX) · Cos(θ)

Introduction

The Northeast India and its surrounding areas converge 
among the three different plates, viz. Eurasia, India and 
Sunda plates (Fig. 1). Convergence of two continental plates 
causes subduction and collision. Such collision in the under-
thrusting lithosphere creates sever deformation on the upper 
part of the crust triggering a seismically active tectonic prov-
inces. During the continental drifting process at different 
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span of time, 70 million years ago, 50 million years ago 
and India as on today, different positions of India have been 
shown in Fig. 2 (USGS Report 2015).  

The tectonic interaction of Northeast India and underly-
ing dynamics of the Himalayas as well as the Indo-Burma 
Ranges might cause the Assam Syntaxis. The study was car-
ried out in the area between latitude 23°–28°N and longitude 
88°–96°E (Fig. 3) which falls in the northeastern part of 
India and its adjacent areas. Study reveals that North–South 
compression of Eurasian Plate and Indian Plate (Fig. 2) 
creates plate convergence and seismotectonic activity in 
this area (USGS Report 2015). Angelier and Barua (2009) 
studied the focal mechanism of earthquakes of Indo-Burma 
Ranges and their kinematic implication in the Northeast. 
Tapponnier et al. (1982) stated that the spreading of Anda-
man Sea and the Sagaing Transform Fault motion in the 
Burma might be the reason for the formation of Assam Syn-
taxis. This northeast India has fallen in the seismic zone-V as 
the highest seismic zone (Fig. 4) (Bansal and Verma 2013).

Northeast India comprises various thrust faults which are 
oriented in different directions. The elevation in this area 
varies in the range of about 6 km (Fig. 3). Most elevated 
areas are undulating areas such as Shillong Plateau, northern 
part of the Himalayas, Indo-Burma Ranges and Mikir Hills. 
The depressions are distinguished at Bengal Basin, Assam 

Valley, Brahmaputra Valley and Molasse Basin. This depres-
sion can be better understood as a gravity difference and 
can be explained by mass deficiency. The aim of the present 
work is to understand the old gravity data and to interpret 
those using different interpretational approaches.

The Bouguer gravity map is prepared by National Geo-
physical Research Institute (NGRI) with the available data 
source from Survey of India (SOI) (Gulatee 1956), Burma 
Oil Company (BOC) (Evans and Crompton 1946), Oil and 
Natural Gas Commission (ONGC). NGRI has carried out 
additional gravity data observations in the Northeast India to 
fill up the data gap during the year 1972–1973 and prepared 
the map. Later on, these original gravity data were published 
by Verma and Mukhopadhay (1977). Ghosh et al. (2015) 
digitized the published gravity data from Verma and Muk-
hopadhay (1977) and re-gridded for further analysis (Fig. 6).

Gravity data (Verma and Mukhopadhay 1977) reveal 
that southern and southeastern parts have much data gap 
comparable to the other parts. The Bouguer gravity data 
has zonation in the northern part of the zone parallel to the 
Brahmaputra Thrust; discordant, NE–SW elongated gravity 
anomaly was observed in the NE part which is parallel to the 
Disang and Naga thrust. The N–S elongated gravity anomaly 
was observed in the southern part, and it is associated with 
Molasse Basin. The entire northeast India is characterized 

Fig. 1  Map shows various 
tectonic plates like Indian Plate, 
Eurasian Plate Sunda Plate, 
Australian Plate, Arabian Plate 
and Somali Plate surrounding 
the study area (after Wikipedia 
2019)
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by huge changes in Bouguer gravity value varying from 
+ 45 mGal at Shillong Plateau to − 255 mGal at Assam Val-
ley with a difference of 300 mGal. The higher gravity is 
observed at Bengal Basin (positive values), and the lower 
gravity values (negative values) are observed at north of 
Brahmaputra Thrust, Assam Valley and Indo-Burma Ranges 
and Molasse Basin. Northern part of the area suggests low 
gravity due to isostatic adjustment between Brahmaputra 
River and foot hills of the Himalayas.

To understand the mechanism of the tectonic activities of 
the area, various applications including analysis of analytical 
signal, total horizontal derivative (THDR), tilt derivative 

(TILT), horizontal tilt angle (TDX), Cos(θ) map, have been 
generated from gravity data. Various thrust-faults are identi-
fied with the help of different derivatives of gravity data. The 
know thrust faults like Dauki Fault, Brahmaputra Thrust, 
Kopili Fault, Naga Thrust, Kabaw Fault, Jorhat Fault, Old-
ham Fault and Main Central Thrust are superimposed on 
the new derived results and correlated. It is noted that the 
thrust faults derived previously are well correlated with the 
newly derived thrust faults by gravity delineation. Source 
edge detection (SED) technique is used based on source 
parameter imaging technique to demarcate the thrust faults 
and its dip directions. The above study suggests that the 
diversely directed forces are acting in this region causing 
upliftment and depression of subsurface, and this leads also 
to an anticlockwise rotation of Shillong Plateau and Mikir 
Hills (Singh et al. 2017).

It is also suggested that Brahmaputra Thrust, Dauki Fault, 
Naga Thrust, Disang Thrust and Kopili Fault are playing 
most important role in tectonic association. So, it is more 
substantial to identify the particulars of delineation of thrusts 
and faults structures which directly or indirectly impact seis-
mic activity in the Northeast India and its adjacent areas. It 
is also studied that Shillong Plateau exhibits denser base-
ment; however, Assam Valley demonstrates thicker sedi-
mentary cover. It can be explained that horizontal density 
differences are responsible for the variation of gravity field.

Geological and tectonic setting

The Himalayan collision belt has formed due to the ongo-
ing thrusting of Indian Plate toward the Eurasia Plate. 
Northeast India and its adjacent areas basically cover the 
northeastern Himalayas toward north, Indo-Burma Ranges 
toward east and Bengal Basin toward south. It is prudent that 
between these two plates’ boundaries, parts of the Indian 
Plate including Assam Valley and Shillong–Mikir Plateau 
formed Assam Syntaxis. The eastern Himalayan collision 
belt is acting toward the east, whereas Burmese Plate is act-
ing toward southeast direction. Southeastern parts of the 
Northeast India extended to Andaman–Sumatra region. 
These plates cause an intraplate distortion which is fairly 
complex. The northeast India and its surroundings exhibit a 
complex multifaceted tectonics setup producing high seismic 
activity zone-V (Fig. 4) (Bansal and Verma 2013).

The Shillong Plateau is still active due to counterclock-
wise movement of the Indian Plate against the Eurasian 
Plate (Harijan et al. 2003). The Himalayan upliftment activ-
ity might also be explained due to the tectonic resettlement 
causing gravity gliding to their shape and structures. The 
highest altitude of Shillong Plateau is more than 2000 m, and 
an average altitude in this area between Brahmaputra Thrust 
(BT) and the Dauki Fault (DF) is 1000 m above mean sea 

Fig. 2  Map shows different positions of Indian Plate (India landmass) 
before its collision with Eurasian Plate during the different span of 
time: 70 million years ago, 50 million years ago and India as on 
today. Solid lines indicate the present-day continents and dashed out-
lines the “India” landmass (visual reference only). Northern margins 
began to collide against the southward-moving Eurasian Plate about 
40–50 million years ago when the "India" landmass was once situated 
well south of the Equator (after USGS report 2015)
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level. Various thrust faults like Dapsi Thrust, Jorhat Fault, 
Kabaw Fault, Naga Thrust, Disang Thrust, Sylhet Fault, 
Tista Fault, Kopili Fault, Oldham Fault, Dhubri Fault are also 
playing important role in tectonic association and movement 
(Fig. 3). The past earthquakes (magnitude > 8.0 in Richter 
scale; 1950 and 1897) in the Northeast India had large impact 
in the area (Rao et al. 2006). The historical record shows 
that the great earthquake 8.7 magnitudes occurred along the 
north-dipping Dauki Fault (Oldham 1899). Based on the 

micro-earthquake data Kayal and De (1991) remarked about 
the location of seismicity at the Dapsi Thrust (Du T) as the 
supporting thrust of Dauki Fault. Moreover, the earthquakes 
are a consequence of a popup tectonic structure (Nayak et al. 
2008) of the south-dipping Oldham Fault and north-dipping 
Dauki Fault as stated by Bilham and England (2001). This 
popup structures might be responsible for the anticlinal uplift 
with the doubly arranging fold system (McClay and Bonora 
2001; Schellart and Nieuwland 2003).

Fig. 3  Map shows the elevation of the study area. High elevations 
are noted at MBT, MCT, Shillong Plateau, Indo-Burma Ranges and 
Mikir Hills. Low elevation areas are at Bengal Basin and Assam Val-
ley. The known (outcropping) thrust faults are marked by black lines. 
The major thrust faults are Main Boundary Thrust (MBT), Main Cen-

tral Thrust (MCT), Brahmaputra Thrust (BT), Tista Fault (TF), Dud-
hani Fault (DhF), Dauki Fault (DF), Chedrang Fault (CF), Oldham 
Fault (OF), Kopili Fault (KF), Sylhet Fault (SF), Naga Thrust (NT), 
Disang Thrust (DT), Jorhat Fault (JF) and Kabaw Fault (KF)
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Chandra (1984) stated about the existing of Shillong Pla-
teau signifying a convergence arc in between Himalayan arc 
and the Burmese arc. Seno and Rehman (2011) have sug-
gested that the tectonic disturbances in this area are caused 
by the Indian Plate and Eurasian Plate collision at the Hima-
layan zone caused by subduction beneath the Burmese Plate. 
It has been stated that the various thrust faults within the 
Shillong Plateau are oriented in the different directions due 
to the tectonic disturbances caused by the Indo-Burma sub-
duction zone and the Himalayan collision zone (Rajesekhar 
and Mishra 2008; Kayal 2001). The Shillong massive plateau 
comprises Archean gneissic complex (Archean rock), meta-
sedimentary Shillong Group rocks (1530–1550 Ma), igneous 
rocks, porphyritic granites and ultramafic alkali–carbonate 
complexes (Evans 1964; Mitra 1998; Mishra and Sen 2001; 
Devi and Sarma 2010). Cretaceous–Tertiary sediments are 
present in the southern part of the Shillong Plateau (Biswas 
and Grasemann 2005). Further to the south of the Dauki 
Fault, the thickness of sedimentary cover is larger in Syl-
het varying from 13 to 18 km dating from the Tertiary to 
recent time (Biswas and Grasemann 2005; Evans 1964; 

Alam et al. 2003; Ghosh et al. 2015). In Assam Valley, vari-
ous types of rocks are present at different ages like Upper 
Precambrian–Lower Proterozoic, Gondwana and tertiaries 
which constituted major portion of the sedimentary rocks. 
The thicknesses of sedimentary formation in this region is 
more than 6 km and decreases continuously toward east. 
Oldham Fault 110 km long dips at angle approximately 57° 
toward S–SW direction and submerges 9–45 km beneath 
the Shillong Plateau. The Oldham Fault might be “Cryptic” 
reverse fault extended to the northern boundary of the pla-
teau (Bilham and England 2001). The Brahmaputra Thrust 
(BT) is situated in the northern end of the Oldham Fault 
(Rajendran et al. 2004; Kayal et al. 2006). It is noted that 
the Mikir Massif (Mikir Hill) was supposedly a fragmented 
portion of the Shillong Plateau caused by the major Kopili 
Fault and experienced large earthquake in 1869 (Mw = 7.38, 
Oldham 1883; Nandy 2001; Ambraseys and Douglas 2004) 
and 1943 (Mw = 7.42, Nandy and Dasgupta 1991). The sim-
plified geological map of the study area covering northeast 
India, Bangladesh, China and Myanmar is shown in Fig. 5 
(after Robinson et al. 2014; Awasthi et al. 2014).

Fig. 4  Seismic zonation map 
of India (BIS-2002). The study 
area falls in the northeast Indian 
zone with highest seismic 
zone-V (after Bansal and Verma 
2013)
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Fig. 5  Simplified geological map of the Northeast India and its surroundings indicating various locations of boundaries, thrust faults, rivers, 
suture zone, etc. (figure modified after Robinson et al. 2014; Awasthi et al. 2014)
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Gravity anomaly

Original Bouguer gravity data by Verma and Mukhopad-
hay (1977) have been digitized and re-gridded by Ghosh 
et al. (2015) (Fig. 6) to carry out the interpretation work. 
Average elevation is changes of more than 1000 m above 
from the Shillong Plateau covering Brahmaputra Thrust 
(BT) in the north to 500 m in the Dauki Fault (DF) in 
the south. However, maximum gravity value of + 45 mGal 
is noted at Shillong Plateau where elevation is 1700 m. 
The lowest gravity value of − 255 mGal is observed at 
Assam Valley. The northern part of the study area near 
Main Boundary Thrust (MBT) and Main Central Thrust 
(MCT) has as low gravity field with higher elevation. This 
Bouguer gravity field has lineation oriented in W–E direc-
tion parallel to the Brahmaputra Thrust. The low gravity 
field is also observed at the eastern part of the investigated 
area, whereas orientation of isolines turns from S to ENE 
direction. This low gravity is observed at Molasse Basin, 
Kabaw Fault and at the Indo-Burma Ranges. The extreme 
southeastern part of the area that is toward the east of the 
Molasse Basin again shows comparatively higher grav-
ity values. The moderate high gravity value is noted at 

the Bengal Basin (Fig. 6). The sedimentary thickness is 
varying by more than 6 km increasing from westward to 
eastward direction in the northeastern part of India (Verma 
and Mukhopadhay 1977). These strong positive high grav-
ity anomaly values at Shillong Plateau suggest that there 
could be shallower basement rock or higher-density sedi-
mentary rocks can underlay the shallower ones there.

It can also be predicted that the thickness of sedimen-
tary rocks will be lesser below the Bengal Basin. The upper 
mantle rock might have the relatively higher density. So, the 
higher gravity anomaly might be the cause of excess mass 
which needs to be corrected. Based on the Bouguer anomaly, 
Qureshy (1971) and Mukhopadhyay (1974) generate a con-
clusion with thicker denser crust underlain the plateau. How-
ever, Woollard (1962) suggested that below 250 km depth, 
isostatic compensation need not be required because isostasy 
characterizes lithosphere, and below this depth the equilib-
rium is closer to hydrostatic one. A comparative study of the 
crustal depth at the Shillong Plateau, Upper Assam Valley 
and the Bengal Basin are presented by Worzel and Shurbet 
(1955) using models for Shillong Plateau, for Upper Assam 
Valley and for Bengal Basin. The authors suggested differ-
ent density variations in Shillong Plateau, Assam Valley and 
Bengal Basin. It is summarized that the thick sedimentary 

Fig. 6  Bouguer gravity anomaly map of the study area (after Verma 
and Mukhopadhay 1977). The gravity anomaly varies from − 255 
to 45  mGal. Low gravity value observed at the northern Himala-

yas, Main Boundary Thrust (MBT) and Main Central Thrust (MCT) 
zones, Assam Valley and Molasse Basin
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cover of the crust at Bengal Basin is 33 km, i.e., 13-km-thick 
sedimentary cover and 20-km-thick crystalline basement. 
For Upper Assam Valley, the crustal thickness is 33.75 km, 
i.e., 4.1-km sedimentary formation and 29.65-km crystal-
line basement. In the case of Shillong Plateau, sedimentary 
formation is 1 km thick and the crystalline basement would 
have 46.3 km thickness. Tandon (1954) commented on the 
last result that crustal thickness 46.3 km and average den-
sity 2960 × 103 kg/m3 modeled based on seismological study 
which is rather nor typical for standard normal crust.

It is observed that the gravity variation is visibly influ-
enced by isostatic equilibrium. The mass deficiency is sug-
gested at northern part of Brahmaputra Thrust and Assam 
Valley and similarly extra masses are suggested at Shillong 
Plateau. The isostatic regional correction is applied to 
Bouguer gravity anomaly in this area using Airy’s isostasy 
model where average 39 km crust thickness is considered 
after studying various research opinions although suggested 
depth to Moho values are varying from 32 to 46 km (Kumar 
et  al. 2004; Nayek et  al. 2008; Bora and Baruah 2012; 
Rajesekhar and Mishra 2008; Mitra et al. 2005; Borah et al. 
2016). The general observations are that the Bouguer anom-
aly trend at Molasse Basin is oriented in NE–E to SW–W 
direction parallel to Indo-Burma Ranges. The gravity value 
is moderate, whereas north of Brahmaputra Thrust has 
low gravity with low-density sediments, and Bengal Basin 

contains higher gravity with higher-density sediments. It is 
observed that at Shillong Plateau and Mikir Hills, consid-
erable basements rocks (Lower Precambrian) are exposed.

It is stated that elevation variation along with gravity vari-
ation is very high, and hence, gravity data need to be cor-
rected for expected isostatic compensation to topographic 
loads, to moderate mid-wavelength the influence of the 
lower-lithospheric sources. The elevation map (topo grid, 
Fig. 3) has been used to calculate root depth (m) (Fig. 7) 
necessary to balance the topographic load (according to 
isostasy principle) for each topo grid point (Fig. 3). Iso-
static regional gravity anomaly (Fig. 8) has been calculated 
using Bouguer density of 2670 × 103 kg/m3 (Evans and 
Crompton 1946), and Moho density contrast is 335 × 103 kg/
m3 assuming Airy’s isostasy model calculated root depth 
(Fig. 7) at each grid point. Isostatic residual field (Fig. 9) is 
calculated by subtracting isostatic regional gravity anomaly 
grid (Fig. 8) from the Bouguer gravity anomaly (Fig. 6). It 
is noted that isostatic residual gravity anomaly has a huge 
trend (− 176 to 123 mGal), and it is corrected further using 
first-order correction with the help of least square technique. 
After the removal of the trend-corrected isostatic residual 
gravity anomaly varies from − 132 to 139 mGal in the area 
shown in Fig. 10. Trend-corrected isostatic residual gravity 
anomaly further is applied to calculate the first vertical grav-
ity gradient and the other two orthogonal horizontal gradient 

Fig. 7  Depth of balanced isostatic columns calculated assuming Airy’s isostasy model at each grid point with the use of topo map. The assumed 
crustal density is 2670 × 103 kg/m3, and Moho density contrast is 335 × 103 kg/m3
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Fig. 8  Isostatic regional gravity anomaly response (mGal) calculated from Airy’s root depth and using topography grid map

Fig. 9  Isostatic residual gravity anomaly derived after subtraction of 
isostatic regional gravity anomaly from the Bouguer gravity anomaly. 
Isostatic residual gravity anomaly suggests central high gravity value 

situated at Shillong Plateau. Gravity lows are located at MBT, MCT, 
Assam Valley and Molasse Basin
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components in x and y directions. Finally, using these verti-
cal and horizontal derivatives, other gravity gradients are 
calculated. The details of these calculations are explained 
in separate chapter.    

Methodology

The various techniques for gravity data interpretation are 
discussed here briefly. THDR, tilt, Tdx and Cos(θ) maps 
have been discussed to delineate thrust and fault boundaries.

Total horizontal derivative (THDR)

Cordell and Grauch (1985) and Grauch et al. (2001) defined 
the total horizontal derivative (THDR) as mathematically 
linked to the horizontal derivatives as shown in Eq. (1).

where G is the corrected residual gravity field anomaly (ver-
tical component), �G

�x
 and �G

�y
 are two orthogonal horizontal 

derivatives of the gravity anomaly. The main characteristic 
of this filter is better mapping of shallower structures and 
relatively neglecting deeper ones. Numerous researchers 

(1)THDR =
(
�G

�x

)2

+
(
�G

�Y

)2

(Ferreira et al. 2013; Wang et al. 2009) have used THDR for 
the interpretation of potential field data. This technique has 
the ability to detect the edges in complex geological setup 
and enhance the sharp response at the edges.

Source edge detection (SED)

Source edge detection (SED) method uses different deriva-
tives of gridded gravity data, for determination of the geo-
logical boundaries position. Horizontal derivatives can be 
derived perpendicular to the strike direction of elongated 
source bodies using least square methodology (Thurston 
and Brown 1994; Thurston and Smith 1997; Cordell and 
Grauch 1982). The source edge detection technique is more 
useful for both near-surface and deep-seated structures. This 
technique provides the strikes direction and direct structural 
trend of the elongated source bodies.

Tilt derivative

Tilt of G gradients was first analyzed by Miller and Singh 
(1994) for identifying a potential field source. Later on, Ver-
duzco et al. (2004) generalized this for gridded and profile 
dataset. Mathematically, tilt can be expressed as the inverse 
tangent of the ratio of vertical to total horizontal derivative 
of G as expressed in Eq. (2)

Fig. 10  The corrected isostatic residual gravity anomaly calculated after trend removal. The corrected residual anomaly varies in the range from 
− 132 to 139 mGal
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where tilt varies in the range − π/2 to + π/2. VDR is the ver-
tical derivative, and THDR is the Total horizontal derivative. 
Tilt derivatives indicate zero values over the source edges 
and help to trace the outline edges. The similar type of work 
has been carried out by the various workers (Salem et al. 
2007, 2008, 2010; Ferreira et al. 2013; Lahti and Karinen 
2010; Fairhead et al. 2011; Ghosh 2016a).

Horizontal tilt angle (TDX)

The horizontal tilt angle is the normalization of the ampli-
tude of the total horizontal derivative by the vertical deriva-
tive. Cooper and Cowan (2006) introduced TDX using 
THDR and absolute value of VDR as shown in the math-
ematical expression (3).

TDX is varying in the range −�∕2 to + �∕2 similar 
to tilt derivative method. Both the methods TDX and TDR 
show a contrast variation along the boundaries; however, 

(2)Tilt = tan
−1

(
VDR

THDR

)

(3)TDX = tan
−1

(
THDR

|VDR|

)

TDX analysis shows more contrast along the boundaries. 
Different workers have carried out TDX derivative analysis 
on potential filed data for source edge detection (Fairhead 
and Williams 2006; Coraggio et al. 2012; Phillips 2000).

Analytical signal amplitude

The analytical signal (ASA) can be expressed for a 3D struc-
ture of the vertical gravity gradient as stated by Marson and 
Klingele (1993) is as follows:

where ∂G/∂z is the vertical derivative of the gravity field and 
∂G/∂x and ∂G/∂y are the two horizontal derivatives. ASA is 
more useful for delineating edges of gravity sources because 
ASA shows peak over gravity sources.

Cos(θ) map

Wijns et al. (2005) have used the application of Cos(θ) map 
which is the ratio of THDR to normalized analytical signal 
for the detection of edge of the causative bodies using poten-
tial field data as shown in Eq. (4).

(4)ASA =

√
(�G∕�x)2 + (�G∕�y)2 + (�G∕�z)2

Fig. 11  The map of analytical signal (AS, i.e., the total gradient of 
the residual field vertical component) of gravity anomaly outlining 
the contrasts of anomalous density distribution. High value of AS 

is observed at Shillong Plateau, near MBT/MCT, Jorhat fault and 
at Molasse Basin and volcanic line. Low values of AS signals are 
observed at Bengal Basin, Assam Valley and Indo-Burma Ranges
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where

where |A| indicates the amplitude of the 3D analytical signal 
amplitude (ASA). Similar types of work have been carried 
out by the various potential researchers for better source 
edge location and identification of potential field data bound-
aries (Fairhead and Williams 2006; Fairhead et al. 2007; 
Reid 2007).

Gravity data interpretation

Original Bouguer gravity data (Verma and Mukhopadhay 
1977) were digitized and re-gridded by Ghosh et al. (2015). 
To interpret the gravity data, separation into regional and 
residual parts was performed. Conventional gravity data 
interpretation using Bouguer gravity anomaly (Fig. 6) or 

(5)Cos(�) =
THDR

|A|

(6)ASA =
√
(�G∕�x)2 + (�G∕�y)2 + (�G∕�z)2

isostatic  residual gravity data interpretation (trend cor-
rected) (Fig. 10) is unable to mark the thrust and fault loca-
tion properly. Previously, 2.5-dimensional modeling studies 
along with the few profiles across the Brahmaputra Thrust 
and Dauki Fault in the N–S direction had been carried out 
by Ghosh et al. (2015) to understand the thickness of base-
ment depth across the Brahmaputra Thrust and Dauki Fault. 
However, 2.5-dimensional data interpretation using limited 
profile data interpretation may not provide better results 
compared to the three-dimensional modeling. The results 
obtained by using analytical signal amplitude (ASA), total 
horizontal derivative (THDR), tilt derivative (TILT), hori-
zontal tilt angle (TDX) and Cos(θ) analysis for delineating 
the thrust fault are more appropriate for interpreting thrust 
fault interpretation. SED technique is used to demarcate bet-
ter geological boundary in strike direction along with dip 
direction. Similar type of studies has been used in SED tech-
nique provided fruitful result (Ghosh 2016a, b). The demar-
cation of identified thrust faults of the area had been marked 
by black color (Fig. 6) by the potential workers (Verma and 
Mukhopadhay 1977; Bhattacharya et al. 2008; Baruah and 

Fig. 12  Location of thrust fault determined using source edge detec-
tion technique (SED) based on source parameter imaging. ⊥ locations 
are marked by blue line with dip and strike indications. These grav-

ity-derived locations are superimposed on the known outcropping. 
The gravity analysis identified many hidden thrust-fault  in this area, 
which also were not marked earlier
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Hazarika 2008; Yadav et al. 2009). The gravity-interpreted 
thrust fault locations are superimposed to the known thrust 
fault marked by black color for comparative study. Some 
additional thrust faults (marked by blue color, Fig. 12) were 
also identified using SED techniques in this area which is 
not marked so far. It is studied that the derived thrust faults 
are following the trend of the known thrust fault derived by 
the previous workers. Pink arrow (Fig. 12) signifies various 
contractions’ force (along Brahmaputra Thrust, MBT and 
MCT) at the northern Himalayas. Diverting thrust is act-
ing in between Dauki Fault and Churachandpur-Mao Fault 
(CMF) and further extending toward Naga Thrust (NT). Var-
ious strike slip faults are marked by arrow (Sagaing Fault, 
Kopili Fault, Kabaw Fault, Naga Thrust, Dauki Fault, Jorhat 
Fault, etc.).

Analytical signal amplitude map (ASA) (Fig. 11) sug-
gests the lineament pattern in the form of wide zone but 
cannot provide the detailed thrust fault information; how-
ever, isolines of zero tilt value precisely follow the thrust 
faults lines. Nevertheless, in many parts of the area, addi-
tional new source edges are notices. Various smaller and 
hidden faults might be possible and need further attention. 
However, the present derived result shows good correla-
tion with the existing thrust fault location. 

Source edge detection (SED) technique has been used 
for source parameter imaging and for determination 
thrust fault locations (Fig. 12). The dip and strike posi-
tions are calculated in each grid point from the gravity 
signature either from positive or negative anomaly. SED 
map is indicated with the symbol “⊥” indicating dip and 
strike of the source bodies. The vertical line  indicates 
the dip direction upright on the strike direction (Fig. 12). 
The long axis (horizontal line) indicates strike direction 
of the edges (contact). The map covers all the strike direc-
tions varying from 0° ≤ strike ≤ 90°, 90° ≤ strike ≤ 180°, 
180° ≤ strike ≤ 270° to 270° ≤ strike ≤ 360° and is meas-
ured in the clockwise direction ranging from 0° to 360°. 
The blue color indicates the derived thrust fault along with 
the strike and dip directions. Previously identified thrust 
fault locations are marked by black color (Fig. 3). It is 
noted that derived thrust fault locations are matching with 
known thrust fault (Fig. 12).

It is noted that Bouguer gravity anomaly, residual gravity 
anomaly and other derivatives are unable to detect thrust 
fault locations except providing the pattern of thrust faults. 
The total horizontal derivative (THDR) map (Fig.  13) 
is recommended for the identification of the source edge 
boundaries. The total horizontal derivative shows positive 

Fig. 13  Total horizontal derivative (THDR) map suggesting the 
edge boundaries. The ridges of the THDR map indicate approximate 
location of the major edges. The pattern of the color contrast in the 

THDR map follows the thrust fault pattern as marked. Location of 
thrust fault determined using source edge detection technique (SED) 
is superimposed for comparison
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values (marked in blue color) indicating the edges of the 
source bodies (Fig. 13). The thrust fault locations derived 
from the gravity data show good correlation with geologi-
cal observations marked by the earlier authors (Verma and 
Mukhopadhay 1977; Bhattacharya et al. 2008; Baruah and 
Hazarika 2008; Yadav et al. 2009). However, in many parts 
of the area, additional edges noticed might correspond to the 
smaller or hidden faults which need further study.

Tilt derivative (TDR) has been calculated using VDR and 
THDR, and its value varies in the range from − 1.6 to + 1.6 
(− π/2 to + π/2 rad) (Fig. 14). The high values are indicated 
by blue color and low are shown by red color in the tilt 
derivative map. The thrust fault locations were indicated by 
green color, and they lie in between the blue and red colors. 
The color zone pattern (strike of isolines) of TDR map is 
accordant with the known (outcropped) thrust and faults and 
gravity-derived thrust faults determined by the use of SED 
technique (Fig. 12).

Similarly, the horizontal tilt angle (TDX) map is calcu-
lated using THDR and VDR. The derived thrust faults from 
SED maps are superimposed on the TDX map (Fig. 15). 
These TDX values are also varying in the range of − 1.6 
to + 1.6 (− π/2 to + π/2 rad). TDX results represent the 
lineament pattern  and more sharply expressed compared 

to the TDR over the edges body. The maximum value is 
indicated in black color and minimum value in orange 
color as shown in the color scale. The thrust fault locations 
are proposed in between black and orange colors which is 
shown by superimposing the SED location (green color, 
Fig. 15). thrust fault locations using TDX derivative show 
a good correlation with the known thrust fault locations.

The Cos(θ) map is calculated using total horizontal 
derivative and the analytical signal. The color scale bar 
shows that Cos(θ) values are varying from 0 to + 1. The 
derived thrust and faults from SED techniques (green 
color) are also superimposed on the Cos(θ) map and show 
good correlation (Fig. 16). Gravity data interpretation sug-
gests that there are various minor thrust faults identified 
which may not have been previously marked.

The gravity field pattern looks similar to that in the deriv-
ative maps, viz. THDR, TDR, TDX and Cos(θ). However, 
the results derived from Cos(θ) give more prolific solution 
for identifying thrust fault locations. The above-mentioned 
methods are very useful for estimating thrust faults in geo-
logically and tectonically complex areas. The Cos(θ) map 
results are well projected and indicated additional thrust 
fault locations.

Fig. 14  Tilt derivative (tilt angle, i.e., the tilt of the vector of anomaly 
G) map suggesting the edge boundaries shown by green symbols. 
High and low value colors follow the lineament zone, and the zero 

isolines of tilt angle significantly correlate with the major fault lines 
of the area. Location of thrust fault determined using source edge 
detection technique (SED) is superimposed for comparison
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Summary and conclusions

The aim of this paper is to carry out gravity data interpretation 
to delineate thrust fault locations using latest techniques like 
THDR derivatives, tilt derivative (TDR), horizontal tilt angle 
(TDX), Cos(θ) map and SED technique. These interpreted 
maps correlate well with the earlier derived thrust faults loca-
tions. However, among these interpretation, tilt (TDR), espe-
cially its zero isoline, and TDX distribution indicate better 
geological lineaments/structures in the northeastern part of 
India (Figs. 14 and 15). In addition to this, many hitherto 
unknown thrust faults were identified by the use of source 
edge detection technique (Fig. 12) and dip and strike direc-
tions were also determined. The location of known outcropped 
faults which were described in earlier extensive research work 
was compared to the present gravity-derived results marked in 
black color (Figs. 12, 13, 14, 15 and 16). There are numerous 
thrust faults marked in the eastern part of the area, between 
Naga thrust and volcanic lines. Numerous thrust faults are 
marked at Kohima, Imphal and Aizawl areas and oriented 
in S–NNE direction. There are some hidden thrust faults also 
marked at Molasse Basin separated from the Kabaw Fault and 
the volcanic lines (Fig. 12). Some unseen buried thrust faults 

are also detected at the southern part of the Dauki Fault. Simi-
larly, more or less hidden thrust and faults are also perceived 
at MBT, MCT and Brahmaputra Thrust and oriented in E–W 
direction. Generally, the source edge detection technique is 
very useful in mapping thrust faults and dips.

The tectonic activity in this area suggested that the Shillong 
Plateau is the center of the various activities occurring around 
it. It may be noted that MBT, MCT and BT are oriented in the 
E–W direction in the northward part of the Shillong Plateau. 
The Naga thrust, Disang Thrust, Indo-Burma Ranges, Kabaw 
Fault and volcanic line are oriented from SW to NNE direc-
tion and situated in the eastern part of the Shillong Plateau. 
The Dauki Fault is oriented in E–W direction and extended 
westward of the Shillong Plateau. Southward of Dauki Fault/
Shillong Plateau some faults are oriented in SW–NNE direc-
tion. A Dhubri Fault is oriented in N–S direction, and Tista 
Fault is oriented in the NW–SE direction, and these faults 
are situated in the western part of Shillong Plateau. Shillong 
Plateau is assumed to be divided by various faults; these are 
Dhubri Fault, Chedrang Fault, Dudhani Fault, Oldham Fault, 
Kopili Fault (Fig. 3). Jorhat Fault is one of the fault bounda-
ries which separate the extended part of the Shillong Plateau 
that is Mikir Hills and Assam Valley.

Fig. 15  Horizontal tilt angle (TDX) map also provides the lineament 
pattern, but it is more sharply expressed compared to the tilt deriva-
tive. The thrust faults are indicated by contact between the orange and 

black colors, and white simply corresponds to zero isoline of the tilt. 
Location of thrust fault determined using source edge detection tech-
nique (SED) is superimposed for comparison
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It is suggested that NE directional force through Bengal 
Basin extended into two components of force: One is act-
ing toward Dauki Fault (velocity 8–9 mm/year) and another 
is acting toward Churachandpur-Mao Fault (CMF) (veloc-
ity 14 mm/year) and further extended to Naga Thrust (NT) 
(Panda et al. 2018). Gravity data suggested that Kopili Fault 
is separated from Shillong Plateau and Mikir Hills. The ori-
entation of Kopili Fault is marked by arrow and as shown in 
(Fig. 12) (Singh et al. 2017). The Disang thrust and Dauki 
Fault orientation are also marked in Fig. 12 (Singh et al. 
2017). Barman et al. (2016) suggested that some contrac-
tion forces are acting between Mikir Hill and Shillong Pla-
teau along the Kopili Fault. Singh et al. (2017) suggested 
that Mikir Hills are facing an anticlockwise rotational 
force due to Kopili and Bomdila faults (Fig. 12). A major 
East–West Lineament (Jorhat Fault) divides Assam shelf 
into two parts, viz. North Assam Shelf (NAS) and South 
Assam Shelf (SAS). NAS is generally known as Brahma-
putra Valley, and SAS is known as Dhansiri Valley (Singh 
et al. 2011) (marked by lower gravity value). It is observed 
that Shillong Plateau has greater gravity value compared 
to the MBT/MCT (toward north), Assam Valley (NE part), 
Molasse Basin (SE part) and also has comparatively higher 

gravity value from Bengal Basin (southward) and Tista and 
Padma faults (Western part).

It seems that some SW to NE directional force (at Ben-
gal Basin across the Sylhet Fault) are acting toward Shillong 
Plateau. SE to NW directional forces are acting (originated 
from Myanmar) toward the Indo-Burma Ranges and further 
extended to Shillong Plateau. NE–E to SW–W directional 
force is acting toward Naga Thrust at Assam Valley extending 
to Jorhat fault and Mikir Hill. NE to SW directional forces 
are acting from the Main Central Thrust (MCT) toward 
Brahmaputra Thrust and extending toward Shillong Plateau. 
NW to SE directional forces are acting along the Tista Fault 
extending toward Shillong Plateau. The different forces are 
acting as shown by the arrow marks on the area which causes 
development of various thrust faults/lineaments and makes 
this area seismically more active causing changes in gravity 
field. Geologically it is suggested that there are numerous 
forces acting toward Shillong Plateau/Indo-Burma Ranges 
(assuming as center location) subsequently generating an 
anticlockwise rotational force in this area and Mikir Hills 
(Fig. 17) (Singh et al. 2017). There may be possibilities 
that due to these numerous activities, thrust faults are active 
which causes upliftment and depression in the area.

Fig. 16  Cos(θ) map indicates good thrust fault boundaries more 
prominently and well correlated with the previously identified thrust 
fault. The Cos(θ) value varies from 0 to 1 where  angle (θ) is vary-
ing from 0 to π/2 rad. The highest Cos(θ) values are indicating thrust 

fault as marked by whitish-gray color. Location of thrust fault deter-
mined using source edge detection technique (SED) is superimposed 
on this map, and it shows good correlation between old thrust fault 
location and newly derived thrust fault location by Cos(θ) analysis
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Abstract
This study assessed two signal processing methods on geomagnetic data to detect precursory signals appearing before the 
M6.9 Visayas, Philippines earthquake on 6 February 2012. It aimed to compare the polarization ratio analysis method with 
the diurnal variation ratio method in terms of reliability and effectiveness. The geomagnetic data were obtained from the 
MAGDAS magnetometer network for Cebu (CEB) and Legazpi (LGZ) stations which served as the primary and remote sta-
tions, respectively. The polarization ratio analysis method was performed on the primary station data to obtain power spectral 
density in an ultra-low-frequency range before finding the ratio of vertical to total horizontal component. Meanwhile, the 
diurnal variation ratio method was used to calculate the difference between the daily maximum and minimum values. Then, 
the ratio of the daily differences of the primary station to the remote station for each individual component was calculated. 
The disturbance storm time index which describes global geomagnetic activity originating from the Sun was utilized to verify 
that any observed geomagnetic fluctuations were not caused by solar-terrestrial effect. A precursory anomaly was found 
using the polarization ratio analysis method which appeared 2 weeks before the earthquake. It is concluded that this method 
might be effective and reliable in detecting geomagnetic anomalies preceding upcoming earthquakes. In contrast, although 
the diurnal variation ratio method did show perceivable fluctuations, the running averages were not statistically significant 
to be considered a precursor. The discrepancy between the analytical results of the two methods may be attributed to the 
detectability of the earthquake being studied which had a relatively low magnitude. Hence, future studies which utilize more 
earthquake events need to be conducted to reach a definitive conclusion.
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Introduction

Earthquakes are undoubtedly one of the deadliest natural 
disasters known to humankind. This creates the urgency 
for the development of short-term earthquake forecasting 
which has a time scale of about a week to a month before 
the event. Short-term earthquake forecasting is currently 
unachievable by solely using the seismometer due to its 
limited sensitivity in detecting the generation of micro-
fractures before an earthquake (Hayakawa 2015). This, 
therefore, imposes the urgency for a non-seismological 
approach, and one of the most well-established ways is via 
geomagnetic disturbance observation (Hayakawa 2015).

Previous works have shown that disturbances in the geo-
magnetic field provide potential precursor to earthquakes, 
especially in an ultra-low-frequency (ULF) range (Febri-
ani et al. 2014; Stanica et al. 2018). These works started 
with the finding by Fraser-Smith et al. (1990) where it 
was reported that the amplitude of geomagnetic noise at 
ULF was enhanced 3 h before the 1989 M7.1 Loma Prieta 
earthquake. They suspected that the noise might be related 
to the quake. Hayakawa et al. (1996) reconfirmed the exist-
ence of anomalous variation in the vertical component 
of the geomagnetic field 1 month before the 1995 Guam 
earthquake. Since then, studies in geomagnetic earthquake 
forecasting have been increasing exponentially.

There are five proposed mechanisms which cause anom-
alous variation in geomagnetic field as a result of seis-
mic activity including (1) induction of electrical current 
caused by underground conductivity variation (Sorokin 
and Pokhotelov 2010), (2) displacements of boundaries 
between high and low conductive crustal blocks (Dudkin 
et al. 2003), (3) electrokinetic effect (Fedorov et al. 2001), 
(4) piezoelectric or piezomagnetic effects (Dudkin et al. 
2010), and (5) microfracture electrification (Molchanov 
and Hayakawa 1998).

While electromagnetic emission propagates indefi-
nitely, in the case of lithospheric emission, attenuation 
reduces the distance at which the emission can travel and 
be detected on the ground. This is due to the low-pass fil-
ter function of the lithosphere which severely damps the 
high-frequency component (Prattes et al. 2011). Based on 
the relationship given by the skin depth effect, for emis-
sions originating from earthquake hypocenters with depth 
not greater than ~ 160 km, signals at 0.01 Hz can be gen-
erally detected by ground geomagnetic stations located 
close to the epicenters (Prattes et al. 2011). Since ULF 
has a great skin depth characteristic, it experiences low 
attenuation and deeper penetration into the crust and this 
is where the ULF range has proven to be useful (Chauhan 
et al. 2012). ULF (0.01–0.10 Hz, or any value within this 
range) emission studied in the form of ratio of vertical 

component to total horizontal component is commonly 
referred as polarization ratio analysis (Currie and Waters 
2014; Prattes et al. 2011).

Even though the polarization ratio analysis is the primary 
method of detecting earthquake precursors in previous stud-
ies, the requirement for 1-s sampling rate data is sometimes a 
constraint. This is because high-resolution geomagnetic data 
are not widely available and are distributed by data provid-
ers compared to 1-min data. As an alternative, the diurnal 
variation ratio method which only requires low-resolution 
data that has been employed by researchers such as Chen 
et al. (2010) and Xu et al. (2013) in their studies can be 
considered. However, the drawback of this method is the 
need for at least two datasets from different stations. Addi-
tionally, both stations must be separated at a reasonably far 
distance to ensure earthquake effects on the primary station 
have minimal geomagnetic impact on the far, remote station.

Based on the available literature on this subject, it is 
found that earthquake forecasting studies in the Southeast 
Asia region are not as abundant as in other parts of the world 
despite the high rate of earthquake occurrences. One of the 
significant earthquakes to have occurred in this century in 
this region is the 2012 Visayas, Philippines earthquake. The 
disaster happened on 6 February 2012 at 03:49 UTC off the 
coast of Negros Oriental, Philippines (9.97°N, 123.14°E), 
with a magnitude of M6.9. The hypocentral depth was 10 km 
which caused tsunamis, landslides and structural destruc-
tions as well as more than 50 fatalities (Aurelio et al. 2017).

In this study, we assessed two signal processing meth-
ods on geomagnetic data for earthquake precursory signal 
detection. The polarization ratio analysis, which has been 
demonstrated by prior studies to be effective especially in 
the ULF range, was our first method. In order to overcome 
the limitation of high-resolution data unavailability and pro-
mote greater flexibility, this study also implemented a sec-
ond method called the diurnal variation method. We studied 
the 2012 M6.9 Visayas, Philippines earthquake as the main 
event and other small-magnitude earthquakes; these will be 
described in detail in the Instrumentation and data section. 
The effectiveness and reliability of these methods were com-
pared in addition to their distinguishing features.

Instrumentation and data

Earthquake data

The period of observation in this study covered 60 days before 
until 60 days after the main shock which is from 8 December 
2011 until 6 April 2012. The studied earthquake events included 
all M > 5.0 earthquakes which struck within 300 km from both 
Cebu (CEB) and Legazpi (LGZ) magnetometer stations. Earth-
quake data were obtained from the European-Mediterranean 
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Seismological Centre (EMSC) online earthquake catalog 
(www.emsc-csem.org) and are listed inTable 1.

Characteristics such as magnitude and distance are very 
important to quantize the impact of each earthquake toward 
local geomagnetic field. In order to achieve this, local seis-
micity index ( KLS ) introduced by Molchanov and Hayakawa 
(2008) was utilized where the following relationship is 
assumed to be valid:

where M is the earthquake magnitude and R is the epicentral 
distance. This index is used as a form of representation for 
each individual earthquake in the Results and discussion. It 
is assumed that the earthquakes with the highest KLS value in 
an earthquake swarm are more likely to be the main source 
of any precursor detected.

Hayakawa et al. (2007) hypothesized that the following con-
dition needs to be satisfied for the ULF signal emitted from 
an earthquake epicenter to be detectable by a magnetometer 
station, based on the distance between the two locations (epi-
central distance), R, and the earthquake magnitude, M:

(1)KLS =
100.75M

R + 100

(2)0.025R ≤ M − 4.5

R ≤
M − 4.5

0.025

By rearranging the variables in Eq. (2), we obtained Eq. (3) 
where Rmax refers to the maximum detectable distance.

From Eq. (3), it is expected that no precursory signal is to 
be detected further than 20 km for our weakest studied earth-
quake with M = 5.0. Meanwhile, for the main earthquake 
with M = 6.9, the Rmax was estimated to be 96 km, which 
is written in bold in Table 1. Thus, the decision to include 
earthquakes within 300 km was rather an overestimation 
to widen the forecasting possibility. Figure 1 illustrates the 
map of the Philippines with all studied earthquakes shown 
in circles. Circle radii are proportional to earthquake mag-
nitudes, calculated based on relationship shown in Eq. (3). 
It was hypothesized that any earthquake in which its circle 
coincides with either magnetometer station would produce 
detectable ULF emission at the station.

Geomagnetic index

In order to eliminate the effects of global geomagnetic activ-
ity and avoid false precursor, this study utilized a global 
geomagnetic index, namely the disturbance storm time (Dst) 
index recorded during the same period of observation. It 
is used to monitor solar wind activities of which any daily 
value that is lower than − 50 nT indicates an occurrence 
of geomagnetic storm (Hamid et al. 2009). Anomalies in 
geomagnetic field during disturbed days should be ignored 
as it is due to geomagnetic environmental factors (Hasbi 
et al. 2011).

Geomagnetic field data

The geomagnetic field data were acquired from the Magnetic 
Data Acquisition System (MAGDAS) magnetometer net-
work. MAGDAS magnetometers are ring-core-type flux-
gate that is capable of measuring small-amplitude geomag-
netic fluctuations. There are three sensors which measure 
three geomagnetic field components, i.e., north–south (H), 
east–west (D) and vertical (Z) components. The data were 
sampled at 16-Hz which were then arithmetically averaged 
on-board into 1-Hz sampling frequency (Bello et al. 2017). 
In this study, we obtained 1-Hz data which were collected 
during the period of observation from CEB and LGZ sta-
tions (Table 2). Based on the distance from the epicenter 
of the M6.9 earthquake, CEB served as the primary station 
and LGZ acted as the remote station. Raw data for the whole 
period of observation are displayed in Fig. 2a–c, in addition 
to Fig. 2d–f which zoom in on data for 23 January 2012 

(3)Rmax =
M − 4.5

0.025

Table 1  List of earthquake details in the vicinity of CEB station. In 
this table, R refers to the distance of the epicenter from CEB station, 
while R

max
 is the maximum detectable distance calculated by using 

Eq. (3)

The bold row corresponds to the main earthquake

Date and time 
(UT)

Coordinates Earthquake 
magnitude

R (km) R
max

(km)

10/12/2011 09:51 11.16°N, 126.06°E 5.1 251.1 24
26/12/2011 20:34 09.61°N, 126.35°E 5.1 279.9 24
17/01/2012 12:55 11.19°N, 125.92°E 5.7 238.2 48
01/02/2012 04:30 11.93°N, 125.50°E 5.2 246.1 28
04/02/2012 13:09 12.04°N, 125.81°E 5.7 279.0 48
04/02/2012 19:29 11.90°N, 125.67°E 5.4 261.0 36
06/02/2012 03:49 10.06°N, 123.27°E 6.9 77.6 96
06/02/2012 04:20 10.19°N, 123.20°E 5.7 79.9 48
06/02/2012 10:10 09.93°N, 123.11°E 6.1 99.8 64
06/02/2012 11:33 09.90°N, 123.11°E 5.9 101.4 56
06/02/2012 11:40 09.90°N, 123.13°E 5.2 99.5 28
07/02/2012 20:37 10.24°N, 123.40°E 5.3 57.4 32
07/02/2012 21:59 10.22°N, 123.40°E 5.0 57.9 20
08/02/2012 00:41 10.44°N, 123.44°E 5.3 52.2 32
24/02/2012 05:42 10.03°N, 125.96°E 5.0 227.3 20
25/02/2012 07:01 11.77°N, 125.86°E 5.2 264.3 28
05/03/2012 23:06 12.45°N, 123.68°E 5.4 233.7 36
16/03/2012 07:58 10.11°N, 125.67°E 5.8 194.6 52

http://www.emsc-csem.org
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since an anomaly (when the polarization ratio analysis was 
applied) appeared on that date.

Methodology on signal processing

Polarization ratio analysis

The following steps were applied to each individual geo-
magnetic component (H, D and Z) from CEB station. We 
removed extreme high and low value noises as well as 
outliers that existed in our raw data by applying median 
filter. Previous studies suggest that local nighttime data 

contain less man-made noise (Potirakis et al. 2017; Prattes 
et al. 2011); thus, only those within the time period of 
22:00–02:00 LT were extracted and further processed. 
Four hours of data were obtained for each day which then 
underwent the Welch’s processing method (the reader is 
referred to Stranneby and Walker (2004) for mathemati-
cal description). This method divides the daily data into 
smaller segments and then performs the fast Fourier trans-
form (FFT) analysis to each segment. The FFT converts 
time series data into the frequency domain in the form 
of power spectrum density (PSD). The Hamming func-
tion was used for windowing and the number of FFT bin 
was 2048/2 + 1. Neighboring segments (eight segments 
for each day) were not overlapped and the length of the 
segment was 1800, which represented 30-min of data. All 
eight segments were then averaged to obtain one PSD 
spectrum for each day. The values in frequency of between 
0.01 and 0.10 Hz were picked from the spectrum and then 
averaged over this frequency range to acquire the daily 
mean value, �day . To exclude monthly trend, normaliza-
tion process was performed. Monthly means ( �month ) and 
monthly standard deviations ( �month ) were calculated from 

Fig. 1  The location of the 
magnetometer stations (shown 
by green triangles) and all 
included earthquakes. The dis-
tance between the two stations 
is 311 km. Earthquake depths 
are color-coded; red for shallow 
(< 50 km) and blue for interme-
diate earthquakes (50–200 km). 
Red arrow shows the main 
earthquake event

Table 2  Details of CEB and LGZ stations and their respective dis-
tances from the M6.9 earthquake

Station name (code) Coordinates Distance from 
M6.9 earthquake 
(km)

Cebu (CEB) 10.36°N, 123.90°E 77.6
Legazpi (LGZ) 13.01°N, 123.74°E 347.2
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�day values in their respective month: e.g., 8–31 December 
for December, 1–31 January for January and so on. Then, 
using these calculated values, normalized daily value, 
Nday,i was calculated by using this formula:

where i refers to H, D, Z, which implies that each geomag-
netic field component was calculated separately. Finally, 
daily polarization ratio, PZ∕G (G indicates the total horizon-
tal component, where G =

√

H2 + D2 ) was calculated using 
the following expression:

This ratio is known to exhibit anomalous increment when 
seismogenic (i.e., associated with earthquakes) emission is 
present (Chavez et al. 2011). For any given day, it is identi-
fied as anomalous when the PZ∕G value exceeds �P ± 2�P 
where the deflection is assumed to be statistically signifi-
cant and not random, as used by previous studies (Febriani 

(4)Nday,i =
�day,i − �month,i

�month,i

(5)PZ∕G =
Nday,Z

√

N2
day,H

+ N2
day,D

et al. 2014; Prattes et al. 2011). Parameters �P and �P in the 
expression are the mean and the standard deviation of PZ∕G , 
respectively, which were computed from the whole period 
of observation.

Diurnal variation ratio

The following steps were applied to each geomagnetic compo-
nent for both stations, namely CEB and LGZ, individually. The 
noises and outliers’ removal process was carried out similar to 
the previous method. Data were then downsampled from 1-s to 
1-min sampling period to demonstrate the possibility of using 
low-resolution data for this method. Then, the diurnal variation 
range, ΔXj,i , was calculated by subtracting the minimum value 
from the maximum daily value:

where i refers to H, D and Z components and j refers to 
CEB and LGZ stations. It is important to correctly identify 
the range for daily data in the local time zone frame as the 
original data are recorded in universal time (UT). The ratio 

(6)ΔXj,i = max(Xj,i) −min(Xj,i)

Fig. 2  Raw geomagnetic data from 8 December 2011 to 6 April 2012 
(the period of observation) for both CEB (blue line) and LGZ (red 
line) stations. a–c show H, D and Z components, respectively. The 

green vertical line marks the M6.9 earthquake event. Panels d–f mag-
nify the data on 23 January 2012
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of daily variation of the primary (CEB) to the remote (LGZ) 
station, Ri , was calculated for each component:

Direct observation of this ratio reveals multiple probable 
random fluctuations. Therefore, long-term trend of the ratio 
was obtained, similar to the study by Xu et al. (2013). In 
their study, 10-day running mean was used; however, in our 
study, we used 5-day one instead since our period of obser-
vation is shorter. For anomaly identification, Xu et al. (2013) 
used �R,i ± k�R,i (k = 3) threshold where any daily Ri value 
exceeding this threshold is considered an anomaly. Param-
eters �R,i and �R,i in the expression are the mean and the 
standard deviation of Ri , calculated from the whole period 
of observation. In this paper, k = 2 was used instead since 
the earthquake focused in this study has a much lower mag-
nitude than the one in Xu et al. (2013) where M = 9.0; thus, 
for our study, a lower threshold is more suitable.

Results and discussion

Polarization ratio analysis

In this section, the results of the processed geomagnetic data 
using the polarization ratio analysis method are presented. 
Figure 3 illustrates the daily polarization ratio, PZ∕G in the 
middle panel together with KLS index in the top and Dst 
in the bottom panels. Temporal evolution of PZ∕G (Fig. 3b) 
was consistently within �P ± 2�P threshold throughout the 

(7)Ri =
ΔXCEB,i

ΔXLGZ,i

period of observation, except for a clear anomalous peak 
which appeared 14 days before the main earthquake, which 
was on 23 January 2012. Raw geomagnetic data as shown 
in Fig. 2d–f (blue lines) indicate a sudden drop in H and D 
components; meanwhile, Z component displays an absence 
of diurnal variation on the date.

Considerably high Dst (Fig. 3c) around the occurrence 
of possible precursor is acknowledged; however, its value 
which was above − 50 nT suggests uncorrelation between 
PZ∕G and global geomagnetic activity. To further support this 
claim, geomagnetic storms which began on 7 March 2012 
did not cause any increment in PZ∕G value.

To closely inspect the apparent anomaly, we observed 
normalized daily values of Z ( Nday,Z ) and 1/G ( Nday,1∕G ) 
during the same time period; their temporal evolutions are 
illustrated in Fig. 4a and b, respectively. The green dashed 
box (in Fig. 4a and b) highlights the period when the anoma-
lous peak appeared, which is shown in Fig. 3b. As shown 
in Fig. 4a and b, positive value of Nday,Z and high value of 
Nday,1∕G contribute to the peak. We also note that another 
high value of Nday,1∕G to the left of the green box did not pro-
duce another peak in PZ∕G (Fig. 3b) since Nday,Z value during 
this period is negative, thus canceling the effect of Nday,1∕G.

The choice of frequency range, while is consistently 
within 0.01–0.10 Hz in most earlier studies, is rather arbi-
trary in terms of specific frequency range being used by them 
(Yusof et al. 2019). For example, Schekotov et al. (2013) 
used 0.03–0.05 Hz, Ida et al. (2008) used ~ 0.01 Hz, while 
Prattes et al. (2011) selected 0.010–0.015 Hz for their analy-
ses. Therefore, we also included PZ∕G when 0.010–0.015 Hz 
(low narrowband in Fig. 5c) and when 0.09–0.10 Hz (high 
narrowband in Fig. 5d) were used to compare with our first 
plot (wideband). The comparison is depicted in Fig. 5.

Fig. 3  Temporal evolution from 8 December 2011 to 6 April 2012 of 
a KLS index for all earthquakes near CEB station with their depths 
specified using the symbol shapes, b daily polarization ratio, PZ∕G 

and the �P ± 2�P value in dashed red lines for Δf = 0.01–0.1 Hz, and 
c Dst index with its threshold considered active in dashed lines. The 
green vertical line marks the M6.9 earthquake event
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Based on Fig. 5, we can say that the wideband (Fig. 5b, 
similar to Fig. 3b) produced the most obvious peak before 
the main earthquake but at the same time suppressed an 
apparent second peak which occurred on 16 February 2012. 
We need to mention that there was another earthquake on 16 
March 2012, exactly 1 month after the second peak. While 
this earthquake had a notably large magnitude of M = 5.8, its 

epicentral distance of 194.6 km did not convince us that it 
would produce a detectable precursor because it was beyond 
its Rmax of 52 km.

This second peak had an amplitude comparable to the first 
one when the low narrowband (Fig. 5c) was used. Mean-
while, while it had a smaller amplitude, it still exceeded 
the threshold value when the high narrowband (Fig. 5d) 

Fig. 4  Temporal evolution of a Nday,Z and b Nday,1∕G . The dashed green box highlights the period when the peak in Fig. 3b appeared. The green 
vertical line marks the M6.9 earthquake event

Fig. 5  Temporal evolution of a KLS index for all earthquakes near CEB station, b–d daily polarization ratio, PZ∕G for Δf = 0.01–0.1 Hz, Δf = 
0.010–0.015 Hz and Δf = 0.09–0.10 Hz, respectively, with their respective �P ± 2�P values in dashed red lines, and e Dst index
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was analyzed. The inference from this observation can be 
explained by the skin depth effect relationship which states 
that the frequency of emission is inversely proportional to 
the square of depth (Prattes et al. 2008). Hence, it is implied 
that the choice of frequency range used has great influences 
on the depth of seismogenic emission sources which are 
going to be detected on the ground. By including a wide-
band, i.e., 0.01–0.10 Hz, we eliminate biased observation 
that prefers certain depth to provide us with thorough under-
standing of lithospheric activities underground. Thus, we 
can safely say that for this study, wideband is the most opti-
mum to produce a reliable precursor which has an amplitude 
that is consistent with the earthquake magnitude and local 
seismicity index. From our finding, we also suggest that in 
order for an anomalous peak to be considered as a precursor, 
its appearance and amplitude should be persistent regardless 
of the frequency range.

Diurnal variation ratio

In this section, the results of the processed geomagnetic data 
using the diurnal variation ratio method are presented. Fig-
ure 6 illustrates CEB/LGZ diurnal variation ratios, Ri (blue 
lines) for each component (i = H, D, Z) and their respective 

moving averages (magenta lines) which are presented in 
Fig. 6b–d, with similar topmost (Fig. 6a) and bottommost 
(Fig. 6e) panels, as shown in Figs. 3 and 5. Moving average 
of RH exhibited a drop on 16 January 2012, which is marked 
by an arrow. Meanwhile, moving average of RD increased 
steadily until 21 February 2012 when it dropped, also 
marked by an arrow. Moving average of RZ mostly showed a 
consistent trend along the time period. Despite the observed 
fluctuations, none of the moving averages exceeded the pre-
defined �R,i ± 2�R,i thresholds. Hence, they were not statis-
tically significant and could not be considered a precursor. 
The results obtained from this method might be a result of 
the relatively low-magnitude main earthquake being studied, 
which is M6.9. As a comparison, Xu et al. (2013) who used 
the same method on the 2011 M9.0 Tohoku earthquake did 
observe a sharp peak in vertical (Z) diurnal variation about 
2 months before the earthquake.

Conclusion

Two signal processing methods were performed on geomag-
netic data obtained from the MAGDAS Cebu (CEB) and 
Legazpi (LGZ) stations 60 days before and 60 days after the 

Fig. 6  Temporal evolution of a KLS index for all earthquakes nearer 
to CEB and LGZ stations, indicated by circle and triangle symbols, 
respectively, b–d diurnal variation ratio of CEB/LGZ for all three 
components ( RH , RD and RZ ) in blue lines, the corresponding 5-day 

moving average indicated in magenta lines and their respective 
�R ± 2�R values in dashed red lines, and e Dst index. The green verti-
cal line marks the M6.9 earthquake event
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M6.9 Visayas, Philippines earthquake on 6 February 2012. 
Both methods were assessed and compared in term of effec-
tiveness and reliability in detecting precursor of upcoming 
earthquakes.

The polarization ratio analysis method has successfully 
detected an anomaly preceding the main earthquake. The 
incoming earthquake was preceded by the geomagnetic 
anomaly 14 days before the event which would enable nec-
essary mitigation actions to be taken. Besides, the anomaly 
appeared prior to the earthquake without other anomalous 
signature appearing in any other period even during the 
occurrences of geomagnetic storm. This indicates that the 
anomaly is reliable and uncorrelated with global geomag-
netic activity. Furthermore, this method gives insight into 
the depth of the upcoming earthquakes by producing dis-
tinguished patterns from different frequency ranges. Since 
shallow earthquakes will typically cause greater destruc-
tions, forecasting the earthquake depth would enable the 
government agencies to determine the danger level they are 
encountering.

In contrast, the use of the diurnal variation ratio method 
in this study did not produce any unambiguous precursor 
prior to the main earthquake, even though fluctuations were 
observed in the H and D components. The relatively low-
magnitude earthquake being studied might be the reason for 
the discrepancy between the results obtained from the two 
methods. Therefore, future studies which utilize multiple 
earthquakes with varying properties need to be conducted 
to confirm this discrepancy.
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Abstract
Electric field synthesis was carried out using the multi-field superposition method according to the working principle of the 
array laterolog electrode system. The field distribution of each subfield was simulated with the 3D finite element method, 
and the laterolog response of the array was obtained using the linear superposition principle of electric field. The detection 
depth and thin layer response at different angles of the array laterolog were analyzed. The forward response calculation shows 
that the radial detection depth of the array laterolog is smaller than the deep laterolog detection depth. When the inclination 
angle of the well is less than 15°, the logging response of the array laterolog is less affected by the well inclination, and the 
well inclination correction need not be performed. The logging response values of highly deviated wells with inclination 
angles exceeding 60° and horizontal wells are quite different from those of vertical wells; thus, well deviation correction 
must be performed. To improve the stability of array laterolog logging inversion using the accurate forward response, a 
Newton–singular value decomposition method based on particle swarm optimization is proposed to realize inversion of 
array laterolog logging, and the stability and reliability of logging inversion are greatly improved. Thus, application of the 
theoretical model and actual data processing and analysis show that the proposed method can effectively and accurately 
eliminate the influence of a complex logging environment and obtain real formation parameters.

Keywords Newton–SVD method · Particle swarm · Finite element method · Inversion · Array laterolog

Introduction

Horizontal/highly deviated well technology is one of the 
most important technologies for oil and gas exploration 
and development, and has thus become a major strategic 
measure for oil companies. The formation of horizontal/
highly deviated wells is characterized by a lack of rota-
tional axis symmetry, and thus, it is not possible to simplify 
the meridional plane problem. The original mixing method 
and conventional analytical methods are no longer suitable 

for 3D strata. The 3D finite element method, however, can 
effectively obtain the array laterolog logging response of the 
array in 3D strata (Liu et al. 1994, 1997; Li et al. 1996, Li 
1998; Davydycheva et al. 2003). Logging response charac-
teristics of the array laterolog differ considerably between 
horizontal/highly deviated wells and vertical wells. There-
fore, numerical simulation of the array laterolog can help 
recognize the detection characteristics of the instrument and 
provide a theoretical basis for its research and development. 
Moreover, it can help analysts improve their understanding 
of logging curves. This paper uses the 3D finite element 
method to calculate the logging response of array laterologs 
and analyzes their logging response characteristics for hori-
zontal/highly deviated wells.

The inversion technique is generally used to eliminate 
the influence of the environment on the logging response 
of array laterologs (Zhu et al. 2015). For electrical log-
ging inversions, the formation parameters are generally 
obtained in terms of resistivity (e.g., invasion radius, inva-
sion zone resistivity, and true formation resistivity). Charts 
were used to perform inversions in the early days of logging 
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development. They caused the following inconveniences. 
First, only a limited number of parameters could be con-
sidered. Second, because the charts were made using the 
simplified model, they could only be processed step-by-step 
in terms of a single factor, and the accuracy of the result 
was doubtful. With the development of computer technol-
ogy, it became possible to carry out large-scale calculations. 
Currently, the main method employed for inversion of array 
laterolog logging linearizes the nonlinear problem using the 
Taylor expansion model, and then solves it using singular 
value decomposition, the generalized inverse method, and so 
on. However, due to the local optimum, the inversion would 
easily achieve a local solution, and thus, the global optimal 
solution cannot be obtained accurately.

In recent years, people have begun to use intelligent 
methods to conduct logging inversion. Datta-Gupta et al. 
(1995) used the simulated annealing algorithm to deter-
mine the random infiltration region of porous media based 
on the inversion model. Ding et al. (2002) proposed using 
neural networks to invert dual laterolog resistivity. Tan and 
wang (2005) used genetic algorithms to calculate geophysi-
cal inverse problems, whereas Chen et al. (2007) applied 
the particle swarm method to study the inversion of dual 
laterolog resistivity.

Particle swarm optimization (PSO) (Chauhan et al. 2013; 
Zhang et al. 2015) is an optimization technique based on 
community; it is a kind of community intelligent optimi-
zation algorithm. Particle swarms correct individual action 
strategies through information sharing between community 
and individual experiences and finally find the optimal solu-
tion of the inversion. The initial stage of PSO has good con-
vergence, but the algorithm begins to show inertness in the 
latter stage of the calculation, leading to slow convergence 
and poor precision. The Newton algorithm is characterized 
by fast convergence and high calculation accuracy, but it 
is greatly affected by the initial value. If the initial value is 
not well selected, the convergence of the algorithm is nega-
tively affected. This paper proposes a Newton–singular value 
decomposition (SVD) method based on PSO to overcome 
two problems: slow convergence in the later period of cal-
culation in the PSO method and the fact that the Newton 
method is strongly affected by the initial value.

Thus, we intend to apply the Newton–SVD method to 
realize inversion of array laterolog logging and improve its 
stability using the accurate forward response.

Tool and methods

Array laterolog electrode structure

Schlumberger introduced a high-resolution new array later-
olog logging tool in 1998, with a main current transmitting 

electrode A0 in the middle, six pairs of symmetrical electrodes 
on each side (A1, A2, A3, A4, A5, and A6), and two pairs of super-
vising electrodes (M1 and M2) between the electrodes A0 and 
A1. Consider that A0 emits a current and the other shield elec-
trodes are loop electrodes. This gives rise to RA0. One pair of 
shield electrodes is added to carry the current from A0 to both 
sides, and RA1, RA2, RA3, RA4, and RA5 are obtained with dif-
ferent detection depths. The resistivity curves of six different 
detection depths were obtained from the measurement of the 
array laterolog, and the shallowest detection mainly reflected 
the influence of the resistivity of the mud cake (Fig. 1).

Forward model

Direct current logging uses low-frequency alternating cur-
rent as the power supply. Due to its low frequency, the array 
laterolog logging response can be reduced to a direct current 
field calculation. The electric field of the array lateral logging 
can be represented by the differential equation seen below (Li 
1980; Sibbit and Faivre 1985; Clavier 1991; Zhang 1996; Zhu 
et al. 2005; Li et al. 2010):

(1)∇ ⋅ (�∇U) = 0

Fig. 1  Array laterolog tool and formation model
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where � is the conductivity of the formation and U is the 
measured potential.

In the cylindrical coordinate system (r,�, z) , it can be 
expressed as

This equation is applicable under the following bound-
ary conditions.

Dirichlet boundary condition: U is constant on the electrode 
surfaces, U is known on the current electrodes, but it is unknown 
on the voltage electrodes. On the infinity boundary, U = 0.

Neumann boundary condition: For the constant current 
electrode, ∬

D
�m

�U

�n
ds = IA (where IA is the supply current 

of the power supply electrode A, �m is the mud conductiv-
ity, D is the surface of the electrode, and S is the integral 
variable). On the insulating boundary surface, �U

�n
= 0.

In order to obtain Eq. (2), the problem of the partial dif-
ferential equation needs to be transformed into the extreme 
problem of the functional:

where IE and UE , respectively are the current and potential 
of each electrode, E is the boundary of the electrode, and Ω 
is the boundary of the formation.

After the potential is obtained using the finite element 
method, the lateral log response of the array satisfies the 
following conditions:

where K is the instrument electrode system constant, UM1 
is the potential for electrode M1, IA0 is the emission current 
intensity of electrode A0, and Ra is the apparent resistivity 
under different conditions.

When solving the potential distribution of the array 
laterolog, the principle of electric field superposition is 
used to transform it into the potential function of multiple 
corresponding fields (Zhu et al. 2015).
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In the first subfield, only electrode A0 emits a unit current 
I = 1 A, and the other electrodes do not emit any current. 
From the second subfield onwards, only electrodes An−1 and 
An−1ʹ emit unit current I = 1 A in the nth subfield, and the 
other electrodes do not emit any current. Electrodes An−1 and 
An−1ʹ are equipotential (2 ≤ n ≤ 7). We calculate the first to 
seventh field potentials in turn using U0 (x, y, z), U1 (x, y, z), 
U2 (x, y, z), U3 (x, y, z), U4 (x, y, z), U5 (x, y, z), and U6 (x, y, 
z). Then, the lateral potential of the array is

where C1, C2, C3, C4, C5, and C6 are the focus synthesis 
coefficients.

RA1 is taken as an example to discuss the constraints of the 
working mode of the array laterolog. Its constraint condition is

where UM1 and UM2 are the respective potential values of 
electrodes M1 and M2; UA2,UA3,UA4 , UA5 and UA6 are the 
respective potential values of electrodes A2, A3, A4, A5, and 
A6; IA0 , IA1 , IA2 , IA3 , IA4 , IA5 , and IA6 are the respective current 
values of electrodes A1, A2, A3, A4, A5, and A6.

Using the constraints noted in Eqs. (8) to (10), the focus 
synthesis coefficients of each subfield can be obtained.

(7)
U = U0 + C1U1 + C2U2 + C3U3 + C4U4 + C5U5 + C6U6

(8)UM1 = UM2

(9)UA2 = UA3 = UA4 = UA5 = UA6

(10)IA0 + IA1 + IA2 + IA3 + IA4 + IA5 + IA6 = 0

(11)

U0M1 + C1U1M1 + C2U2M1 + C3U3M1 + C4U4M1

+ C5U5M1 + C6U6M1 = U0M2 + C1U1M2 + C2U2M2

+ C3U3M2 + C4U4M2 + C5U5M2 + C6U6M2

(12)

U0A2 + C1U1A2 + C2U2A2 + C3U3A2

+ C4U4A2 + C5U5A2 + C6U6A2 = U0A3 + C1U1A3

+ C2U2A3 + C3U3A3 + C4U4A3 + C5U5A3 + C6U6A3

(13)

U0A2 + C1U1A2 + C2U2A2 + C3U3A2

+ C4U4A2 + C5U5A2 + C6U6A2 = U0A4 + C1U1A4

+ C2U2A4 + C3U3A4 + C4U4A4 + C5U5A4 + C6U6A4

(14)

U0A2 + C1U1A2 + C2U2A2 + C3U3A2

+ C4U4A2 + C5U5A2 + C6U6A2 = U0A5 + C1U1A5

+ C2U2A5 + C3U3A5 + C4U4A5 + C5U5A5 + C6U6A5

(15)

U0A2 + C1U1A2 + C2U2A2 + C3U3A2

+ C4U4A2 + C5U5A2 + C6U6A2 = U0A6 + C1U1A6

+ C2U2A6 + C3U3A6 + C4U4A6 + C5U5A6 + C6U6A6
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where UiM1, UiM2, UiA2, UiA3, UiA4, UiA5, and UiA6 are the 
potential values of the corresponding electrodes under the 
i-1-th subfield.

Substituting Eq. (6) into Eq. (11) provides the value of 
the apparent resistivity RA1. The other resistivity values of 
RA2, RA3, RA4, and RA5 can be obtained by different focusing 
methods.

In this paper, the entire section is symmetrical along 
the lateral direction, only need to calculate 0°–180° space, 
meshing with 15° in the circumferential direction, and non-
uniform meshing in the longitudinal direction and radial 
direction to reduce the number of grid. For the smallest unit, 
the representation of the tetrahedron is used, and finally m 
elements and n nodes are formed. After the assembly of 
the unit, the overall conductance matrix is formed, and the 
obtained equations are in the form of

In  t he  fo r mula ,  K =
∑m

e=1
Ke ,� = [�1,… ,�N]

T

, f = [I1,… , IN]
T where Ke is the coefficient matrix, � is the 

voltage value on each element, and f  is the current value 
at each node. Here, the array is assembled with the lateral 
electrode nodes. The front-line solution only needs to be 
iterated one step to obtain the voltage value corresponding to 
the electrode. This method is beneficial to the improvement 
of the forward calculation speed.

Inversion model

Considering the two-dimensional formation model of hori-
zontal stratification, it is assumed that there are M layers, and 
each layer has three parameters: invasion zone resistivity, 
invasion radius, and original formation resistivity. They are 
labeled as Rti (original formation resistivity), rxoi (invasion 
radius), and Rxoi (invasion zone resistivity) (i = 1, 2,…, M). 
Thus, M layers have 3 M parameters.

The resistivity curves in the log are recorded as  RAi(k) 
(k = 1, 2, 3…, n; i = 1, 2, 3,…5), n is the number of points 
measured by a single curve, Rti, rxoi, and Rxoi (i = 1, 2,…, 
M), and

(16)1 + C1 + C2 + C3 + C4 + C5 + C6 = 0

(17)
UM1 = U0M1 + C1U1M1 + C2U2M1 + C3U3M1

+ C4U4M1 + C5U5M1 + C6U6M1

(18)K� = f

(19)min Q(s) =

5∑

i=1

[(yk − fk(b))
2]

yk = (RAk(1),RAk(2),…RAk(n))
T

b = (rxo1,Rxo1,Rt1,… , rxoM ,RxoM ,RtM)
T

where y refers to the observed data; b denotes the model 
parameters of the inversion (invasion radius, invasion zone 
resistivity and true formation resistivity), and f represents the 
array lateral log response value calculated by model param-
eter b (Avdeev 2005; Deng et al. 2005). Since f is a nonlinear 
function, let it be Taylor-expanded near b (0), ignoring the 
quadratic terms, and obtaining a linearized function.

and

The following formula can be obtained by the least squares 
criterion:

After formulating (21) and (22), we get

where A is the Jacobi matrix. The iterative format using the 
damped least squares method is

where � is the damping factor. There are many ways to 
solve ill-posed linear equations such as (24). The following 
approaches are commonly used in logging inversion calcula-
tions: Newton’s method, SVD method, generalized inverse 
method, and damped least squares method (Deng et al. 2015; 
Tan et al. 2011; Sewell et al. 2010; Smits et al. 1998). The 
error caused by linearizing the nonlinear problem itself is 
very large. In addition, the high dependence on the initial 
value in these methods greatly discounts the accuracy of the 
inversion result.

Array laterolog inversion based on particle swarm 
optimization and the Newton–SVD hybrid algorithm

Assume a particle group consisting of S (number of 
particles). The position of the ith particle in the par-
ticle group is represented by a 3  M-dimensional vec-
t o r  a s  si = (r

si
xo1

,R
si
xo1

,R
si
t1
,… , r

si
xoM

,R
si
xoM

,R
si
tM
)T  ,  a n d 

the optimal position of the ith particle search so far is 
pi = (r

pi
xo1

,R
pi
xo1

,R
pi
t1
,… , r

pi
xoM

,R
pi
xoM

,R
pi
tM
)T  .  T h e  o p t i -

mal position of the particle swarm search so far is 
pg = (r

pg
xo1

,R
pg
xo1

,R
pg

t1
,… , r

pg
xoM

,R
pg
xoM

,R
pg
tM
)T . Using superscripts 

to indicate the number of iterations, the two basic iterations of 
the particle swarm optimization algorithm are

(20)f (b) = f (b(0)) +

5M∑

j=1

(
�fi

�bj

)
|
|
|
b(0) Δbj

(21)Δbj = bj − b(0)
j
, Δfj = fj − f (0)

j

(22)
�Q

�bj
= 0, j = 1, 2,… , 5M

(23)Δf = AΔb

(24)(AAT + �I)Δb(k) = −AT(y − f )

(25)b(k+1) = b(k) + Δb(k)
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where i = 1, 2,…, S; ω is the inertia weight; c1 and c2 are 
called the learning factors or the acceleration factors (both 
are non-negative constants); and r1 and r2 are random num-
bers between [0, 1]. When ω = 0, the speed at which the 
particles fly depends only on their current positions, their 
best position in history, and the best position in the history 
of the particle group; there is no memory of the speed itself. 
Thus, the particles at the global best position will remain 
stationary and the other particles will tend to their own best 
positions and the weighted center of the global best position; 
that is, the particle group will shrink to the current global 
best position.

The evolutionary equation of Eq.  (28) weakens the 
global search ability and strengthens the local ability. If 
the current point is the same as the local best or the global 
best, the point will stop evolution. However, in order to 
improve the original global search ability, maintain the 
original global best, and re-randomly generate the position 
of the particle in the new search space, other particles were 
optimized according to the original Eq. (27). In this way, 
new random particles will appear in the new generation 
of evolution, which can enhance the global search ability 
of the algorithm. This method is called a random particle 
swarm method.

First, the search should be conducted using the ran-
dom particle swarm method (Biswas et al. 2007; Ziari 
and Jalilian 2012; Mohammadi et al. 2017; Abordán and 
Szabó 2018). When Q(s) is less than the given minimum 
allowable value in Eq. (19), it is used as the initial point 
of the Newton–SVD approach, and then, the traditional 
Inversion method based on the Newton–SVD method is 
adopted. Using this technique to perform array lateral log-
ging inversion not only helps find a good initial point but 
also facilitates fast inversion.

The following are the steps of the Newton–SVD algo-
rithm based on PSO:

(1) Set particle size m, acceleration factors c1 and c2, 
weighting factor = 0, and search space dimension D, 
maximum iteration number TN, and minimum fitness 
value φ.

(2) Calculate the fitness value of the particles.
(3) Find the particle that satisfies the minimum fitness func-

tion as the initial value of the Newton–SVD method.

(26)vt+1
i

= �vt
i
+ c1r

t
1
(pt

i
− st

i
) + c2r

t
2
(pt

g
− st

i
)

(27)st+1
i

= st
i
+ vt+1

i

(28)st+1
i

= st
i
+ c1r

t
1
(pt

i
− xt

i
) + c2r

t
2
(pt

g
− st

i
)

(4) Calculate the new formation parameters by combining 
the obtained formation parameters (of the particles) 
with the generalized inverse method.

(5) Calculate the logging response using the forma-
tion parameters, and compare the calculated logging 
response with the measured logging response using 
the 2-norm method. If the error is within the allowable 
range, the final formation parameter information has 
been obtained. Otherwise, repeat (4).

Results and discussion

Electric field distribution of homogeneous 
formation

The following simulation conditions were considered for 
this study comprised of uniform formation resistivity Rt of 
1 Ω·m, and instrument radius of 0.045 m.

As per the simulation results (Fig. 2), as the number of 
shield electrodes increases, the potential value of the forma-
tion gradually increases at the same position, as does the 
detection depth of the instrument.

Pseudo‑geometry factor calculation

According to the stratum model shown in Table 1, the well 
diameter dh = 8ʺ = 0.2032 m, and we need to calculate the 
pseudo-geometry factor of the lateral logging of the array 
and determine the depth of detection. The pseudo-geometry 
factor is expressed as

The detection depth of the instrument is defined as 50% of 
the pseudo-geometry factor, as shown in Fig. 3. The detec-
tion depth of the five detection modes of array laterolog log-
ging under high-invasion simulation conditions is as follows: 
RA5 = 0.70 m, RA4 = 0.45 m, RA3 = 0.37 m, RA2 = 0.29 m, and 
RA1 = 0.23 m.

The detection depth of the array laterolog is smaller than 
the depth of deep lateral logging of the Schlumberger Cyber 
Service Unit (CSU) (1.27 m); however, the advantage of 
array laterolog is to reflect the radial gradient of formation 
resistivity, which can be used for resistivity profile imaging 
in the radial direction.

Influence of well inclination

According to the stratigraphic model shown in Table 2, the 
array laterolog logging responses of the two stratum models 
under different well inclination conditions were simulated. 

(29)L =
(
Rt − Ra

)
∕
(
Rt − Rxo

)



1312 Acta Geophysica (2019) 67:1307–1318

1 3

The considered inclinations of the well were 0°, 15°, 30°, 
45°, 60°, 75°, and 90°, and the simulation results are shown 
in Figs. 4 and 5.

Figure 4 shows that for a formation with a thickness of 
1 m, when the well inclination is 0° (that is, the well is verti-
cal), the array laterolog has the advantage of high resolution 
(0.4 m). Thus, information about its formation information 
is well reflected, and the response of RA5 (with the deepest 
detection depth) is 18.1 Ω·m. As the depth of detection of 
the instrument decreases, instruments with shallow detection 
depth are slightly affected by the wellbore and surrounding 
rock, which causes the measured values of RA4, RA3, RA2, and 
RA1 to decrease sequentially. When the inclination angle of 
the well is less than 15°, the influence of well inclination on 
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Fig. 2  Electric potential distributions of different measurements in a homogeneous formation (Rt = 1 Ω·m)

Table 1  Stratum model

Rm is the mud resistivity, Rxo is the resistivity of invasion zone, and Rt 
is the resistivity of the target layer

Stratum types Rm (Ω·m) Rxo (Ω·m) Rt (Ω·m)

Stratum 1 (low invasion) 0.1 10 1
Stratum 2 (high invasion) 0.1 10 50
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the logging response of array laterolog can be neglected. As 
the inclination angle of the well increases, the resistivity of 
array laterolog at the midpoint of the formation decreases 
significantly. When the well inclination angle exceeds 60°, 
the logging response of the array laterolog drops to 70% of 
logging response in the vertical well (Fig. 4a), and using the 
resistivity information to calculate the water saturation with 
Archie’s formula at this time will certainly result in a large 
error. The increase in the inclination angle therefore has the 
greatest influence on RA5 at the deepest detection depth, and 
the least influence on RA1 at the shallowest detection depth.

Figure 5 shows that for the low-resistivity mudstone layer, 
when the local layer thickness is 1 m and the well inclina-
tion is 0°, the response of RA5 with the deepest depth of 
detection is close to the resistivity of the target layer, while 
the measured values of RA4, RA3, RA2, and RA1 are greatly 
affected by the surrounding rock with the decrease in the 
detection depth, and the response values increase sequen-
tially. When the inclination angle of the well is less than 15°, 
the influence of well inclination on the logging response of 
the array laterolog can be neglected; as the inclination angle 
of the well increases, the resistivity of the array laterolog at 
the midpoint of the formation also increases gradually, and 
the logging response of array laterolog is greatly affected 
by surrounding rock. The increase in the inclination angle 
also has the greatest influence on RA5 at the deepest detec-
tion depth, and the least influence on RA1 at the shallowest 
detection depth.

Inversion case

1. Stratum initial model and array laterolog response

Construct the stratum model such that the borehole radius 
rh = 0.1016 m , resistivity of the mud filtrate Rm = 0.1Ω ⋅m , 
resistivity of the surrounding rock Rs = 5Ω ⋅m , inva-
sion radius rxo = 0.5 m , resistivity of the invasion zone 
Rxo = 8Ω ⋅m , and true resistivity of the formation 
Rt = 20Ω ⋅m . The thicknesses of the inversion stratum were 
0.5 m, 1.0 m, and 3.0 m. Figure 6 shows the array laterolog 
response produced by the model.

2. Inversion of three electric rock parameters from the 
array laterolog logs

The inversion of three parameters of the array laterolog 
was conducted to calculate the invasion radius (rxo), inva-
sion zone resistivity (Rxo), and true formation resistivity (Rt) 
of the model using the obtained array laterolog response. 
The true resistivity of the formation is an important param-
eter in logging interpretation, and the calculation accuracy 
directly affects the calculation of oil saturation. The inver-
sion results are consistent with the stratum model for the 
thin layer affected by the surrounding rock, and the logging 
response is effectively corrected (Fig. 7).

Actual data processing

Figure  8 shows the inversion results using the particle 
swarm-based Newton–SVD method, which inverts the 
actual data of a well in an oil field. Natural gamma, natural 
potential, and array lateral curves were measured for this 
well. The stratum belongs to the oil-bearing stratum, and its 
permeability is poor. The oil–water layer cannot be judged 

Fig. 3  Pseudo-geometry factor as a function of the invasion zone 
radius for a low-invasion (Stratum 1) and b high-invasion (Stratum 2) 
models at different operation modes of array laterolog

Table 2  Stratum model

H is the thickness of the target layer. Rb is the resistivity of the sur-
rounding rock

Stratum types Rt (Ω·m) H (m) Rb (Ω·m) Rm (Ω·m)

Stratum 3 (low invasion) 20 1 3 1
Stratum 4 (high invasion) 3 1 20 1
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intuitively by the conventional curve. The true resistivity 
and invasion depth of the stratum obtained by the hybrid 
algorithm can, however, effectively judge the oil–water layer.

At a depth of 1730–1768 m, the value of resistivity is 
approximately 3 Ω·m, and the response of the five array lat-
erolog curves shows negative differences. After the inversion 

Fig. 4  Logging response of array laterologs for a 1-m-thick formation at different borehole inclinations (0° to 90°) and operation modes of array 
laterolog (Stratum 3) 
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process, the layer presents obvious invasion properties, and 
Rxo is greater than Rt. Thus, this layer is comprehensively 
judged to be a water layer. At depths of 1641–1645 m, after 

the inversion process, the layer is characterized by inva-
sion, and value of Rt is greater than that of Rxo. At depths 
of 1645–1670  m, after the inversion process, the layer 

Fig. 5  Logging response of the array laterolog for a 1-m-thick formation at different borehole inclinations (0° to 90°) and operation modes of 
array laterolog (Stratum 4) 
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continues to show certain invasion properties, and Rxo is 
greater than Rt. Thus, it is judged that the layer from 1641 to 
1645 m is an oil-bearing water layer, while that from 1645 to 
1670 m contains water. At depths of 1515–1518 m, the value 
of resistivity is 4 Ω·m, and the difference in the responses 
of the five array laterolog curves is not obvious. After the 

inversion treatment, the layer shows certain invasion charac-
teristics, and Rt exceeds Rxo. Thus, the layer is comprehen-
sively judged to be an oil layer of thickness of 3 m.

Conclusions

1. The 3D finite element method can be used to calculate 
the logging response of array laterologs in horizontal/
highly deviated wells, and to analyze the influencing 
factors in 3D formation environments.

2. The detection depth of an array laterolog is smaller than 
that of a deep laterolog. However, the array laterolog can 
perform resistivity profile imaging in the radial direc-
tion, thereby reflecting the changing process of forma-
tion resistivity more intuitively.

3. The influence of well inclination on the logging response 
of the array laterolog is mainly reflected in the vicinity 
of the formation interface. As the inclination angle of 
the well increases, the influence of the surrounding rock 
increases gradually, and the influence of well inclination 

Fig. 6  Array laterolog response for the formation computed by for-
ward modeling

Fig. 7  Comparison of inversion 
results of formation resistivity 
(a) and comparison of inversion 
results of invasion radius (b)
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Fig. 8  Inversion results using the particle swarm-based Newton–SVD method for an actual oil field
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on the logging curve at deep detection depth becomes 
greater than that at shallow detection depths.

4. When the well inclination is less than 15°, its influence 
can be neglected. However, the correction for well incli-
nation must be performed for highly deviated wells. Oth-
erwise, the accuracy of the water saturation calculation 
will be affected adversely.

5. This paper presents a Newton–SVD method based on 
PSO. The proposed optimization outperforms the con-
ventional Newton–SVD method. It inherits the latter’s 
advantages with regard to fast calculation speed and 
good convergence. It also overcomes two problems: 
slow convergence in the later period of calculation in 
the PSO method and the fact that the Newton method 
is strongly affected by the initial value. Moreover, the 
particle swarm-based Newton–SVD method does not 
require the mathematical form or derivative informa-
tion of the objective function. It only needs an interval 
including the true parameters of the formation. There-
fore, this method is suitable for large-scale, nonlinear, 
and multi-extreme complex problems. It is easy to pro-
gram and suitable for parallel computing problems.

6. The calculations and comparison with actual data pre-
sented in this study show that the proposed method is 
feasible for oil exploration as it can effectively improve 
the stability of the logging inversion. It can eliminate 
the influence of complex logging environments and 
enhance the resolution and interpretation accuracy of 
oil and water layers in oil formations.
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Abstract
As an independent geothermal proxy, the Curie-point depth has important geodynamic implications, but its estimation from 
magnetic anomalies requires an understanding of the spatial correlation of source magnetization, mathematically charac-
terized by a fractal exponent. In this paper, we show that fractal exponent and Curie depth are so strongly inter-connected 
that attempts to simultaneous or iterative estimation of both of them often turn out to be futile. In cases of true large Curie 
depths, the iterative “de-fractal” method has a tendency of overcorrecting fractal exponents and thereby producing errone-
ously small Curie depths and smearing out true geological trends. While true fractal exponent can no way be constant over 
a large area, a regionally fixed fractal exponent is better than any mathematical treatments that are beyond the limit of data 
resolution and the underlying physics.

Keywords Curie depth · Geothermal structure · Heat flow · Fractal magnetization · Magnetic anomalies · Inversion · North 
America

Introduction

A wide variety of spectral techniques has been proposed to 
detect the depth to the bottom of the magnetic layer of the 
lithosphere from near-surface (or sometimes satellite) mag-
netic anomalies. This is also coined the Curie-point depth, 
where the temperature reaches the Curie point and rocks 
lose their ferromagnetism. Curie depths reflect deep thermal 
structure of the lithosphere assuming that the Curie tem-
perature can be restricted to a narrow range (520–580 °C) 
for different mineralogy (Friedman et al. 2014). Curie tem-
peratures decrease linearly with an increasing Ti content for 
natural terrestrial titanomagnetites (O’Reilly 1984), which 

are chemically stable at crust and upper mantle tempera-
tures/pressures (Sauerzapf et al. 2008).

Among various techniques of detecting Curie depths, the 
linearized stepwise centroid method (Okubo et al. 1985; 
Tanaka et al. 1999), and its various extensions to fractal 
magnetization (Bansal et al. 2011; Li et al. 2009, 2010, 
2013; Salem et al. 2014; Wang and Li 2015; Ravat et al. 
2016), are theoretically simple but computationally stable. 
The reasoning behind this technique is simple; rather than 
seeking to directly estimate the Curie depth from nonlinear 
fitting between calculated and observed spectra of magnetic 
anomalies, Curie depth can be estimated indirectly from 
relatively easy linear inversion of the depths to the top and 
centroid of the magnetic layer, which are shallower than the 
magnetic bottom (Curie depth) and thereby more tractable 
computationally.

Curie depths are independent of Moho depths (or crustal 
thickness) and shallow radiogenic heat production, because 
the Moho is a lithological boundary, and radiogenic heat 
production decreases with depth (Turcotte and Schubert 
2002), to have minimal effects at the Curie depth.

Examining amplitude (or power) spectra of magnetic 
anomalies offers by far the most valid and efficient means 
of estimating Curie depths over a large region. There are 
also geothermal methods based on the temperature-depth 
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relationship (Lachenbruch 1968; Negi et al. 1987). Curie 
depth can be correlated with surface heat flow (Li et al. 2010, 
2017), and thereby is a good proxy to lithospheric thermal 
structure, particularly where heat flow measurements are 
sparse and hydrothermal activities could prevail (e.g., Li 
et al. 2017). Curie depths have been successfully applied to 
infer thermal evolution of oceanic lithosphere, global heat 
loss, lithospheric thermal conductivity, and regional geody-
namics (e.g., Bansal et al. 2011; Li et al. 2009, 2010, 2013; 
Salem et al. 2014; Ravat et al. 2016; Wang and Li 2015), 
and to correlate with regional magmatism and seismicity 
(Tanaka and Ishikawa 2002, 2005; Manea and Manea 2011; 
Wang and Li 2015; Wang et al. 2016).

Despite these important applications, there are many 
caveats in estimating Curie-point depth, particularly in the 
application of fractal exponent of source magnetization. 
This paper is to clarify some of the confusions in apply-
ing fractal exponent in Curie depth estimation and outline 
the pitfalls that should be avoided in future applications.

Numerical backgrounds

Three-dimensional source magnetizations are spatially 
correlated and can be characterized by a scaling law.

in which �p
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Curie depths are dependent on wavenumber (or wave-
length) distribution of magnetic anomalies, because the 
deeper the base of the magnetic layer, the more present 
are longer wavelength components. Theoretically, the 
radially averaged power (or amplitude) spectrum of total-
field magnetic anomalies A

ΔT
 is linked to the spectrum of 

the magnetization and can be represented as a function 
of depths to the bottom (Zb) and top (Zt) of the magnetic 
layer, and the fractal exponent (Maus et al. 1997; Bouli-
gand et al. 2009; Blakely 1995; Li et al. 2009).

To estimate Curie depths based on spectral methods, 
magnetic anomalies are interpolated and gridded and then 
divided into overlapping windows. Within each window, a 
radially averaged amplitude (or power) spectrum is calcu-
lated, from which a Curie depth is estimated from fitting 
the calculated spectrum to the theoretical models of Blakely 
(1995) or Maus et al. (1997). This windowing scheme can 
be skipped using wavelet transform (Gaudreau et al. 2019).
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On the assumption of constant fractal 
exponent

In general, the fractal exponent of magnetization (named α in 
Ravat et al. 2016 in 2D, or β in 3D in many other papers, e.g., 
Bouligand et al. 2009; Li et al. 2013) is not known. In order 
to keep the inversion result stable and manageable, the fractal 
exponent is often assumed to be a known constant in a study 
area. Of course, it is unlikely that fractal exponent keeps con-
stant across a large area due to the differing magnetic source 
characteristics. Undoubtedly, any method for Curie depth esti-
mation is biased by the lack of knowledge of the fractal expo-
nent (Audet and Gosselin 2019), or by using a single fractal 
exponent. Previous attempts have been made to estimate the 
fractal exponent 

(

�
p

3D

)

 simultaneously with the depths to the 
top and bottom (Zb, Zt) from magnetic anomalies based on a 
nonlinear inversion scheme, but it turned out to be very dif-
ficult as these parameters are strongly inter-dependent (Ravat 
et al. 2007; Li et al. 2010). The best constraints on estimated 
Curie depths and the fractal exponent are from known geology, 
such as shallow geotherms associated with mid-ocean ridges 
and active volcanoes (Li et al. 2013, 2017). Alternatively, 
Mather and Fullea (2019) combined independent geophysi-
cal data with magnetic anomaly data in a probabilistic frame-
work to constrain geotherms. Gaudreau et al. (2019) determine 
the fractal exponent a posteriori by comparing Monte Carlo 
simulations of predicted heat flow with observed heat flow in 
various regions.

One of the strategies is a stepwise linearized inversion 
for Zt at intermediate to high wavenumbers and the depth to 
the centroid (Zo) at small wavenumbers (Tanaka et al. 1999), 
assuming a regionally constant fractal exponent. This constant 
assumption is found effective and valid in previous regional 
and global studies, giving useful geothermal information con-
formable to real geology (e.g., Bouligand et al. 2009; Li et al. 
2013, 2017).

Li et al. (2009, 2013) applied the centroid method assuming 
a constant fractal exponent. Bouligand et al. (2009) applied 
a one-step nonlinear fitting in their western North America 
study, also assuming a constant fractal exponent. Uncertainties 
are involved in selecting the best fitting intervals in the two-
step linearized method. However, with fixed fitting intervals, 
Li et al. (2010) showed that the two-step centroid method can 
give more stable Curie depth results than the one-step nonlin-
ear simultaneous inversion.

On the “de‑fractal” method

Salem et al. (2014) and Ravat et al. (2016) argued that they 
could test a set of fractal exponents β by visual inspec-
tion of fit between observed and modeled power spectra, 
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and found the optimal β for correcting observed spec-
trum before estimating Curie depth (Fig. 1). They coined 
their methods “de-fractal” spectral depth determination, 
which involves forward modeling to fit spectral peaks, and 
numerical iteration and visual inspection to select β. These 
iterative procedures are time-consuming.

Correction of the spatially correlated magnetization has 
been practiced in many other studies (e.g., Bouligand et al. 
2009; Bansal et al. 2011; Li et al. 2013). The terminology 
“de-fractal” is unnecessary for the following reasons.

(1) Magnetization is universally fractal, i.e., spatially cor-
related. Fitting an observed spectrum with a theoretical 
model can be done without “de-fractal” because the 
theoretical models can handle fractal magnetization 
neatly (Blakely 1995; Maus et al. 1997; Li et al. 2013).

(2) “De-fractal” is operated only in a relative sense because 
two-dimensional spatially uncorrelated magnetization 
can be spatially correlated in three dimensions. “De-
fractal” is meaningful only when the dimension of the 
reference space is identified. Randomness (uncorrela-
tion) is just a special form of fractal.

There are other three more important issues in both the 
visual (Salem et al. 2014) and semiautomatic (Ravat et al. 
2016) “de-fractal” method.

(1) The first is the often subjective and random selection 
of fitting intervals and wavenumbers of spectrum. 
Theoretical and numerical models suggested that the 
fitting intervals for estimating the centroid depth should 
be fixed to the smallest wavenumbers, unless a peak 
occurs in the fractal-corrected and wavenumber-scaled 
spectrum, which is likely due to windowing (Li et al. 
2013). In the case a peak occurs, points to the smallest 
wavenumber side of the spectral peak should be simply 
ignored in data fitting (Li et al. 2013). While estimat-
ing Curie depth from the steepest segment is theoreti-
cally sound (Li et al. 2013), fitting just on the steepest 
segment of the spectrum with only 2 or 3 controlling 
points is prone to large fitting uncertainties.

(2) The second major uncertainty rests upon changing 
fractal exponent β from window to window (Fig. 1). 
In each iteration, a modeled power spectrum is pro-
duced to match with the observed one, and when an 
acceptable visual fit is found with a particular fractal 
exponent, that fractal exponent is chosen as an a priori 
input for the next step of Curie depth estimation (Ravat 
et al. 2016). Identical to the number of unknowns in the 
inversion, an equal number of parameters are needed 
in the forward modeling of the “de-fractal” scheme. In 
other words, forward modeling is dependent not just 
on fractal exponent, but also on depths to the mag-
netic layer, which are also unknowns. A large Curie 
depth will induce magnetic anomalies with more 
long-wavelength signals, as if from a highly correlated 
magnetization of large fractal exponent, which also 
equivalently induces more long-wavelength magnetic 
signals. The reverse is also true. There is essentially 
no work-around to know the best-fit fractal exponent. 
Therefore, the “de-fractal” method is circular and does 
not have anything internal to the Curie depth calcu-
lation to tie results to. Consequently, the “de-fractal” 
method results in low resolution and likely high error 
(Fig. 1).

  Changing fractal exponents β that are not well con-
strained from window to window introduces additional 
error, because this will smear out Curie depth anoma-
lies associated with true geological features. Although 
the “de-fractal” method appears to give a mechanism 
to constrain the fractal exponent β in an iterative way, 
in reality it can do more harm than help.

  By plotting Curie depths from Table 2 of Salem 
et al. (2014), who applied the “de-fractal” method, 
we further demonstrate that their applied fractal expo-
nent is strongly correlated with Curie depth estimated 

Curie depth from "de−fractal" method (Salem et al., 2014)
Curie depth from centroid method with β =1 (Salem et al., 2014)
Linear fit of Curie depths from centroid method vs. applied β

Fig. 1  A positive correlation is noticed between Curie depths esti-
mated with a constant fractal exponent (red cross) and applied frac-
tal exponents in the “de-fractal” method in the central Red Sea. In 
other words, the “de-fractal” method tends to apply a larger fractal 
exponent where the Curie depths could be larger if keeping a constant 
fractal exponent, and consequently gives smaller Curie depth esti-
mates (data in blue squares). This over-correlation tendency (marked 
by the blue arrow) leads to systematic computational errors in the 
“de-fractal” method. The straight line is from least square fitting. 
Depths are below sea level from Salem et al. (2014)
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with a constant fractal exponent (Fig. 1). The larger 
the Curie depth, the larger were their applied fractal 
exponents for spectral correction, and the smaller were 
their finally estimated Curie depths. The consequence 
is that, wherever there are large Curie depths, this “de-
fractal” operation tends to systematically pick large 
fractal exponents and obtain small Curie depths with 
overcorrection. This can distort the final Curie depth 
map. In other words, the “de-fractal” method can mis-
takenly interpret large Curie depths as from large frac-
tal exponents. The best and likely the only constraints 
on estimated Curie depths are from known geology, 
such as shallow geotherms associated with mid-ocean 
ridges and active volcanoes (Li et al. 2013, 2017), or 
from other independent geophysical measurements 
such as heat flow (e.g., Mather and Fullea 2019; Gaud-
reau et al. 2019), but not from some calculated math-
ematical operations. With a tendency of overcorrection 
and almost a random selection of fractal exponent that 
is strongly dependent on the correlation of the treated 
magnetic anomalies (Fig. 1), the “de-fractal” method 
cannot map, in a consistent and systematic manner, true 
geological units of similar scaling in spatial magnetiza-
tion.

(3) The “de-fractal” method compensates for the fractal 
parameter of the magnetic anomaly field such that a 
spectral peak is formed. Whether a peak could occur 
or not is not solely dependent on the fractal parameter, 
but also on the Curie depth and applied window size 
(Li et al. 2010, 2013). For the same fractal parameter, 
shallow Curie depths can also give spectral peaks. 
Occurrence of a spectral peak is not a correct criterion 
for judging the fractal exponent of the underlying mag-
netization.

On the detection limit

With a 500 km window length and the recommended wave-
number range of Li et al. (2013), Ravat et al. (2016) com-
pared their results from the “de-fractal” method with those 
of Li et al. (2013), who applied an automatic fractal centroid 
method. Ravat et al. (2016) showed that they can get even 
more accurate Curie depth estimate with the smallest error 
bar for the deepest 40 km depth test.

It is all known in geophysics that the deeper the target, 
the more uncertainties and difficulties are in geophysi-
cal inversion. Ravat et al. (2016) did not state how they 
obtained the Curie depths from the method of Li et al. 
(2013) and showed neither numerical/synthetic models 
(like Fig. 4 of Li et al. 2013), upon which these tests were 

performed, nor power spectra for fitting. Numerical and 
synthetic models of 3D magnetization and correspond-
ing magnetic anomalies and power spectra are needed to 
validate their argument. A regional map of their applied 
fractal exponents should also be presented to aid in the 
interpretation and assessment of their results, because the 
degree of correction affects the estimated Curie depths.

Ravat et al. (2016) showed that they estimated the cen-
troid depth directly from fitting the spectrum itself, not 
from the required wavenumber-scaled spectrum, because 
the vertical axes of these two figures are labeled with 
“Annular Average of ln of Amplitude (nT).” This might 
be just a typo, and they stated in the caption that the 
calculation was based on wavenumber-scaled spectrum. 
However, the labeled unit “nT” is misleading, because the 
amplitude here is the spectral strength at certain wave-
numbers, surely no longer the original magnetic anomaly 
amplitudes with the unit “nT.” Furthermore, using only 2 
or 3 controlling points for linear regression for the steep-
est segment of the spectrum introduces large uncertainties 
and inconsistencies.

Numerical synthetic modeling with known and fixed 
fractal exponents showed that, with a set of input Curie 
depths of 10.0, 20.0, 30.0 and 40.0 km, the inverted depths 
are 9.5, 13.1, 26.2, and 35.0 km, respectively (Li et al. 
2013). Plotting this early result of synthetic test on Fig. A2 
of Ravat et al. (2016) shows that the two-step linearized 
method captures the overall trend of input Curie depth, but 
tends to underestimate it (Fig. 2). There are several reasons 
behind this underestimation.

Firstly, magnetic anomalies from deeper sources are 
more attenuated by the Earth filter, and we have to deal 
with a narrow band of long wavelengths and work on very 
small wavenumbers containing the centroid depth informa-
tion. Secondly, we apply windowing in practice on mag-
netic anomalies, whereas the mathematical models assume 
infinite horizontal extension (Blakely 1995; Maus et al. 
1997). Thirdly, the linearized centroid technique is itself 
based on an approximation of the nonlinear system.

These theoretical and practical limitations apply to all 
Curie depth inversion techniques. We can partly circum-
vent these issues of underestimation by choosing a smaller 
fractal exponent in spectrum correction. Nonlinear inver-
sion can be tested on synthetic models to expect larger, 
albeit unstable, Curie depths (Li et al. 2010). However, 
there is a mutual dependence of depths to the top and bot-
tom of the magnetic layer in the nonlinear inversion, and 
solutions can be non-unique. In addition, the nonlinear 
method also requires data fitting only at the very narrow-
banded low-wavenumber portion of the spectrum, produc-
ing highly fluctuating results with just a few controlling 
data points (Li et al. 2010).
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Comparison between known Curie depth 
results in North America

We here make a comparison among published Curie depth 
results in the Northern Colorado–Wyoming Craton area 
(Fig. 3; Table 1). Bouligand et al. (2009) mapped Curie 
depths in the western USA with a fractal magnetization 
model based on nonlinear inversion (Fig. 3d). Based on 
the linearized centroid method, Li et al. (2017) developed a 
global Curie depth model (GCDM), using nearly the same 
window size range and fractal exponent as Bouligand et al. 
(2009), but a different magnetic dataset of lower resolution 
(Maus et al. 2009) (Table 1). Part of the GCDM is shown 
here for comparison (Fig. 3b). One can easily notice that 
these two maps show very similar features. The Yellowstone 
hotspot trail, the northern and southern Rocky Mountains, 
and a large part of Colorado Plateau have smaller Curie 
depths. There is also a belt of small Curie depths to the east 
margin of the study area in the Great Plains. By contrast, the 
Wyoming Craton shows mostly large Curie depths (Fig. 3b, 
d). It can also be seen that, as expected and mentioned above, 
nonlinear inversion resulted in more fluctuating estimates 
(Fig. 3d) than the centroid method (Fig. 3b), producing many 
points shallower than 10 km and deeper than 30 km. The 
apparent higher resolution of Fig. 3d is mostly likely due to 
the higher resolution of the North America magnetic grid 
(NAMAG 2002) applied by Bouligand et al. (2009), as well 
as to more fluctuating nonlinear estimates.

Also based on this high-resolution NAMAG, Wang and 
Li (2015) examined Curie depths with smaller windows in 

western North America (Fig. 3c). Figure 3b, c is from dif-
ferent data sources of different resolution and from apply-
ing different window sizes, and thereby some differences 
in resolution and values between them are expected. Both 
the high-resolution input data and smaller window size gave 
high resolution in the mapped Curie depths that conform to 
real geology (Fig. 3c). The central eroded and rifted drainage 
basin of the Colorado River in the Colorado Plateau shows 
smaller Curie depths (Fig. 3c), which could indicate thermal 
rejuvenation at depth. The two areas of smaller Curie depths 
of the Snake River Plain and the northern Rocky Mountains 
can be distinguished from each other on the high-resolution 
result. Overall, these three Curie depth results (Fig. 3b–d) 
show similar features that are consistent to known geology 
and can be correlated with surface heat flow (Fig. 3f).

The Yellowstone hotspot turns out not to be a good 
control point on Curie depth because presently it has very 
strong hydrothermal activity (Bryan 2008), which can lower 
the regional deep temperature considerably, like in young 
oceanic lithospheres. Li and Wang (2018) have shown that 
strong hydrothermal activity along the fast spreading mid-
ocean ridge can lower the mantle temperature and increase 
the Curie depth. Our reasoning of strong hydrothermal 
influence on the deep temperature is also drawn from the 
discrepancy between heat flow (Fig. 3f) and Curie depth 
(Fig. 3b–d) along the Snake River Plain. Instead of in the 
central Snake River Plain of the smallest Curie depths, the 
highest heat flow is found in the surrounding uplifted shoul-
ders of the plain, where fractures, evident on the topographic 
map (Fig. 1), may drain deep hot hydrothermal fluids.

Again, one cannot guarantee that Curie depth estimation 
using different window sizes and data of different resolution 
can give identical result at the same single location, because 
different window sizes focus on different anomalies, and 
different data resolution focuses on different wavelengths. 
Nonetheless, regional features should remain the same and 
should be captured, such as the shallow Curie depths of the 
Yellowstone hotspot trail (Snake River Plain, Fig. 3).

The “de-fractal” result (Fig. 3e) is quite different from 
the other three, neither revealing the large Curie depth con-
trast between the Colorado Plateau and the Wyoming Cra-
ton, nor showing small Curie depth zones associated with 
the Snake River Plain and the northern Rocky Mountains. 
Instead, Fig. 3e shows smaller Curie depths to the east of 
the southern Rocky Mountains, which are not present on 
other three maps. Without knowing areal distribution of the 
fractal exponents, it is very difficult to assess the “de-fractal” 
result. Surface heat flow (Fig. 3f) has better correlations to 
the Curie depths of Bouligand et al. (2009) and Li et al. 
(2017) than to the “de-fractal” result (Fig. 3e). This demon-
strates again that the “de-fractal” method, with variable frac-
tal exponents that cannot be accurately determined and are 
strongly correlated with Curie depths themselves (Fig. 1), 

Claimed by Ravat et al. (2016) based on “de-fractal” method.
Claimed by Ravat et al. (2016) based on their implemented Li et al. (2013) method.
Curie depths estimated from synthetic modelling (Li et al., 2013).
Input depths in the synthetic models of Li et al. (2013) and Ravat et al. (2016).

Fig. 2  Comparison of numerical results from the “de-fractal” method 
with a 500 km window by Ravat et al. (2016), from Li et al. (2013) 
fractal correction centroid method implemented by Ravat et  al. 
(2016), and from synthetic modeling of 3D magnetization of Li et al. 
(2013)
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can smear out true geological features with distorted Curie 
depth maps.

Application of “de-fractal” Curie depths casts doubt on 
the derived geothermal result, which shows that Wyoming 
geotherm is hotter by ~ 200 °C at the Curie depth than the 
Decker et al. (1988) model. The Wyoming Craton shows 
largely low heat flow (Fig. 3f) and deep and heterogeneous 
Curie depths (Fig. 3b–d). The heterogeneity in the Wyoming 
Craton stems from late tectonism, which has already divided 
it into different subunits of contrasting topography (Fig. 3a) 
and heat flow (Fig. 3f). Strictly, the Wyoming Craton can 
no longer be regarded as a typical craton. The anomalously 
hotter and uniform geotherm of Ravat et al. (2016) is, in 
our opinion, due to their estimated shallow Curie isotherm, 
which makes no distinction of the Wyoming Craton on their 
Curie depth map (Fig. 3e).

A very large applied window size of 500.0 km may also 
contribute to this loss of information. Ideally, the long-wave-
length components carrying the information of Curie depth 
can be best captured by using very large windows, but the 
incorporation of fractal exponent, which deals with the wide 
(correlated) but shallow anomalies, partially relieves this 
requirement. Increasing window size does not appreciably 

increase calculated Curie depth, but merely leads to a low 
resolution (Li et al. 2010, 2013). This is because the extra 
information we can gain at the smallest wavenumbers (or 
longest wavelengths) is rather minimal (Fig. 4); one can 
never approach the theoretically required scale of infinity 
by just attempting to increase the window length by several 
hundred kilometers. The strong averaging effect of large 
windows can decrease, not increase, locally large Curie 
depths, for example, those associated with a cold accre-
tionary wedge. Features smaller than the chosen window 
size will not be properly imaged, because normally only 
one Curie depth is estimated in each window, and the small 
feature contributes only partially to the radially averaged 
spectrum in that window. It can also be seen that most of 
the “de-fractal” Curie depths in the study area are between 
15 and 40 km, although the color bar shows much larger 
values (Fig. 3e), and are not appreciably larger than those 
from using the centroid method (Fig. 3b, c). A Curie depth 
comparison between using a larger window size (Fig. 3b) 
and a smaller window sizes (Fig. 3c) also shows that a sig-
nificantly large window size at 500.0 km is not necessary.

Conclusion

This paper intends to clarify that mathematical treatment 
beyond the limit of data resolution and the underlying phys-
ics could introduce additional errors to Curie depth esti-
mation. Wherever there are true large Curie depths, the 
“de-fractal” method, by its very nature, has a tendency of 
overcorrecting fractal exponents and thereby producing 
small Curie depths and smearing out true geological trends.

For Curie depth estimation in a large area, the fractal 
exponent cannot be a constant, but it can be better fixed than 
variable but just loosely controlled purely by mathematical 
overtreatment. At long wavelengths containing primarily the 
Curie depth information, fractal exponents of source mag-
netizations are expected to be rather stable over a large area. 
Long-distance spatial correlation in source magnetization 

Fig. 3  Comparison between known Curie depth results in the western 
North America. a Topography of the study area. The white dashed 
line outlines the Wyoming Craton shown in Ravat et al. (2016). Thick 
black lines outline major tectonic units. The red triangle marks the 
Yellowstone hotspot. b Curie depths from the global reference Curie 
depth model (GCDM) of Li et al. (2017). c Curie depths from Wang 
and Li (2015). The green dashed line outlines the Wyoming Craton 
shown in Ravat et al. (2016). No Curie depths were obtained to the 
east of the 255° longitude line. d Curie depths from Bouligand et al. 
(2009). e Curie depths from the “de-fractal” method, and the black 
solid line outlines the Wyoming Craton (Ravat et al. 2016). f Surface 
heat flow gridded in a 30′ interval using the minimum curvature algo-
rithm with tension (Briggs 1974) (heat flow data from the interna-
tional heat flow commission database https ://www.heatfl ow.und.edu/; 
last updated in January 2011). No preselection or preprocessing is 
done on the original raw heat flow data. Red line shows the location 
of a thermal property profile in Ravat et al. (2016). Data mapping is 
supported by GMT (Wessel and Smith 1995)

◂

Table 1  Comparison of parameters applied in four different Curie depth results

Author Method Window size (km) 3D fractal exponent β Data source

Bouligand et al. (2009) Nonlinear inversion 100.0 to 300.0 3.0 Magnetic anomaly map of North 
America (NAMAG 2002) and the 
state map of Nevada (Kucks et al. 
2006)

Wang and Li (2015) Centroid 80.0, 100.0 and 120.0 2.5 Magnetic anomaly map of North 
America (NAMAG 2002)

Li et al. (2017) Centroid 98.8, 195.0, and 296.4 3.0 Earth Magnetic Anomaly Grid of 2′ 
resolution (EMAG2, Maus et al. 
2009)

Ravat et al. (2016) “De-fractal,” based on centroid 500.0 Variable but unknown Unknown

https://www.heatflow.und.edu/
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is related to more regional geological features, whose geo-
thermal conditions and source magnetizations are unlikely 
to alter swiftly in short distances or between two nearby 
windows. Therefore, a constant fractal exponent constrained 
by geology is preferred, when the true fractal exponent is not 
obtainable, over a method trying to vary the fractal expo-
nents but in an overcorrection tendency.

Significantly large window lengths at ~ 500.0 km are not 
necessary for capturing large Curie depths. Normally using 

multiple window sizes ranging from tens of kilometers to 
200.0 km is sufficient, and an average from these different 
windows can suppress random noise and increase the resolu-
tion of Curie depths. With magnetic anomalies of increasing 
resolutions to be available in the future, the calculated Curie 
depths should be improved, mostly from better calibrating 
the depths to the magnetic top in the intermediate to large 
wavenumbers. But since Curie depths are more dependent on 
long wavelengths, better data coverage is even more critical.

The linearized stepwise centroid method has proven to be 
stable and efficient, and gained more applications. In recent 
years, new techniques, such as Bayesian inversion (Mather 
and Fullea 2019; Audet and Gosselin 2019), multitaper 
spectral analysis (Audet and Gosselin 2019), and wavelet 
transform (Gaudreau et al. 2019), are being applied in Curie 
depth estimation. By statistically incorporating independ-
ent geological and geophysical constraints, the fractal expo-
nent could be better estimated prior to the inversion of Curie 
depth. Ensemble-based approaches can produce probability 
distributions and provide greater confidence for the recov-
ered parameters.
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Abstract
The deep reservoir is usually a type of tight reservoir with high pressure, high stress, low permeability and low porosity. The 
elastic parameters including Poisson’s ratio and Young’s modulus are important sensitive parameters to the tight reservoir, 
and the Gassmann fluid term is frequently used in the field of fluid identification as a highly sensitive fluid factor. Such param-
eters can be obtained by the common prestack seismic inversion method, but not directly. It must first invert for other elastic 
parameters and then convert them into the Poisson’s ratio, Young’s modulus and Gassmann fluid term by some formula. The 
errors will be accumulated in the conversion step, and the inversion results will have a large deviation. We propose a one-step 
inversion method to solve this problem. Firstly, a new form of P-wave reflection coefficient equation in terms of Poisson’s 
ratio, Young’s modulus and Gassmann fluid term is derived which can directly establish the functional relationship between 
the P-wave reflection coefficient and these elastic parameters. Considering seismic data of deep reservoir generally have a 
lower signal-to-noise ratio (S/N) and the partial angle stack gather has a higher S/N than single angle gather, we then derive 
a stack impedance equation which is suitable for the partial angle stack gather. By using three stacked impedance inversion 
data with different angle stack ranges, we can directly get the Poisson’s ratio, Young’s modulus and Gassmann fluid term 
simultaneously. Model and real data tests both prove that the one-step direct inversion method can reduce the cumulative 
errors effectively and has higher inversion accuracy.

Keywords Deep reservoir · Direct inversion · P-wave reflection coefficient equation · Stack impedance

Introduction

Elastic parameters, such as velocity, density and impedance, 
play a significant role in oil and gas exploration (Shi et al. 
2018; Yuan et al. 2019b). Reservoirs with different types of 
lithology and fluids usually have different elastic properties. 
The proposal of the Zoeppritz equation makes the elastic 
parameters of rocks related to seismic amplitude, which is 
the theoretical basis for current prestack seismic inversion 
and fluid identification (Zoeppritz 1919; Hilterman 2001). 
Bortfeld (1961) gave the approximate equation of Zoep-
pritz equation for the first time since the Zoeppritz equa-
tion is highly nonlinear and the solution is not often stable. 

This makes the relationship between the seismic amplitude 
implied in the Zoeppritz equation and the elastic properties 
of rocks more clear. Aki and Richards (1980) derived the 
approximate equation including the P- and S-wave velocities 
and density term, now became the most common Zoeppritz 
approximate equation in prestack seismic inversion. Shuey 
(1985) deduced the direct functional relationship between 
P-wave reflection coefficient and Poisson’s ratio. He also 
proved that the gradient of reflection coefficient with the 
incident angle was mainly determined by the change in 
Poisson’s ratio. More importantly, the concept of amplitude 
versus offset (AVO) intercept and gradient were proposed 
and the approximate equation of the reflection coefficient 
expressed by different angle terms was given. On the basis of 
Castagna’s mudstone baseline (Castagna et al. 1985), Smith 
and Gidlow (1987) integrated the P- and S-wave velocity 
reflectivity into a new parameter and found that the param-
eter is very sensitive to fluid, and then, the concept of “fluid 
factor” was first proposed. Fatti et al. (1994) reconstituted the 
Aki–Richards approximate equation, inverted for the P- and 
S-wave impedance reflectivity by weighted superposition 
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method, and improved the Smith–Gidlow’s fluid fac-
tor. Goodway et al. (1997) put forward Lambda–Mu–Rho 
(LMR) method, which is of great significance in the field of 
fluid identification. The shear modulus and Lame parameter 
are calculated by P- and S-wave impedance conversion and 
used as an indicator tool for fluid identification. Gray (1999) 
re-deduced Zoeppritz approximate equation and proposed a 
new P-wave reflection coefficient equation including Lame 
parameter, shear modulus and bulk modulus. It can directly 
and simultaneously invert for Lame parameter, shear modu-
lus and density without P- and S-wave impedance conver-
sion. Russell et al. (2011) found that the most of the exist-
ing elastic parameter are related to the rock skeleton, which 
limits the ability of fluid identification. They proposed the 
definition formula of the Gassmann fluid term, which can 
eliminate the influence of pore, and used it as an indicator 
for fluid identification. Subsequent studies proved that the 
Gassmann fluid term as a new fluid factor has higher fluid 
sensitivity than the common fluid factors (Feng et al., 2007; 
Zhang et al., 2009; Liu and Yin 2014; Zhang et al., 2018). 
Recently, Yuan et al. (2019a) proposed a new prestack inver-
sion to directly invert for the frequency-dependent velocity 
to favorably detect hydrocarbons.

With the increasing demand for oil and natural gas, the 
deep reservoir has become one of the most important poten-
tial exploration targets in the world and the corresponding 
exploration technology has become a hotspot of current 
research in the field of geophysics (Wang et al. 2018). The 
deep reservoir is usually characterized by high pressure, 
stress, and low permeability, porosity, which is a type of 
tight reservoir. Seismic rock physics experiments and explo-
ration practices have proved that rock brittleness is an impor-
tant index in hydraulic fracturing evaluation of tight reser-
voir and can be characterized by Poisson’s ratio and Young’s 
modulus (Sena et al. 2011; Harris et al. 2011; Zong et al. 
2013; Nebojsa and Nina 2017). Generally, the “sweet spot” 
of deep reservoir has a relatively low Poisson’s ratio value, 
but a high young’s modulus value. In practical applications, 
the common two-step inversion method is typically adopted 
to obtain Poisson’s ratio, Young’s modulus and Gassmann 
fluid term. Firstly, to invert for P- and S-wave velocity and 
density by prestack seismic inversion method. Secondly, 
converting the P- and S-wave velocity and density into the 
Poisson’s ratio, Young’s modulus and Gassmann fluid term 
by some conversion formula. However, in the target area of 
deep reservoir, seismic data have a small illumination angle, 
low effective coverage and low S/N, as well as lack of large-
offset information, which brings new challenges to prestack 
seismic inversion. Nevertheless, influenced by data quality 
and inversion algorithm in the first step, the prestack seis-
mic inversion results of P- and S-wave velocity and density 
may have a certain degree of errors. Besides, the inversion 
accuracy of P- and S-wave velocity and density is different. 

Their accuracy usually decreases from P-velocity to density 
(Mallick 2001). Therefore, the errors will be accumulated 
in the conversion step, and the inversion results will have a 
large deviation.

In this study, we derive a new kind of P-wave reflection 
coefficient equation. Based on this new equation, we pro-
pose a sensitive elastic parameter inversion method which 
is suitable for deep reservoir. Tests of model and real data 
show that we can not only invert for the Poisson’s ratio and 
Young’s modulus with high accuracy directly, but also can 
invert for the Gassmann fluid term simultaneously by using 
this method.

Methods

Based on the P-wave reflection coefficient equation of Gray 
(1999), Russell et al. (2011) derived a P-wave reflection 
coefficient equation which is a function of the shear modu-
lus, density and Gassmann fluid term, as

where θ stands for the incident angle. �dry and �sat stand 
for the ratio of P-wave velocity to S-wave velocity in dry 
rocks and saturated rocks, respectively. Δf∕f  stands for the 
Gassmann fluid term reflectivity. Δ�∕� stands for the shear 
modulus reflectivity. Δ�∕� stands for the density reflectivity.

Equation (1) is usually used to invert for the Gassmann 
fluid term which is frequently used in the field of fluid iden-
tification as a highly sensitive fluid factor. Our purpose is to 
make the P-wave reflection coefficient directly related to the 
Poisson’s ratio, young’s modulus and Gassmann fluid term, 
and can be used for deep reservoir prediction.

For isotropic medium, the relationship among shear mod-
ulus, Young’s modulus and Poisson’s ratio is

where μ is shear modulus, E is Young’s modulus and σ is 
Poisson’s ratio.

Defining X =
1

2(1+�)
 , then we have

Taking complete differential operation of μ, then

Both sides of Eq. (4) are divided by μ, then Eq. (4) can 
be written as
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According to Eq. (3), we have

Substituting Eqs. (6) and (7) into Eq. (5), then we have

The ΔX
X

 in Eq. (8) can be written as

where σ1 and σ2 stand for the Poisson’s ratio of upper strata 
and lower strata of the reflection interface, respectively.

Because

Substituting Eqs. (10) and (11) into Eq. (9), then

The σ and �sat have the following relationship

Substituting Eq. (13) into Eq. (12), then Eq. (12) can be 
written as

Substituting Eq. (14) into Eq. (8), then we have

According to Liu and Yin (2014), the relationship between 
the density and shear modulus can be written as

Substituting Eqs. (15) and (16) into Eq. (1), a new reflection 
coefficient equation is derived as
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.
By Eq. (17), we finally get the direct functional relation-

ship between the P-wave reflection coefficient and the Pois-
son’s ratio, Young’s modulus and Gassmann fluid term.

For conventional reservoirs, based on Eq. (17), the com-
mon AVO inversion method can be used to obtain the Pois-
son’s ratio, Young’s modulus and Gassmann fluid term. 
However, for deep reservoir, due to the low S/N of angle 
gathers, the AVO inversion may be unstable and have large 
errors. The elastic impedance (EI) inversion which uses par-
tial angle stack gathers has the advantages of both the post-
stack seismic inversion and prestack seismic AVO inversion, 
and is widely used for elastic parameter inversion (Connolly, 
1999; Mallick 2001; Zong et al. 2013). Compared with the 
single angle gather, the partial angle stacked gather has a 
higher S/N, since the stack processing can remove some ran-
dom noise and enhance the effective signal. Therefore, the 
EI inversion may be suitable for deep seismic data. Accord-
ing to Connolly’s idea of EI equation, we can derive an EI 
equation related to the Poisson’s ratio, Young’s modulus and 
Gassmann fluid term based on Eq. (17), as

where EI0 stands for the normalization factor. σ0, E0 and f0 
stand for the average of Poisson’s ratio, Young’s modulus 
and Gassmann fluid term of target areas, respectively.

We can see that the EI equation is a function of single 
incident angle; therefore, single incident angle gather need 
be used for precise EI inversion. However, in practical appli-
cations, when extracting single incident angle gather from 
common midpoint gather, it is often strongly influenced 
by noise. Therefore, the partial angle stack gather with the 
higher S/N is generally used as an input data for EI inver-
sion in practical applications. Thereby, there is a contradic-
tion between EI equation and the gather applied in practical 
application, which may cause some errors and inevitably 
influence the subsequent elastic parameters inversion results. 
Especially in the target area of deep reservoir, seismic data 
have a small illumination angle, which make the extraction 
of single incident angle gather more difficult. Li et al. (2008) 
proposed a solution by rewriting the Connolly’s EI equa-
tion into a new form, called stack impedance (SI) equation. 
Unlike the EI equation which is a function of a single inci-
dent angle, the SI equation is a function of the starting and 
ending angles of partial angle stack gather.

(18)EI(�) = EI0

(

f

f0

)2a(�)(

E

E0

)2b(�)(

�

�0

)2c(�)
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According to the idea of SI, the reflection coefficient of 
partial angle stack is an arithmetic average of all incident 
angles, as

where Φ0 and Φ the starting and ending angles of partial 
angle stack gathers.

Substituting Eq. (17) into Eq. (19) and according to the 
derivation of SI equation (Li et al. 2008), we can deduce 
Eq. (18) into the form of SI, as

where SI0 is the normalization factor and can be the mean 
value of the acoustic impedance of target layer, and the 

exponential terms m(�0,�) =

(

1

2
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�2
dry
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.

When the starting angle is equal to the ending angle, 
Eq. (20) becomes Eq. (18), which means that the input seis-
mic gather is a precise single angle stack gather.

(19)SR(�0,�) =

�

∫
�0

Rpp(�)d�

�

∫
�0

d�

(20)

SI(�0,�) = SI0

(

f

f0

)m(�0,�)(

E

E0

)n(�0,�)(

�

�0

)p(�0,�)

After Eq. (20) is obtained, when the partial angle stack 
gathers, well logging data and horizon interpretation data 
are input, the SI inversion can be taken by using the con-
ventional constrained sparse spike inversion (CSSI) method 
which is the same as EI inversion. The advantage of CSSI is 
that it can obtain broadband reflection coefficients (Latimer 
et al. 2000; Yuan et al. 2017; Ma et al. 2019). It has been 
proven that the SI equation is more suitable for partial angle 
stack data and the inversion result is more accurate (Li 
et al. 2008; Gui et al. 2014). Since there are three param-
eters needed to be inverted, at least three SI data with dif-
ferent angle stack ranges are required. It can be found that 
the exponential terms of SI equation m(Φ0, Φ), n(Φ0, Φ) 
and p(Φ0, Φ) are only related to the range of stack angle, 
so when the starting and ending angles are determined, the 
exponential terms will not change with time t. For n sample 
points, logarithmic calculation is performed on both sides 
of Eq. (20)

(21)
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Table 1  Model parameters

Strata Vp (m/s) Vs (m/s) ρ (kg/m3)

Shale 2898 1290 2425
Gas sand 2857 1666 2275
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Fig. 1  Comparison of approximation accuracy. a Reflection coefficients and b relative errors
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For Eq. (21), we can use well logging data and bore-
hole side SI inversion curves to get the exponential terms 
m(Φ0, Φ), n(Φ0, Φ), p(Φ0, Φ) by the linear fitting. For three 
different angle stack ranges Φ0–Φ1, Φ2–Φ3 and Φ4–Φ5, nine 
exponential terms can be obtained in the same way. Then, for 
the sample point tn, we have the following matrix equation

Since nine exponential terms can be obtained by using 
Eq.  (21), when three SI inversion data are input, the 
unknown elastic parameters f, E and σ at tn will be easily 
obtained by solving the linear Eq. (22).
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Examples

A two-level reference model is used to test the approxima-
tion accuracy of the new reflection coefficient equation. 
The elastic parameters of the model are shown in Table 1 
(Goodway et al. 1997). The P-wave reflection coefficients 
at elastic interface are obtained by Eqs. (1), (17) and the 
exact Zoeppritz equation, respectively. Figure 1a shows the 
reflection coefficient curves, and Fig. 1b shows the rela-
tive error curves. From Fig. 1b, we can see that the curves 
calculated by Eqs. (1) and (17) almost coincide with each 
other and they are very close to the curve calculated by 
exact Zoeppritz equation. As shown in Fig. 1b, when the 
incident angle is below 30°, the relative errors between 
Eq. (17) and exact Zoeppritz equation are less than 7%. In 
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Fig. 2  Well log curves. a Gassmann fluid term, b Young’s modulus and c Poisson’s ratio
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practical applications, the incident angle of deep seismic 
gather rarely exceeds 30°. Therefore, Eq. (17) is suitable for 
seismic inversion of real deep reservoir.

The real measured data are used as model test data, as 
shown in Fig. 2. Using the curves in Fig. 2, we synthesized 
three SI curves with angle ranges 0°–10°, 5°–15°, 10°–20° 
by Eq. (20), as shown in Fig. 3. In order to test the inversion 
accuracy of our method, the random Gaussian noise with a 
different intensity is added to the SI curves, with S/N of 5 
and 2 (S/N is the ratio of the root mean square amplitude of 
the signal to that of noise), respectively, and the common 
two-step inversion and the one-step direct inversion are per-
formed. The inversion results are shown in Figs. 4 and 5. By 

comparing inversion results with different S/N, we can find 
that the accuracy decreases with the decrease in S/N. When 
S/N = 5, the inversion results of our method agree well with 
the true curves. Although the inversion results of common 
two-step inversion method are not as good as that of one-step 
direct inversion method, it can still be roughly consistent 
with the true curves. When S/N = 2, the inversion results of 
our method still agree well with the true curves while the 
inversion results of common two-step inversion method have 
large deviation.

Our method has been applied to real prediction of deep 
tight sand reservoir. The 3D cross-plot of logging sam-
ples in this area is shown in Fig. 6. We can see that the 
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sand reservoir has a relatively low Poisson’s ratio and high 
Young’s modulus value than that of shale, and the gas-
bearing reservoir has a relatively low Gassmann fluid term 
value than that of water-bearing reservoir. Such characteris-
tics indicate that the gas-bearing tight sand reservoir can be 
predicted by jointly using Poisson’s ratio, Young’s modulus 
and Gassmann fluid term.

In this study area, the maximum incident angle of the 
seismic data in target layer is around 20°, and can be divided 
into three partial angle stack gathers. The partial angle stack 
gather profiles of one through-well seismic line are shown in 
Fig. 7. The position of water-bearing and gas-bearing sand is 
circled by dashed ellipse and solid ellipse, respectively. The 
CSSI algorithm is adopted to the common two-step inver-
sion and one-step direct inversion method, and the inversion 

results are shown in Figs. 8, 9 and 10. On the whole, the 
differences between the two are not very large, but there is 
certain degree of differences in details. Figure 11a–c shows 
the comparison of real logging curves and inversion results 
at the well location. We can see that the inversion results of 
one-step direct inversion method agree well with the real 
curves than the common two-step inversion method, espe-
cially in the regions of actual tight sand reservoirs.

In addition, for one-step direct inversion results, we 
noticed that the regions with relatively low Poisson’s ratio 
value and high Young’s modulus value are in good agree-
ment with the regions of actual tight sand reservoirs. How-
ever, the differences between the regions of water-bearing 
and gas-bearing tight sand in Poisson’s ratio and Young’s 
modulus inversion profiles are not obvious, but there are 
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Fig. 4  Comparison of the common two-step inversion and one-step 
direct inversion methods with SNR = 5. a Gassmann fluid term, b 
Young’s modulus and c Poisson’s ratio. The black, blue and red 

curves represent the exact curves, inversion curves by common two-
step method and inversion curves by one-step direct method, respec-
tively
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very obvious differences in Gassmann fluid term inversion 
profile. The gas-bearing sand has obvious lower value of 
Gassmann fluid term. This phenomenon is consistent with 
the 3D cross-plot analysis result. Therefore, by jointly uti-
lizing the Poisson’s ratio, Young’s modulus and Gassmann 
fluid term, we can not only predict the areas of deep res-
ervoir development, but also can identify the fluid type in 
reservoirs.

Conclusions

A direct inversion method for sensitive elastic parameters 
of deep reservoirs is put forward throughout the study. 
On the basis of Russell’s P-wave reflection coefficient 
equation, we derived a new reflection coefficient equation 
directly related to the Poisson’s ratio, Young’s modulus 
and Gassmann fluid term. The error analysis of reflection 
coefficient showed that the accuracy of the new equation is 
very close to the original equation at small incident angle. 
Based on the new reflection coefficient equation, we can 
obtain the SI equation by means of angle integration to 
solve the contradiction between the EI equation and the 

Fig. 7  Partial angle stack seis-
mic profile. From a–c, respec-
tively, for small to large partial 
angle stack seismic profile
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Fig. 8  Inversion results of 
Young’s modulus. a Common 
two-step inversion and b one-
step direct inversion
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Fig. 10  Inversion results of 
Gassmann fluid term. a Com-
mon two-step inversion and b 
one-step direct inversion
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actual input seismic data with low S/N. After obtaining 
three SI inversion data with different angle stack ranges, 
we can directly get the Poisson’s ratio, Young’s modu-
lus and Gassmann fluid term by solving a linear equation. 
Examples show that the approach is more suitable for deep 
reservoirs and can reduce the cumulative errors effectively 
compared with the common two-step inversion method.
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Abstract
The one-way propagation operator in the frequency-space domain has the advantages of fast calculation speed and good 
adaptability to medium with lateral velocity variation. The full wavefield model constructed by the one-way propagation 
operator is iterative. As the number of iterations increases, the components of wavefield are more and more abundant. In the 
full wavefield model, the propagation and scattering processes are independent of each other. The former is determined by 
the propagation operator, while the latter is determined by the scattering operator. As each iteration increases, the wavefield 
component will increase by one order. As an inverse migration operator, the full wavefield model could feed back the imag-
ing result to the data. By calculating the residual between the simulated data and the actual data, the reflectivity is updated. 
This is an inversion process. In this process, multiples will be imaged. In this way, the subsurface information contained in 
multiples is utilized and the imaging quality is greatly improved. The  L1-norm is used to constrain the imaging result, which 
further suppresses the artifacts and improves the imaging resolution. We have made some numerical examples in 2D case, 
explaining the principles and advantages of this methodology.

Keywords Modeling · Imaging · Inversion · Multiples · L1-norm

Introduction

The traditional views regard multiples as interference infor-
mation, which need to be removed or attenuated before imag-
ing. There are many methods to remove multiples, such as the 
surface-related multiple elimination proposed by Verschuur 
(1990) and Verschuur et al. (1991, 1992). Another method esti-
mating primaries by sparse inversion is also proposed by Van 
Groenestijn and Verschuur (2009). Other related research work 
to the removal of surface related multiple were also carried out 
by Yuan et al. (2018). However, multiples contain important 
information of the subsurface, which, if utilized, will greatly 
improve the imaging quality of the subsurface. The surface-
related multiple can improve the illumination of the shallow 
and middle locations of the subsurface due to the smaller inci-
dent angle than primary. The internal multiple could contribute 
to the imaging of salt dome structure because it can reflect 
below the layer. The migration of surface-related multiple was 
achieved by Verschuur and Berkhout (2011a, b), Ning and 
Herrmann (2015) and Li et al. (2018). Seismic imaging with 

internal multiple was performed by Malcolm et al. (2009) and 
Fleury and Snieder (2012) and Wang et al. (2019). Another 
method (NLRTM) using internal multiple is implemented 
by Broggini et al. (2013), Wapenaar et al. (2013), which 
achieves imaging of internal multiple by estimating model 
perturbations. The Marchenko method is used to reconstruct 
the Green’s function from the data, and then, the wavefields 
are reconstructed. But, it requires a dense source and detector 
arrangement. And this method can only be applied to non-free 
surface, that is, it cannot handle surface-related multiple. In 
these methods, surface-related multiple and internal multiple 
are imaged separately. The full wavefield migration (FWM) 
was proposed by Berkhout (2011, 2012, 2014b), which uti-
lizes the full wavefield, including the multiples (surface-related 
multiple and internal multiple) in the migration. FWM is an 
inversion process. The residual between the simulated data 
and the actual data is minimized to update the imaging result. 
FWMod (2011, 2012, 2014a) (full wavefield model) works 
as a forward engine in the FWM, which simulates data using 
the imaging result. FWMod is also an iterative process. In 
FWMod, the one-way propagation operator and the two-way 
scattering operator are used to simulate the two-way wave-
fields, which means that the propagating process and the scat-
tering process are decoupled from each other. The principle of 
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FWM has been demonstrated by Soni and Verschuur for VSP 
data (2014) and Davydenko and Verschuur (2016).

Since the one-way propagation operator is an approxima-
tion solution to the wave equation, artifacts will occur dur-
ing the propagation process. In order to suppress this part of 
artifacts and improve the resolution of the subsurface imag-
ing, different sparse constraint functions could be used. Soni 
and Verschuur (2014) used the Cauchy-norm to constrain the 
imaging result. Similarly, Davydenko and Verschuur (2016) 
also constrained the imaging result with the Cauchy-norm dur-
ing the imaging process.

In this paper, a one-way propagation operator in the fre-
quency-space domain is used to construct the full wavefield 
model. Then, the  L1-norm is used to constrain the imaging 
result during the internal multiple migration, improving the 
quality of the imaging.

Forward model

According to Berkhout’s matrix description (1982), the mon-
ochromatic component wavefield recorded at any jth grid 
point on depth zn emitted by the kth source on depth zm can be 
expressed as Pj,k(zn, zm) . The wavefield on the whole depth zn 
for a single shot can be expressed as a column vector P⃗(zn, zm) . 
In the case of multi-shots, the wavefield can be expressed as 
a matrix �(zn, zm) . In the case of single shot, the wavefield on 
depth zn can be divided into four types, P⃗+(zn) for the down-
ward (+) incident wavefield, P⃗−(zn) for the upward (−) inci-
dent wavefield, Q⃗+(zn) for the downward outgoing wavefield, 
and Q⃗−(zn) for the upward outgoing wavefield (see Fig. 1).

The relationship between the incident and outgoing wave-
field is defined by the scattering source 𝛿S⃗(zn):

(1)
�⃗�+(zn) = �⃗�+(zn) + 𝛅�⃗�

+

(zn)

�⃗�−(zn) = �⃗�−(zn) + 𝛅�⃗�
−

(zn).

𝛅�⃗�
+

(zn) and 𝛅�⃗�
−

(zn) are the scattering sources generated by 
the indent wavefield on depth zn:

where the �∪ and �∩ are reflectivity matrices, representing 
the upper and lower reflectivity of the layer, respectively. In 
the acoustic case, we have �∩(zn) = −�∪(zn).

When the wavefields are extrapolated from one depth to 
another, the outgoing wavefields of one depth will become 
the incident wavefield of another depth, as shown below (see 
Fig. 2):

where �± are the one-way propagation operators. Here, the 
weighted least-squares propagation operator with a smooth 
function is used. (Thorbecke et al. 2004).

Given a source, the downward record and the upward record 
for depth zn can be obtained after a few iterations:

where the S⃗+ represents the physical source.

(2)
𝛿S⃗+(zn) = P⃗−(zn)�

∩(zn) + P⃗+(zn)�
∪(zn)

𝛿S⃗−(zn) = P⃗+(zn)�
∪(zn) + P⃗−(zn)�

∩(zn),

(3)
P⃗+(zn+1) = �+(zn+1, zn)Q⃗

+(zn)

P⃗−(zn−1) = �−(zn−1, zn)Q⃗
−(zn),

(4)

P⃗+(zn) =
∑
m<n

�+(zn, zm)[S⃗
+(zm) + 𝛿S⃗+(zm)]

P⃗−(zn) =
∑
m>n

�−(zn, zm)𝛿S⃗
−(zm),

Fig. 1  Wavefields on depth zn contain two incident wavefield and 
two outgoing wavefield. The incident wavefields include the upward 
wavefield P⃗−(zn) and the downward wavefield P⃗+(zn) . And the outgo-
ing wavefields include the upward wavefield Q⃗−(zn) and the down-
ward wavefield Q⃗+(zn)

Fig. 2  Relationship of the wavefield between the depth: The outgo-
ing wavefields �⃗+(zn) and �⃗−(zn) of depth zn will become the incident 
wavefield P⃗+(zn+1) and P⃗−(zn−1) of the adjacent depth
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Therefore, in the first iteration, the downward wave-
fields only include the wavefield propagated directly from 
the source (without transmission effect). And the upward 
wavefields only include the reflected wavefield caused by the 
previous downward wavefield. If we do not consider mul-
tiples, the incident wavefields can be expressed as follows:

S⃗+(z0) means that the source is only located at the surface.
In the iterative process, using Eq. (4), the sources (physi-

cal source and scattering source) are propagated down 
and up to every depth, and the incident wavefields of each 
depth need to be preserved. Then, the incident wavefields 
are substituted into Eq. (2) to update the scattering source. 
The updated scattering source continues to be propagated to 
update the incident wavefield for each depth. Finally, a seis-
mic record is obtained at the receiver side. The wavefields 
are extrapolated in the depth direction by Eq. (3).

It can be seen that the main contribution of multiples 
comes from the scattering source ( 𝛿S⃗ ). The generation and 
update of the scattering source depend on the incident wave-
field obtained in the previous iteration. The updated scat-
tering source in turn further updates the incident wavefield 
of each depth. This is iterative. Therefore, as the number of 
iterations increases, the components of wavefield become 
more and more abundant.

Imaging

The purpose of the inversion imaging is to use the imaging 
result to interpret the migration data. The imaging result is 
used in the full wavefield model to interpret the observed full 
wavefield. The objective function in the sense of  L2-norm 
can be expressed as:

where ‖‖2
2
 represents the  L2-norm, �obs is the observed 

data, and P⃗obs for the single shot. �mod is the modeled data 
obtained by the forward model and P⃗mod for the single shot. 
And we need to calculate all the frequencies of wavefield. 
As a forward simulation operator, the full wavefield model 
could feed back the imaging result to the data. The reflectiv-
ity is updated by calculating the residual between the simu-
lated data and the actual data. As each iteration increases, 
an additional one-order wavefield will be imaged. This is 
an inversion process. During this process, multiples will be 
imaged. In this way, the subsurface information contained in 

(5)
P⃗+(zn) = �+(zn, z0)S⃗

+(z0)

P⃗−(zn) =
∑
m>n

�−(zn, zm)P⃗
+(zm)�

∪(zm).

(6)J =
∑
�

‖‖�obs − �mod
‖‖22,

multiples is utilized, thereby greatly improving the quality 
of the imaging.

We can solve the objective function by the gradient 
descent method. Pseudo-code is shown in Table 1.

The gradient of the objective function, that is, the gradi-
ent of the reflectivity above the layer, is:

where k is the shot number and H is the conjugate transpose. 
ΔP⃗−(zn) is the residual wavefield propagated back to zn . The 
reflectivity is a non-diagonal matrix. Here, we only consider 
the case of angle-independent, which means that only the 
diagonal elements of the matrix are not zero. There is only 
one value for each grid point in the subsurface. The case 
of angle-independent for the gradient can be expressed as:

L1‑norm sparse constraint

Since the one-way propagation operator is an approxima-
tion solution to the wave equation, artifacts will occur dur-
ing the propagation process. To further remove the artifacts 
remained in the imaging result and improve the resolution 
of the imaging result, we use the  L1-norm to constrain the 
imaging result. The objective function with sparse constraint 
can be expressed as:

where f (�) is a penalty function acting on the imaging 
result, which can help improve the resolution of the imaging. 

(7)Δ�∪(zn) =
∑
𝜔

−2
∑
k

ΔP⃗−(zn)
[
P⃗+(zn)

]H
,

(8)Δ�∪(zn) =
∑
𝜔

− 2
∑
k

diag

(
ΔP⃗−(zn)

[
P⃗+(zn)

]H)
.

(9)J =
∑
�

‖‖�obs − �mod
‖‖22 + �f (�),

Table 1  Pseudo-code for the inversion imaging using the gradient 
descent method
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� is a hyper-parameter used to balance the loss term and the 
regulation term. The f (�) for the  L1-norm can be expressed 
as:

where Rjj is a sample of the reflectivity matrix (a diagonal 
element from matrix �(zn) ). The gradient of the objective 
function with  L1-norm constraint can be expressed as:

The second term can be written as:

where the sgn is a symbolic function:

Numerical example

We use the 2D velocity model shown in Fig. 3 to illustrate 
the iterative property of the full wavefield model. The den-
sity is constant, and the receiver spacing is 5 m covering the 
whole surface. Figure 4 shows a single-shot record for differ-
ent iterations. As mentioned above, in the first iteration, only 
the physical source is propagated, so the wavefields only 
include primary. In the second iteration, the components of 
wavefield are increased by one order due to the generation 
of the scattering source. In the third iteration, the second-
order wavefields are added to the record and so on. This is an 
iterative process. As the number of iterations increases, the 
components of wavefield become more and more abundant.

(10)f (�)=
∑
n

∑
j

|||Rjj
|||,

(11)

Δ�∪(zn) =
∑
𝜔

− 2
∑
k

diag

(
ΔP⃗−(zn)

[
P⃗+(zn)

]H)
+𝜆f �(�∪).

(12)f �(�)=

{
sgn(Rjj), ifRjj ≠ 0;

{h ∶ |h| ≤ 1, h ∈ ℝ}, otherwise.

(13)sgn(Rjj) =

⎧
⎪⎨⎪⎩

1 Rjj > 0;

0, Rjj = 0;

−1, Rjj < 0;

Fig. 3  Velocity model (m/s)

Fig. 4  a A shot gather with one iteration; b a shot gather with two 
iterations; c a shot gather with three iterations; and d a shot gather 
with four iterations. As the number of iterations increases, the record 
becomes more and more abundant
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Figure 5 shows the velocity and density model we used to 
simulate the migration data (as the actual data here) by the 
acoustic FD method. The data contain primary and internal 
multiple. The source spacing is 50 m, and the receiver spac-
ing is 5 m. We implement the migration using the veloc-
ity model in Fig. 5 which is assumed to vary smoothly in 
the spatial direction. Figure 6 shows the imaging result for 
different cases. Figure 6a shows the conventional imaging 
result which only considers the primary in the migration. We 
can see that the cross talk generated by the internal multiple 
appears in the imaging result, and the cross talk causes the 
layers below the salt dome to be deformed, resulting in an 
unclear image. Figure 6b, d shows the results of inversion 
imaging, and the imaging quality of both is improved. The 
difference is that Fig. 6d considers the internal multiple in 
the migration process, that is, the forward model used for the 
migration process of Fig. 6d is the full wavefield model. Fig-
ure 6b shows the least-squares migration of primary based 
on the one-way propagation operator. In Fig. 6b, the cross 
talk still exists. It can be clearly seen that since the internal 
multiple is considered in the imaging process, the cross talk 
generated by the internal multiple is suppressed in Fig. 6d. 
Figure 6c, e shows the results of Fig. 6b, d with the  L1-norm 
sparse constraint. The artifacts in the imaging results are 

further removed, and the resolution of the imaging results 
is better.

Discussion

The one-way propagation operator in the frequency-space 
domain has the advantages of fast calculation speed and 
good adaptability to medium with lateral velocity varia-
tion. The one-way propagation operator used here has an 
angular limitation. In order to achieve large-angle propa-
gation of the wavefield, the spatial length of the propaga-
tion operator needs to be longer, which will lead to an 
increase in computation. Furthermore, if the spatial length 
of the operator is too long, it will not be well adapted to 
medium with lateral velocity variation.

In this paper, only the angle-independent reflectivity is 
considered, which means that the reflectivity matrix is a 
diagonal matrix and only the elements on the diagonal are 
not zero. It is equivalent to the case of normal incidence 
and does not contain information that varies with angle. 
If we want to perform AVO inversion, then we need to 
consider the angle-dependent reflectivity.

Fig. 5  a Velocity model (m/s); 
b density model (kg/m3)
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Conclusion

One-way propagation operators can be used to solve the 
problem of multiples imaging. The source (including the 
scattering source) is propagated forward and is then cross-
correlated with the back propagation residual wavefield. 
Multiples imaging is an iterative inversion process. Each 
iteration will have a higher-order wavefield to be imaged, 
so the multiples will also be imaged. The residual is 
obtained by comparing the simulated data modeled by the 
full wavefield model with the actual data, and the imaging 
result is continuously corrected in this way.

The full wavefield model is also an iterative process. As 
the number of iterations increases, the order of the wave-
field increases accordingly. In this process, the propagation 
operator and the scattering operator are independent of 
each other. The propagation operator is only responsible 
for propagation, and the scattering operator is only respon-
sible for scattering. The full wavefield model updates the 
subsurface wavefield by updating the scattering source. 
The updated scattering source in turn further updates the 
subsurface wavefield. In the first iteration, the simulated 
wavefields contain only primary (without transmission 
effect). In the second iteration, the subsurface scattering 
source is updated, and the first-order multiples as well as 
the transmission effect are added to the simulated wave-
field. The generation of multiples is mainly due to the 
presence of the scattering source.

Because the one-way propagation operator is an 
approximation solution of the wave equation, there must 
be some propagation artifacts in the propagation process. 
The  L1-norm is used in the imaging process to constrain 
the imaging result in order to further remove the artifacts 
and improve the resolution of the imaging.
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Abstract
The antileakage least-squares spectral analysis is a new method of regularizing irregularly spaced data series. This method 
mitigates the spectral leakages in the least-squares spectrum caused by non-orthogonality of the sinusoidal basis functions 
on irregularly spaced series, and it is robust when data series are wide-sense stationary. An appropriate windowing technique 
can be applied to adapt this method to non-stationary data series. When data series present mild aliasing, this method can 
effectively regularize the data series; however, additional information or assumption is needed when the data series is coarsely 
sampled. In this paper, we show how to incorporate the spatial gradients of the data series into the method to regularize data 
series presenting severe aliasing and show its robust performance on synthetic and marine seismic data examples.

Keywords Antileakage spectrum · Gradient · Least-squares spectral analysis · Regularization · Seismic data

Introduction

Regularization, a typical spectral interpolation and/or 
extrapolation, is a crucial problem in seismology. Marine 
seismic data sets are usually irregularly sampled along spa-
tial directions because of cable feathering, editing bad traces, 
economy, etc. They are usually more coarsely sampled along 
the crossline direction than the inline direction as only a 
limited number of streamers can be towed. Regularly sam-
pled seismic data are required for various purposes including 
wave equation migration, seismic inversion, amplitude ver-
sus azimuth or offset analyses, and surface-related multiple 
elimination (Weglein et al. 1997; Dragoset et al. 2010).

In seismic signal processing, a wavenumber is the num-
ber of cycles per unit distance, and a (cyclic) frequency is 
the number of cycles per unit time. Aliasing is an effect 
that causes different signals to be indistinguishable when 
sampled. For instance, assume that a sinusoid is sampled at 
equally spaced intervals. If another sinusoid has the same 
amplitude and phase as the original but its wavenumber dif-
fers from the first one by a multiple of the sampling rate, 
then these two sinusoids will have exactly the same samples 

over the equally spaced intervals (Craymer 1998; Ghader-
pour 2018). Since seismic data are usually well sampled in 
time, regularization is usually performed on samples along 
the spatial directions, referred to data series (Ghaderpour 
et al. 2018).

There is a vast number of regularization methods, 
addressing practical issues in seismology, such as the pre-
diction error filters (Spitz 1991; Crawley 2000; Fomel 2002; 
Wang 2002; Liu and Chen 2017), projection onto convex 
sets (Abma and Kabir 2006; Gao et al. 2012; Yang et al. 
2012; Wang et al. 2016), minimum weighted norm interpo-
lation (Liu and Sacchi 2004), compressive sensing (Wang 
et al. 2011), damped rank-reduction (Chen et al. 2016), 
nonlinear shaping regularization (Fomel 2007; Chen et al. 
2015), antileakage Fourier transform (Xu et al. 2005, 2010), 
arbitrarily sampled Fourier transform (Guo et al. 2015), 
antileakage least-squares spectral analysis (Ghaderpour et al. 
2018), interpolation by matching pursuit and its generaliza-
tions (Vassallo et al. 2010; Özbek et al. 2010a, b, 2012).

The antileakage least-squares spectral analysis (ALLSSA) 
is an iterative method based on the least-squares spectral 
analysis (LSSA) that uses a preselected set of wavenumbers 
to accurately estimate the statistically significant spectral 
peaks in the spectrum (Vaníček 1969; Pagiatakis 1999; 
Ghaderpour et al. 2018). After simultaneously suppress-
ing several significant spectral peaks, an iteration process 
will be performed to estimate the previously estimated 
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wavenumbers more accurately, mitigating the spectral leak-
ages in the spectrum and reducing the computational cost. 
The ALLSSA simultaneously considers the covariance 
matrix associated with data series and the constituents of 
known forms, such as datum shifts, trends, sinusoids of 
known wavenumbers. Ghaderpour (2018, Chapters 3 and 
4) showed that the ALLSSA performs more efficiently than 
the state-of-the-art methods, such as the antileakage Fourier 
transform, arbitrary sampled Fourier transform, and interpo-
lation by matching pursuit (IMAP).

When data series presents mild aliasing in the spectrum, 
the ALLSSA can regularize the aliased data series effec-
tively. However, certain assumptions, such as linearity of 
seismic events (Schonewille et al. 2009), or additional data 
sets, such as spatial gradients of the seismic data (Vassallo 
et al. 2010), are further needed to aid the regularization 
beyond aliasing.

In a truly multicomponent marine seismic data acquisi-
tion, pressure measurements are complemented by particle 
velocity measurements. The particle velocity measure-
ments can increase the effective Nyquist wavenumber by 
a factor of two or three, depending on how they are used 
(Robertsson et al. 2008). The equation of motion states that 
the particle acceleration vector � (measured by an accel-
erometer) is proportional to the gradient of pressure P by 
equation ∇P = −�� , where � is the density of the medium. 
In particular, in the crossline direction (denoted by x here), 
Px = −𝜌V̇x , where the dot above Vx denotes the temporal 
derivative. Since particle motion can easily be converted 
into a pressure gradient by using the equation of motion, 
such streamers would enable acquisition of both pressure 
and the gradient of pressure simultaneously (Vassallo et al. 
2010; Özbek et al. 2010b).

The multichannel interpolation by matching pursuit 
(MIMAP) is based on the IMAP that uses the multicompo-
nent seismic measurements to reconstruct the seismic wave-
field at any desired crossline position between towed stream-
ers (Vassallo et al. 2010). The generalized matching pursuit 
(GMP) is based on the MIMAP (three-component generali-
zation of the MIMAP) that iteratively reconstructs the signal 
as a combination of optimal basis functions (Özbek et al. 
2010b). For coarsely sampled data with low signal-to-noise 
ratio, the GMP results can be improved by considering soft 
priors (Özbek et al. 2010a, 2012).

In this paper, a similar method, namely multichannel 
antileakage least-squares spectral analysis (MALLSSA), is 
introduced that incorporates the spatial gradients of seismic 
data (if available) into the ALLSSA to regularize the data 
series beyond aliasing. The MALLSSA can estimate the 
wavenumbers of data series more accurately compared to 
the MIMAP, resulting in less number of iterations and better 
and faster regularization results. The MALLSSA simultane-
ously considers the covariance matrices associated with the 

pressure and gradient data series as well as the constituents 
of known forms, such as datum shifts, trends, and sinu-
soids of known wavenumbers. The robust performance of 
the MALLSSA is shown on synthetic data series, synthetic 
seismic data, and marine seismic data sets. The MALLSSA 
can be seen as a more robust generalization of the MIMAP.

Methods

Multichannel interpolation by matching pursuit

In this section, the MIMAP is briefly described in matrix 
form (Vassallo et al. 2010). Suppose that � is a set of wave-
numbers. In this paper, we choose � = {1, 2,… , � − 1} , 
where � is the Nyquist wavenumber of the desired regu-
lar series. Let � = [f (x�)] be a column vector of n samples 
( � = 1,… , n ), and �� = [fx(x�)] be its spatial gradient, where 
the x� ’s may be irregularly spaced. Note that � and �� do not 
need to have the same size; however, their sizes are assumed 
to be the same in this contribution. For each wavenumber 
�k ∈ � , let �k and �k�

 be design matrices of orders n × 2 
defined as

Also, let �k = [ak bk]
T , where T is the transpose, and ak and 

bk are the coefficients of the cosine and sine basis func-
tions being estimated, respectively. For each wavenumber 
�k ∈ � , the MIMAP minimizes the following cost function 
with respect to �k

where T is the transpose, and so it estimates �k as

The derivation of Eq. (4) is shown in ‘Appendix’ in a more 
general case (i.e., for the MALLSSA). The weighting param-
eter � in Eq. (3) adjusts the relative contributions of data and 
gradient residuals to the cost function. The proper selection 
of � should consider the expected energy difference between 
the two signals and the signal-to-noise ratio of the respec-
tive multicomponent measurements (Vassallo et al. 2010). 
When � = 0 , the gradient measurements are discarded, and 
the MIMAP degenerates to the IMAP.

After substituting �̂k in Eq. (3), the optimization problem 
becomes estimating �k that maximizes

(1)�k =
[
cos(2��kx�), sin(2��kx�)

]
,

(2)�k�
=
[
− 2��k sin(2��kx�), 2��k cos(2��kx�)

]
.

(3)
Ψk(�k) = (� −�k �k)

T(� −�k �k) + �(�� −�k�
�k)

T(�� −�k�
�k),

(4)�̂k =
(
�T

k
�k + 𝜆 �T

k�
�k�

)−1(
�T

k
� + 𝜆 �T

k�
��

)
.

(5)s𝜆(𝜔k) = �T�k�̂k + 𝜆 �T
�
�k�

�̂k,
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corresponding to the extension of the Lomb spectrum to 
the case of multicomponent reconstruction (Vassallo et al. 
2010, Appendix A). After estimating �k and �̂k , the MIMAP 
obtains the residual data series (� −�k �̂k) and its residual 
gradient (�� −�k�

�̂k) and treats them as the new input data 
series and gradient; then, it performs the entire process on 
these residual series. When the energy of the overall residual 
is sufficiently reduced, the iterations are terminated, and the 
estimated wavenumbers and sinusoidal coefficients ( �k ’s 
and �̂k’s) will be used to reconstruct the data series on any 
desired equally spaced series.

In the IMAP and MIMAP, the wavenumbers are esti-
mated one at a time (out-of-context), ignoring the correla-
tions between the sinusoids of different wavenumbers (Gha-
derpour et al. 2018). Thus, the estimated wavenumbers and 
sinusoidal coefficients are not very accurate, resulting in 
large number of iterations and less accuracy compared to 
when these correlations are considered.

Multichannel antileakage least‑squares spectral 
analysis

In this section, it is shown how the correlations between the 
sinusoidal basis functions can be considered simultaneously 
with the constituents of known forms and covariance matri-
ces associated with the data series. Suppose that � , � , and 
�� are the same as the ones in the previous section, and �� 
and ���

 are the (regular and Hermitian) covariance matrices 
associated with � and �� , respectively, given by

where �2

f (x�)
 and �2

fx(x� )
 are the variances of random variables 

f (x�) and fx(x�) , respectively, and �f (xu)f (xv) is the covariance 
between two random variables f (xu) and f (xv) , and �fx(xu)fx(xv) 
is the covariance between two random variables fx(xu) and 
fx(xv) . Let � = ��

−1 and �� = �−1
��

 that can identify param-
eter � more rigorously in the MIMAP. In many practical 
applications, weight matrices � and �� are approximately 
diagonal matrices (the correlations between the data points 
are negligible), so one may treat them as vectors for compu-
tational efficiency (Ghaderpour et al. 2018). In a marine 

�� =

⎡
⎢⎢⎢⎢⎣

�2

f (x1)
�f (x1)f (x2) ⋯ �f (x1)f (xn)

�f (x2)f (x1) �2

f (x2)
⋯ �f (x2)f (xn)

⋮ ⋮ ⋮

�f (xn)f (x1) �f (xn)f (x2) ⋯ �2

f (xn)

⎤
⎥⎥⎥⎥⎦
,

���
=

⎡⎢⎢⎢⎢⎣

�2

fx(x1)
�fx(x1)fx(x2) ⋯ �fx(x1)fx(xn)

�fx(x2)fx(x1) �2

fx(x2)
⋯ �fx(x2)fx(xn)

⋮ ⋮ ⋮

�fx(xn)fx(x1) �fx(xn)fx(x2) ⋯ �2

fx(xn)

⎤⎥⎥⎥⎥⎦
,

environment, the particle velocity measurements are usually 
noisier than pressure measurements, especially in the low 
frequencies (Özbek et al. 2010b), and so depending on the 
seismic signal energy distribution and the signal-to-noise 
ratio, the diagonal entries of �� are usually much smaller 
than the ones in �.

For each wavenumber �k ∈ � , the MALLSSA minimizes 
the following cost function with respect to �

where T is the (conjugate) transpose, and � and �� are the 
design matrices of orders n × (q + 2) defined as

such that � =
[
�1,… ,�q

]
 contains the constituents of 

known forms, �
�
=
[
�1�

,… ,�q�

]
 contains their gradients, 

and �k and �k�
 are given by Eqs. (1) and (2), respectively. 

The constituents of known forms can be the column vec-
tor of all ones [�] and/or the position column vector [�] to 
explicitly account for any linear trend. If there is any prior 
information on some existing constituents, such as sinusoids 
of particular wavenumbers and/or any specific wavelets, then 
one may consider them in � as well as their gradients in �

�
 

in advance of the analysis. In our examples, sinusoids of par-
ticular wavenumbers will be considered as the constituents 
of known forms in an iterative manner automatically, and 
we also consider the column vector of all ones (see the last 
paragraph in this section). Accounting for these constituents 
results in more accurate estimation of actual constituents in 
the data series and thus better regularization.

Minimizing the cost function in Eq. (6) with respect to � , it 
is shown in ‘Appendix’ that

where � is the estimated coefficients of the constituent of 
known forms, and �̂k is the estimated sinusoidal coefficients 
corresponding to wavenumber �k . Now in the process of 
estimating the wavenumbers, at each step, a wavenumber 
�k ∈ � will be selected that maximizes the following nor-
malized ratio:

where �̂ = � −� �̂ and �̂� = �� −�
�
�̂ , and

(6)
Ψk(�) =

(
� −� �

)T
�
(
� −� �

)
+
(
�� −�� �

)T
��

(
�� −�� �

)
,

(7)� =
[
�, �k

]
, �� =

[
�

�
, �k�

]
,

(8)

�̂ =

[
�

�̂k

]
=
(
�

T

�� +�
T

�
����

)−1(
�

T

�� +�
T

�
����

)
,

(9)smulti(𝜔k) =
�̂T��k�̂k + �̂T

�
���k�

�̂k

�̂T��̂ + �̂T
�
���̂�

,

(10)�̂ =
(
�T�� +�T

�
����

)−1(
�T�� +�T

�
����

)
.
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Note that Eq.  (10) is obtained by minimizing 
Ψ(�) =

(
� −� �

)T
�
(
� −� �

)
+
(
�� −�

�
�
)T
��

(
�� −�

�
�
)
 

with respect to � in the same way as Eq.  (8) is derived 
(“Appendix”).

Next, a wavenumber will be chosen in a small neighbor-
hood that maximizes Eq. (9), and then the sine and cosine 
basis functions of this wavenumber and their derivatives will 
be added to the design matrices � and �

�
 in Eq. (7), respec-

tively (as additional constituents of known forms). In prac-
tice, the number of columns in � and �

�
 is small, and so 

the algorithm is computationally efficient, especially when 
the size of data series is small. One may obtain �̂k in Eq. (8) 
more efficiently using similar methods used in Ghaderpour 
(2018, Appendix B) or via similar techniques used in the fast 
Fourier transform (FFT).

The sinusoids and their derivatives may be removed from 
the design matrices to be estimated (re-optimized) more 
accurately in the next step like the ALLSSA. This process 
continues until smulti(�k) given by Eq. (9) is no longer statis-
tically significant at a certain confidence level (”Appendix”), 
so �̂ in Eq. (10) will comprise the estimated coefficients of 
the final constituents in the first round of iterations, and it 
will produce a spectrum called the multichannel antileakage 
least-squares spectrum (MALLSS). When the data series is 
wide-sense stationary, one round of iterations will provide 
sufficient wavenumbers to regularize the data series. How-
ever, one may repeat the entire process on the new residu-
als in the next round of iterations and continue until the 
L2 norm of residuals goes below a threshold (the residuals 
become random noise).

The weight matrices � (associated with � ) and �� (asso-
ciated with �� ) balance the relative importance between the 
data series and its gradient (the noisier the gradient is, the 
less it will be considered). After each round of iterations, 
these matrices may be updated using the covariance law 
(Vaníček and Krakiwsky 1986; Ghaderpour 2018). Note 
that when �� = � , the MALLSS degenerates to the ALLSSA 
spectrum, following the beta distribution (Ghaderpour et al. 
2018). As mentioned above, a few of the constituents of 
known forms can be preselected, such as the column vector 
of all ones or the distance vector. Other basis functions can 
be considered, such as the sinusoids, whose wavenumbers 
will be estimated in an iterative manner using the same par-
titioning of the wavenumbers described in Ghaderpour et al. 
(2018).

When a data series is coarsely sampled, several sinusoids 
of various wavenumbers may identically fit the constituents 
of the data series; however, the coefficients of their deriva-
tives are different, resulting in selecting the correct wavenum-
bers when minimizing Eq. (6). In other words, the derivative 
measurements can alter the sampling criteria (Vassallo et al. 
2010). Note that the MALLSSA is slightly different from the 
MIMAP in that the wavenumbers are simultaneously being 

estimated (re-optimized) in an iterative manner, resulting in 
higher accuracy and a smaller number of iterations. If one does 
not consider � and �

�
 in Eq. (7), containing the constituents 

of known forms, and ignores the weight matrices � and �� 
(simply replace them by parameter � ), then the MALLSSA is 
in fact the MIMAP.

In seismic data regularization, it is customary to transform 
each trace from the time domain to the frequency domain 
using the FFT. Then for each frequency, generate a data series 
whose data points, located at the trace locations, are the Fou-
rier coefficients of that frequency (a temporal frequency slice) 
(Spitz 1991; Abma and Claerbout 1995; Xu et al. 2005; Vas-
sallo et al. 2010). In the seismic data examples in this contri-
bution, the frequency slices (data series) for both pressure and 
gradient data are obtained, and then the MALLSSA is applied 
to regularize the frequency slices. Then, the regularized pres-
sure series from the f − x domain are transformed back to the 
t − x domain using the inverse FFT. The real and imaginary 
parts of a frequency slice are simultaneously regularized in 
the MALLSSA. An alternative approach is to regularize the 
real and imaginary parts of a frequency slice independently, 
so a different set of wavenumbers may be estimated for each 
part to regularize the frequency slice (some information may 
be lost, however).

The MALLSSA like the MIMAP or almost any the regu-
larization method in the presence of aliasing has the potential 
overlap of two or more spectral replicas at the same wave-
number. The perfect overlap of aliased events happens only 
in the ideal case of perfectly regular sampling (Vassallo et al. 
2010). However, in practical applications, this is not a sig-
nificant issue because the seismic data are often irregularly 
spaced. The overlapping effect of replicas can also be reduced 
in practice by appropriate windowing of data series prior to 
regularization.

In the following synthetic and seismic data examples, �1 
in � is selected as the column vector of ones to reconstruct 
the horizontal linear events more accurately. This selection 
is crucial in the regularization of seismic data beyond alias-
ing because it also considers the trace averaging in the least-
squares sense. The gradient of this vector is zero, and it cannot 
be useful for horizontal events whose spectra are vertical in 
the f − k spectrum. For irregularly sampled data series, the 
sinusoidal functions no longer have average value zero, caus-
ing an error in determining the zero point of the signals. Simul-
taneous consideration of the column vector of ones with the 
sinusoids solves this problem, and so it improves the accuracy 
of wavenumber estimation (Ferraz-Mello 1981; Foster 1996; 
Ghaderpour and Pagiatakis 2017).
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Results and discussion

Synthetic data series regularization beyond aliasing

Consider the following data series and its gradient series

where x� = �∕32 , � = 1,… , 32 . The data series is shown 
by black stars in Fig.  1b. The goal is to regularize the 
data series on a series with regular spacing 1/128 whose 

(11)
f (x�) =5 sin(25.6x�) + 2.5 sin(128x� + 1)

+
√
3 sin(140x�) + 4 cos(350x�),

(12)

fx(x�) =5(25.6) cos(25.6x�) + 2.5(128) cos(128x� + 1)

+
√
3(140) cos(140x�) − 4(350) sin(350x�),

Nyquist wavenumber is 64, so we choose the initial set of 
wavenumbers for the LSSA, MIMAP, and MALLSSA as 
� = {1, 2,… , 63} . Set � does not have to contain only inte-
gers, and it can be any set of real numbers. The denser the 
wavenumbers are in � , the more accurate the spectral peaks 
in the LSSA will be estimated; however, this will increase 
the computational cost. We also use � for both MIMAP and 
MALLSSA in this example that is approximately equal to 
0.001. The actual wavenumbers of the data series are real 
numbers: 25.6∕(2�) = 4.0743665 , 128∕(2�) = 20.3718327 , 
140∕(2�) = 22.2816920 , 350∕(2�) = 55.7042301 . Since the 
distance between every two consecutive samples is 1/32 and 
the goal is to reconstruct the data series on a series with 
regular spacing 1/128, the data series presents three Nyquist 
wavenumbers at 16, 32, and 48 (cf., Fig. 1a). The actual 
locations of two wavenumbers are between 16 and 32, and 
one is after 48.

Fig. 1  A coarsely sampled data 
series (black stars in panel b) 
presenting severe aliasing (black 
circles in panel a) and its regu-
larization on series with spacing 
1/128 using the MIMAP (blue 
squares in panel b obtained 
from wavenumbers shown by 
blue squares in panel a) and 
MALLSSA (red diamonds in 
panel b obtained from the four 
wavenumbers shown by red 
diamonds in panel a), and c the 
difference between the ideal 
data series and the regularized 
data series using the MIMAP 
(blue squares) and MALLSSA 
(red diamonds). The MIMAP 
spectrum in panel a shows 
spectral leakages and has many 
wavenumbers in the spectrum 
that increase the computational 
cost and reduce the accuracy of 
the regularization (see panel c)
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The LSSA amplitude spectrum is shown in Fig. 1a (black 
peaks). The amplitude corresponding to a wavenumber is 
the square root of the sum of squares of estimated cosine 
and sine coefficients of that wavenumber. The estimated 
wavenumbers using the LSSA show severe aliasing. For 
example, in the LSSA amplitude spectrum, the sinusoids 
of wavenumbers 4, 28, 36, and 60 fit the data series identi-
cally, and so the true signal that has wavenumber close to 
4 is indistinguishable from wavenumbers 28, 36, and 60. 
Since the amplitudes of the gradient series corresponding to 
these wavenumbers are different, the MALLSSA is able to 
estimate the true wavenumber accurately that is 4.0743. The 
estimated wavenumbers using the MALLSSA are shown by 
red in Fig. 1a that are accurately estimated.

The MIMAP spectrum is also illustrated by blue in 
Fig. 1a, showing spectral leakages and has many wavenum-
bers in the spectrum that increase the computational cost 
(about 10 times slower than the MALLSSA in this exam-
ple) and reduce the accuracy of the regularization. The L2 
norm of the ideal data series with 1/128 sample spacing is 
56.2436, and the L2 norm of the MIMAP and MALLSSA 

residuals (the difference between the interpolated and actual 
data series with 1/128 sample spacing) is 1.863 and 0.006, 
respectively. The differences between the ideal and the 
regularized data series using the MIMAP and MALLSSA 
are illustrated in Fig. 1c. Since the coefficients of the com-
ponents of the gradient series depend on the wavenumber, 
minimization of Eq. (6) resulted in picking the correct wave-
numbers in the spectrum.

To understand the MALLSSA algorithm better, we show 
the iteration results of the MALLSSA in Table 1. In the first 
iteration, wavenumber 55.6819 is estimated that is approxi-
mately 0.0223 different from its actual value 55.7042. This 
is a shortcoming of the MIMAP method (out-of-context) 
caused by the presence of other constituents in the data 
series. In the second, third, and fourth iterations, the other 
three wavenumbers are estimated simultaneously. By remov-
ing their corresponding components from the data and 
gradient series simultaneously, the second wavenumber is 
re-optimized in the fifth iteration, and so on (see the high-
lighted numbers in Table 1). One can see that all the wave-
numbers are accurately estimated in the last iteration. In this 

Table 1  The result of wavenumber estimation using the MALLSSA algorithm after each iteration

Note that wavenumbers in bold are estimated more accurately after iteration

Iteration 
number

First wavenumber Second wave-
number

Third wavenumber Fourth wavenumber L2 norm of 
residual �̂

L2 norm of residual �̂�

1 55.6819 23.3064 1596.2916
2 20.3075 55.6819 21.3281 1019.4372
3 20.3075 22.1898 55.6819 20.0021 513.6049
4 4.0631 20.3075 22.1898 55.6819 1.5029 202.9275
5 4.0631 20.3632 22.1898 55.6819 1.0830 162.6327
6 4.0631 20.3632 22.1898 55.6931 1.0017 123.3733
7 4.0631 20.3632 22.2438 55.6931 0.5938 79.9480
8 4.0631 20.3632 22.2438 55.6993 0.5324 53.5090
9 4.0631 20.3632 22.2651 55.6993 0.4580 38.5508
10 4.0631 20.3632 22.2651 55.7019 0.4368 29.6227
11 4.0631 20.3711 22.2651 55.7019 0.4199 24.1281
12 4.0631 20.3711 22.2736 55.7019 0.4157 18.7725
13 4.0737 20.3711 22.2736 55.7019 0.0952 16.5123
14 4.0737 20.3711 22.2736 55.7032 0.0829 10.6737
15 4.0737 20.3711 22.2781 55.7032 0.0471 7.3391
16 4.0737 20.3711 22.2781 55.7038 0.0417 4.9594
17 4.0737 20.3711 22.2802 55.7038 0.0305 3.3128
18 4.0737 20.3711 22.2802 55.7040 0.0287 2.5437
19 4.0737 20.3718 22.2802 55.7040 0.0266 2.0808
20 4.0737 20.3718 22.2809 55.7040 0.0254 1.7029
21 4.0737 20.3718 22.2809 55.7041 0.0245 1.2301
22 4.0743 20.3718 22.2809 55.7041 0.0081 1.0792
23 4.0743 20.3718 22.2812 55.7041 0.0058 0.9204
24 4.0743 20.3718 22.2812 55.7042 0.0054 0.7126
25 4.0743 20.3718 22.2816 55.7042 0.0026 0.2233
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example, the MALLSSA had 25 iterations with maximum 4 
wavenumbers being estimated simultaneously. However, the 
MIMAP had 526 iterations to estimate many wavenumbers 
one at a time, making the computational speed slower than 
the MALLSSA and with less regularization accuracy.

Synthetic seismic data regularization

The wavelet used in the synthetic examples is an Ormsby 
wavelet, a common type of synthetic wavelet in reflection 
seismology. The wavelet is defined by the sinc function as

Ormsby wavelets have several sidelobes (see Fig. 2a), unlike 
Ricker wavelets which only have two, one on either side. We 
choose f1 = 5� , f2 = 10� , f3 = 20� , and f4 = 30� Hz, and 
so the wavelet defines a trapezoidal shape in the frequency 
spectrum with low-cut, low-pass, high-pass, and high-cut 
frequencies f1 , f2 , f3 , and f4 , respectively (see Fig. 2b). The 
wavelet shown in Fig. 2a may be considered as a pressure 
wave with the unit of kilopascal (kPa).

In real marine acquisition data sets, noise is expected to 
be higher at low frequencies than at high frequencies (Vas-
sallo et al. 2010). Therefore, in the synthetic examples, we 
add special type of random noise to both pressure and gradi-
ent data sets as described below. The MATLAB command 
filtfilt (b, a, ns) is used to generate 1/f noise, where a and b 
are transfer function coefficients, ns is a vector containing 
normally distributed random numbers (can be generated by 
MATLAB command ‘randn’), and f is frequency. Figure 3a 
shows such noise when a = 1 and b is generated using the 
MATLAB command ‘firls’ that creates a series containing 

(13)

A(t) =
f 2
4
sinc

2(f4t) − f 2
3
sinc

2(f3t)

f4 − f3
−

f 2
2
sinc

2(f2t) − f 2
1
sinc

2(f1t)

f2 − f1
.

the coefficients of the finite-duration impulse response filter 
closely matching the 1/f pass-band (red graph in Fig. 3). To 
see the performance of the MALLSSA in higher frequencies, 
random noise (Fig. 3b) is also considerably noisy in higher 
frequencies. The mean of random noise is approximately 
zero, and its relative amplitude is about 30% and 15% of the 
signals used in the following synthetic stationary and non-
stationary seismic data examples, respectively.

Simple synthetic stationary seismic data regularization

A synthetic seismic data (pressure) containing four linear 
events with different amplitudes and dips are shown in 
Fig. 4a. The events are generated using the Ormsby wave-
let illustrated in Fig. 2, and the time sampling rate is 1000 
samples per second. Suppose that the trace spacing is 10 m, 
toward the crossline direction. Assume that the unit distance 
is 1 km in this and the next example, so the wavenumbers 
are the number of cycles per kilometer (c/km). The f − k 
spectrum of this data is shown in Fig. 4b. The vertical peaks 
at zero wavenumber in the f − k spectrum correspond to 
the horizontal event in Fig. 4a. The spatial gradient data of 
the pressure data are shown in Fig. 4c. The f − k spectrum 
of the spatial gradient data is also shown in Fig. 4d. From 
Fig. 4d, one can observe that the crossline gradient ampli-
tude is very low at low wavenumbers, and it linearly grows 
toward higher wavenumbers. The horizontal linear event in 
the seismic data disappeared in its crossline gradients as 
seen in Fig. 4c and d.

In this example, 75 traces are removed such that the 
remaining traces are equally spaced with 40 m spacing, 
and random noise as shown in Fig. 3 is introduced to each 
trace and illustrated with its f − k spectrum in Fig. 5a and b, 
respectively. The crossline gradients are kept in the samples 

Fig. 2  a An Ormsby wavelet given by Eq. (13) multiplied by factor 0.01 with low-cut, low-pass, high-pass, and high-cut frequencies f
1
= 5� , 

f
2
= 10� , f

3
= 20� , and f

4
= 30� Hz, respectively, and b the spectrum of panel a. The time sampling rate is 1000 samples per second
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Fig. 3  a Random noise (1/f 
noise, where f is frequency), 
and b its Fourier spectrum. It 
is noisier at lower frequencies 
than higher frequencies. The 
small panel on the right in red is 
generated by implementing the 
MATLAB command ‘firls’ to 
create random noise

Fig. 4  Simple synthetic seismic data set. a Pressure (10 m trace spacing), b the f − k spectrum of panel a, c gradient, and d the f − k spectrum 
of panel c 
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positions with added independent noise as shown in Fig. 3 
and are not shown here. Also, the removed traces are set to 
zero only to generate the f − k spectra. Figure 5b shows that 
the events are spatially aliased.

The MALLSSA regularization result is obtained without 
windowing after one round of iterations, and its f − k spec-
trum is shown in Fig. 5c and d, respectively. The MALLSSA 
regularization result clearly constructed all the events in 

10 m trace spacing, and its f − k spectrum is approximately 
the same as the noise-free spectrum shown in Fig. 4b. The 
difference between the original noise-free data (cf., Fig. 4a) 
and the MALLSSA result with its f − k spectrum is illus-
trated in Fig. 5e and f, respectively. The presence of error 
is mainly due to potential overlap of spectral replicas at the 
same wavenumbers and also the noisy pressure and gradient 
data (see arrows in Fig. 5f). Note that for each data series 

Fig. 5  a The noisy seismic data with 40 m trace spacing, b the f − k 
spectrum of panel a, c the MALLSSA result with 10 m trace spac-
ing, d the f − k spectrum of panel c, e the difference between the 
original noise-free pressure shown in Fig. 4a and panel c, and f the 

f − k spectrum of panel e. The linear events are well constructed, and 
random noise and potential overlaps of spectral replicas at the same 
wavenumbers mainly cause the small error (cf., arrows in panel f)
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in the regularization process, a few wavenumbers were esti-
mated simultaneously in the first round of iterations (the 
only round) at 99% confidence level.

Simple synthetic non‑stationary seismic data regularization

A synthetic seismic data (pressure) containing three curved 
and two linear events with different amplitudes and dips 
are shown in Fig. 6a. The events are generated using the 

same Ormsby wavelet as the previous example, and the time 
sampling rate is 1000 samples per second with 10 m trace 
spacing. Also, random noise is introduced to each trace. The 
f − k spectrum of this data is shown in Fig. 6b. In the f − k 
spectrum, the vertical peaks at zero wavenumber correspond 
to the horizontal event, and the slanted peaks correspond to 
the other linear event in Fig. 6a. The noisy gradient data of 
the pressure data are shown in Fig. 6c. The f − k spectrum 
of the spatial gradient data is also shown in Fig. 6d. All the 

Fig. 6  Simple synthetic seismic data set. a Noisy pressure, b the 
f − k spectrum of panel a, c noisy gradient, d the f − k spectrum of 
panel c, e the noisy pressure with 20 m trace spacing, and f the f − k 
spectrum of panel e. The vertical peaks at zero wavenumber (reddish 

peaks) in panel b, corresponding to the horizontal event, disappeared 
in panel d. Panel f shows that all the events are spatially aliased (the 
red and white arrows in panel f show some of the aliasing effects of 
the linear and curved events, respectively)
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traces of even numbers are removed so that the trace spac-
ing is 20 m (cf., Fig. 6e). The f − k spectrum of the result is 
illustrated in Fig. 6f, showing that all the events are spatially 
aliased (e.g., the red and white arrows show some of the 
aliasing effects of the linear and curved events, respectively). 
The crossline gradients are kept in the samples positions in 
the analysis and are not shown here.

The linear events can be well constructed by the first 
round of iterations in the MALLSSA (cf., Fig. 7a, b), yet the 

curved events cannot be properly constructed and produce 
artifacts in the traces along with random noise. Arrow in 
Fig. 7a shows some artifacts from the linear event that is due 
to the non-stationary behavior of the event. However, after 
a few rounds of iterations the curved events can also be well 
constructed and interpolated (cf., Fig. 7c and d). The differ-
ence between the original noise-free pressure and the regu-
larization result (Fig. 7c) is illustrated in Fig. 7e. The f − k 
spectrum of Fig. 7e is also illustrated in Fig. 7f. Note that no 

Fig. 7  The MALLSSA results. a After first iteration with 10 m trace 
spacing (the linear events are constructed), b the f − k spectrum 
of panel a, c after a few more iterations with 10 m trace spacing, d 
the f − k spectrum of panel c, e the difference between the original 

noise-free pressure and panel c, and f the f − k spectrum of panel e. 
Arrow in panel a shows some artifacts from the linear event that are 
mitigated after a few more iterations (compare with panel c, where all 
the events are well constructed)
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windowing technique is used in this example. In the regu-
larization process, for each data series, a few wavenumbers 
were estimated simultaneously at each round of iterations, 
and in total only a few rounds of iterations were needed to 
regularize each data series at 99% confidence level.

A 2D marine seismic data regularization

The field data example is a marine 2D shot gather from a 
deep water of Gulf of Mexico (Fig. 8a). This marine seismic 
data are the same as the one used by Fomel (2002); Chen 
et al. (2015); Ghaderpour et al. (2018). The time sampling 
rate is 250 samples per second. The f − k spectrum of this 
data is shown in Fig. 8b. The spatial gradient of the marine 
data is estimated using the ALLSSA with added independent 
noise, and it is shown in Fig. 8c. The f − k spectrum of the 
spatial gradient data is also shown in Fig. 8d. The normal-
ized wavenumber axis in the f − k spectrums is obtained by 
considering the offset of the far offset trace equal to one. The 
traces of even numbers are removed from the marine seismic 
data and its gradient data. The results of marine seismic 
data and its f − k spectrum are illustrated in Fig. 9a and b, 
respectively. The effect of aliased events can be clearly seen 
from the f − k spectrum.

For better performance, the marine seismic data are 
divided into two spatial non-overlapping windows of the 
same size. The MALLSSA regularization result and its 
f − k spectrum are shown in Fig. 9c and d, respectively. 
For better comparison between the original marine seis-
mic data and its regularization result, their difference is 
calculated and illustrated along with its f − k spectrum 
in Fig. 9e and f, respectively. We used a mask to set the 
values (minor artifacts) of the northeast part of the images 
shown in Fig. 9c and e to zero after the interpolation. In 
the iteration process, a few wavenumbers were estimated 
simultaneously at each round of iteration, and the pro-
cess stopped after a few rounds of iterations by applying a 
threshold at 99% confidence level. The final regularization 
result is pleasant and acceptable for practical applications.

In this example, the traces were equally spaced and 
removing the traces of even numbers makes the remaining 
traces also equally spaced with a Nyquist wavenumber that 
is half of the original Nyquist wavenumber. When the dis-
tance between traces varies, the ALLSSA and MALLSSA 
perform better in regularization because these methods 
consider the correlations among the sinusoids of various 
wavenumbers simultaneously.

Fig. 8  a A 2D marine seismic data obtained from a deep water of Gulf of Mexico, b the f − k spectrum of panel a, c the estimated noisy gradi-
ent data, and d the f − k spectrum of panel c 
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Conclusions

The ALLSSA is a robust method of regularizing seismic 
data presenting mild aliasing in the f − k spectrum. How-
ever, when the seismic data are coarsely sampled, additional 
information is needed to aid regularization. This is crucial 
in regularization because incorrect selection of the spec-
tral peaks results in inaccurate regularization. In this paper, 
we developed a multichannel method (MALLSSA) that 
incorporates the spatial gradients of seismic data into the 
ALLSSA to regularize data series beyond aliasing.

Unlike the MIMAP, the MALLSSA estimates the 
wavenumbers more accurately by re-optimizing them 

simultaneously at each round of iterations, reducing the 
computational cost and increasing the regularization accu-
racy. A limitation of the MALLSSA is the potential overlap 
of two or more spectral replicas at the same wavenumber, 
similar to the MIMAP (Vassallo et al. 2010). In practice, 
this effect can be reduced by an appropriate windowing 
technique.

The MALLSSA simultaneously considers the constituents 
of known forms and the covariance matrices associated with 
data series. The MALLSSA is designed for wide-sense station-
ary data series; however, appropriate windowing techniques 
similar to the ones proposed by Ghaderpour and Pagiatakis 

Fig. 9  a The traces of even numbers in Fig. 8a are removed, b the f − k spectrum of panel a, c the MALLSSA regularization result, d the f − k 
spectrum of panel c, e the difference (residual) between panel c and Fig. 8a, and f the f − k spectrum of panel e 
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(2017) and Ghaderpour et al. (2018) can be used to adapt it to 
seismic data with more complex geologic structure.

In the MIMAP, the wavenumbers are estimated one at a 
time as iterations progress, while in the MALLSSA, multiple 
wavenumbers are estimated simultaneously in a single round 
of iterations. In practice, a few wavenumbers will be esti-
mated simultaneously in a single round of iterations within 
a spatial window; however, the total number of iterations 
decreases significantly due to the accuracy of the estimated 
wavenumbers, making the MALLSSA generally faster and 
more accurate than the MIMAP. Furthermore, by applying 
a confidence level in the MALLSSA, one can estimate the 
statistically significant spectral components at that level to 
attenuate random noise like the ALLSSA. The MALLSSA 
may be naturally extended to regularize 3D and 5D seismic 
data sets, and analyses of such data sets are subject to future 
work.
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Appendix: Derivation of estimated 
multichannel coefficients

A similar methodology as in Wells and Krakiwsky (1971) 
and Vaníček and Krakiwsky (1986) is used to obtain Eq. (8) 
and to show that it minimizes Eq. (6). Simplify Eq. (6) using 
elementary matrix operations as follows (Horn and Johnson 
2012):

To minimize Eq. (14) with respect to � , one may calculate 
the derivative of Ψk(�) with respect to � and set it equal to 
zero as follows:
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Rearranging and simplifying the terms in Eq.  (15), one 
obtains

Taking the transpose of both sides of Eq. (16) and solve for 
� yields Eq. (8):

where �̂ is used to indicate that � , minimizing Eq. (6), is an 
estimation. Using the second derivative test in Calculus, one 
may verify that �̂ in fact minimizes Eq. (6):

that is positive definite because for any � ≠ �,

Note that �
T

�� and �
T

�
���� are positive definite, and � 

has the same column dimension as ��.
Suppose that data series � (dimension n1 ) and �� (dimen-

sion n2 ) have been derived from two statistically independent 
populations of random variables following the multidimen-
sional normal distributions N(�,�� ) and N(�,���

) , respec-
tively. The probability distribution function of the MALLSS 
given by Eq. (9) can be derived using similar techniques in 
Pagiatakis (1999). Let Qs = �̂T��k�̂k , Q�

s
= �̂T

�
���k�

�̂k , 
Qs + Qn = �̂T��̂ , Q�

s
+ Q�
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�
���̂� , and q be the number of 

constituents of known forms in � and �� . Eq. (9) can be writ-
ten as:
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2
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2
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 ,  and 
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 is the chi-squared distribution with 

r degrees of freedom, and ‘ ∼ ’ means follows. According to 
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s
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n
 are statistically independ-

ent random variables, and so
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where ℜ = n1 + n2 − 2q − 4 and �2,ℜ∕2 is the �-distribution 
with shape parameters 2 and ℜ∕2 (Hogg et al. 2013, Chap-
ter 3). If n = n1 = n2 , then smulti(�k) ∼ �2,n−q−2 . From the 
right tail of the beta distribution, one may obtain a critical 
value at certain confidence level (usually 95% or 99% ) to 
identify statistically significant spectral peaks in the multi-
channel least-squares spectrum for each round of iterations 
in the MALLSSA (Ghaderpour 2018, Appendix C).
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Abstract
We applied the technique of the genetic algorithms and a local methodology integrating the Gauss–Newton and Conjugate 
Gradient (GNCG) techniques to test one-dimensional inverse modeling of synthetic magnetotelluric data. The result of this 
modeling applied to a homogeneous and isotropic five-layer model led to the development a hybrid algorithm (GAGNCG), 
combining the aforementioned techniques, for inverse modeling of one-dimensional magnetotelluric data. The GAGNCG 
modeling of the synthetic data performs more efficiently than the local methodology in terms of both procedure and results. 
This showed that the hybridization procedure maximized the advantages of using the global search methodology and mini-
mized the disadvantages of the local technique. Based on these results, we developed another hybrid methodology (GA2D), 
built from some characteristics of the genetic algorithm and the simulated annealing method, for the inverse modeling of 
two-dimensional magnetotelluric data. The results were satisfactory, and the GA2D algorithm was a good starting point for 
the inverse modeling of two-dimensional data.

Keywords Magnetotelluric · Inversion · Hybrid genetic algorithms

Introduction

The magnetotelluric (MT) method is based on the funda-
mental works of Tikhonov (1950) and Cagniard (1953). 
Traditionally, MT surveys focus primarily on the detection 
of stratified media, conductive zones in the crust and upper 
mantle, and recognition of deep faults. Its interpretation may 
provide information on porosity, permeability, graphitiza-
tion, fluid regimen, mineralization of groundwater, rheologi-
cal properties, and thermodynamic geodynamical processes 
within the Earth.

The sources of the MT electromagnetic (EM) sig-
nal are natural, and its frequency bandwidth is: 10−4 Hz 
≤ f ≤ 10+4 Hz. The amplitude, phase, and the directional 
relationship between the magnetic field � and the electric 
field � on the surface depend on the distribution of the elec-
trical conductivity of the subsurface.

Interpretation of MT is based on the complex task of 
establishing, via inverse numerical modeling, a geophysical 
model that satisfies two requirements: (1) meets the set of 
acquired data according to previously established criteria; 
and (2) conforms to geological interpretation according to 
known information. This requires the use of numerical tech-
niques to solve the nonlinearity of the inverse problem, to 
estimate the spatial distribution of ground resistivity.

Important local and global algorithms in MT modeling 
are, respectively, Gauss–Newton (GN) and Conjugate Gra-
dient (CG) and Genetic Algorithms (GA) and Simulated 
Annealing (SA). Optimization of these techniques has 
been used in inversion of 1D geophysical data by Whittall 
and Oldenburg (1992), Tarantola and Valette (1982), Sen 
et al. (1993), Chunduru et al. (1995), Rothman (1985) and 
Sen and Stoffa (1995). GA emerged in the 1960s from the 
ideas of evolutionary computing. Holland (1975) and Gold-
berg (1989) contain a description of it, and Sen and Stoffa 
(1995) report two applications. Some classic references in 
2D MT inverse modeling are Rodi and Mackie (2001), de 
Groot-Hedlin and Constable (1990) and Siripunvaraporn 
and Egbert (2000), in 3D are Siripunvaraporn and Egbert 
(2009) and Kelbert et al. (2014). In both cases, the model 
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is a fundamental tool and one of the approaches taken in its 
solution is the finite element (FE) method.

The motivation and objective of this paper is to evaluate 
the efficiency of the integration of local with global algo-
rithms vis–vis of inverse modeling based on only one of 
them. Few papers report hybridization. Among them, Por-
sani et al. (1993) integrate the genetic algorithm with a lin-
earized inversion scheme to develop a new approach to seis-
mic waveform inversion, Santos et al. (2005) propose and 
evaluate an inversion procedure, which consists of a robust 
two-step inversion of complex magnetotelluric apparent 
resistivity data, and Ferreira et al. (2003) propose a hybrid 
genetic–linear algorithm for 2D inversion of sets of vertical 
electrical sounding. This work presents a new implementa-
tion for the inversion of MT data of complex resistivity for 
the interpretation of two-dimensional structures, developed 
from the association between GA, SA, and GN techniques.

Two algorithms were developed for the 1D inversion: 
one based on the gradient method of local optimization, the 
program GNCG, and the other based on combining these 
methods with genetic algorithms, the GAGNCG. After ana-
lyzing the results of the 1D algorithms and evaluating the 
efficiency of the two algorithms, we have decided to imple-
ment a 2D inversion program which includes the genetic 
characteristics modified by features of the simulated anneal-
ing—the program GA2D—and applied it to 2D modeling 
of synthetic and real data. We have used the Runge–Kutta 
standard approach of the FE instead of the adaptive mesh 
employed by Travis and Chave (1989) in which the nodes 
are part of the solution.

We analyze the GA2D effectiveness for the inversion of 
complex MT synthetic and field data, and it proved to be 
quite efficient. Although slower than the algorithms tradi-
tionally employed in the inversion of MT data, it does not 
require any a priori knowledge, which can be of great valid-
ity when considering an investigation of little known areas.

Bases of the MT geophysical method

The homogeneous Helmholtz wave equations for the EM 
field components: electric field, � , and magnetic field, � , 
are given by Ward and Hohmann (1988):

and k is the wave number, k2 = �0�0�
2 − i�0�� . For a good 

conductor 𝜎 >> 𝜖𝜔 and so k2 ≈ −i�0��.
Equations 1 and 2 are derived from Maxwell’s equations 

in homogeneous media. The parameters �0 and �0 are known, 

(1)∇�� + k2� = 0

(2)∇�� + k2� = 0,

respectively, as the free-space magnetic permeability and 
dielectric permittivity and � is the electrical conductivity

For a homogeneous half-space, 1D case, and the electric 
field, � , and magnetic, � , fields along the northern (x) and east 
(y) directions, respectively, Maxwell’s equations are given by

and

in the absence of displacement currents. In case the direc-
tions of E and H are interchanged, we have:

and

For propagation in a 1D half-space, the complex impedance 
Z(�) is scalar and given by:

because there is no preferred orientation between the two 
EM field components.

However, the complex impedance becomes a tensor in the 
2D and 3D cases. So, �̃(𝜔) is, in general, a 3 × 3 matrix and

or

such that �̃(𝜔) represents the inverse matrix of �̃(𝜔).
We have two separated conditions for the 2D case: TM 

( Ex, Ez, Hy ) and TE ( Ey, Hx, Hz ). For the TM condi-
tion, Ex = Zxy Hy and Ez = Zzy Hy . For the TE condition, 
Hx = Yxy Ey and Hz = Yzy Ey.

Instead of the impedance tensor, we usually employ two 
derived functions: the modulus �a and the phase � of the com-
plex impedance in MT modeling and interpretation. They are 
defined for the 2D case as:

(3)
dEx

dz
= i��0Hy

(4)
dHy

dz
= −�Ex

(5)
dEy

dz
= −i��0Hx

(6)
dHx

dz
= �Ey.

(7)Z(�) =
Ex(�)

Hy(�)
= −

Ey(�)

Hx(�)
.

(8)�(𝜔) = �̃(𝜔)�(𝜔)

(9)�(𝜔) = �̃(𝜔)�(𝜔),

(10)�a,ij =
1

��0

|||||
Ei(�)

Hj(�)

|||||

2

,

(11)�ij = arctan

(
Ei(�)

Hj(�)

)
,
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i = x, y , j = x, y . Another important concept is the depth of 
research, or skin depth ( � ). It is the depth at which the ampli-
tude of the electromagnetic wave decays to 1 / e ( ≈ 37% ) of 
its value at the subsurface. A valid formula of � for a plane 
wave is:

 The frequency f is given in hertz and the resistivity � is 
given in Ω m. Further information is detailed by Stratton 
(1941).

Fundamentals of the algorithms of the FE 
method

The finite element (FE) method was first developed in the 
1950s with the works of Galerkin, Ritz, Courant and Hil-
bert. It is based on the construction of approximate solutions 
of differential equations to problems restricted to limited 
spaces. The use of the method in solving differential EM 
field equations involves dividing the total area into a finite 
number of elements. In each element, an approximation is 
obtained for the EM fields, performing arithmetic operations 
between the basic functions and the fields in each corner of 
the element.

We can separate the electric and magnetic fields in pri-
mary ( Ep,Hp ), representing the homogeneous parts of the 
medium, and secondary ( Es,Hs ), created by the presence 
of nonhomogeneous regions of the model. The differential 
equations of the magnetic and electric field for this case are 
given by Batista and Porsani (1991):

where the parameters Z = i�� e Y = � + i�� , are, respec-
tively, the impedance per unit of length and admittance per 
unit length of medium.

A simplified way to model fields using more complex 
2D models must solve the differential Equations 13 and 14 
subject to the appropriate boundary conditions. These equa-
tions can be written as follows:

(12)� = 0.503

√
�

f
km.

(13)
∇2�� + ∇

(
�� ⋅

∇Y

Y

)
− ZY�� = Z�Y��

− ∇

(
�� ⋅

∇(�Y)

Y

)
,

(14)
∇2�� + Y(∇ ×��) × ∇

(
1

Y

)
− YZ�� = ��Y��

− Y∇

(
�Y

Y

)
× ��,

� is a differential operator, � is the electric or magnetic field 
to be determined, and � is the source.

For every element, we obtain an approximation of the 
field summing the product of the base functions with the 
value of the field at each node. The solution of Eq. 15 is 
achieved by the FE method which approximates the exact 
solution of this equation to a collection of basic functions 
�i defined in any area. Each basic function usually depends 
only on the spatial relationship of each domain to determine 
the approximate value of the solution.

The approximate solution of the field � is determined by 
the product of the sum of the basic function and the field in 
each node element,

ui is the field value in each node, and n is the total number 
of nodes of the element. So,

�(r) is the approximation error. The minimization of the 
error function of Eq. 17 is accomplished by choosing a 
weight function wj(r) such that the inner product of this 
chosen function with �(r) is equal to zero:

The method of choice of wj(r) is called the Residual Galerkin 
method (Becker et al. 1981). Development of Eq. 18 with 
the Galerkin residual method results in the following matrix 
system of equations:

which may take the form

The elements kj,i of the matrix are

the right side of the system is

and the solution vector is

(15)�� = � ,

(16)u(r) =

n∑
i=1

�i(r)ui,

(17)
n∑
i=1

L�i ui − f = �(r),

(18)⟨wj, �⟩ =
n�
i=1

⟨wj, L�iui − f ⟩ = 0.

(19)

⎛⎜⎜⎜⎝

∫
r
w1L�1dr ∫

r
w1L�2dr ⋯ ∫

r
w1L�ndr∫

r
w2L�1dr ∫

r
w2L�2dr ⋯ ∫

r
w2L�ndr

⋮ ⋮ ⋯ ⋮

∫
r
wnL�1dr ∫

r
wnL�2dr ⋯ ∫

r
wnL�ndr

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

u1
u2
⋮

un

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

q1
q2
⋮

qn

⎞⎟⎟⎟⎠
,

(20)�� = �.

(21)kj,i = ∫r

wjL�idr,

(22)� = (��,… , ��)
�,
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The system of Eq. 20 contains the solution at every element. 
The approximate solutions in the entire grid result from the 
addition of the contributions of the equations furnished by 
those elements. The elements are neighbors in the grid such 
that they share some of their nodes. Addition between equa-
tions allows interaction among all the elements of the grid 
and originates the expanded system of equations.

The dimension of the matrix � , is n × n , n is the total num-
ber of nodes of the grid, and the dimension of the vectors � and 
� is n × 1 . Due to the disposition of the elements in the grid, 
the result of the combination between two nodes is always 
equal, regardless of the sense of the combination, what makes 
the matrix to be symmetrical. Since all the nodes are combined 
with each other, and the combination between two nodes of 
different elements equals zero, matrix � is square and sparse. 
We use FE and boundary conditions suitable for calculations 
of the E and H fields, TE and TM modes, as a direct methodol-
ogy for the GA2D algorithm.

The inverse problem in MT

The analysis of MT data by an inverse modeling algorithm 
consists of estimating the true resistivity, thickness or depth 
values of the analyzed medium using the complex impedance 
or as in the present research, using simultaneously the values 
of apparent resistivity and phase data. For the one-dimensional 
case, the horizontally layered media are well known (Ward and 
Hohmann 1988). The free parameters of this model are the 
resistivity �i(1 ≤ i ≤ N) and the thickness hi(1 ≤ i ≤ N − 1) 
of each layer, which are represented by the vector � . In this 
case, we can evaluate the complex impedance in the form 
Z(�, fj) , where fj(1 ≤ j ≤ M) express the dependency with the 
frequency ( �j = 2�fj ). The two-dimensional model accounts 
for both lateral and vertical variations of resistivity. In this 
case, the complex impedance also depends on the position x 
where the measures are performed, and can be represented by 
Z(�, fj, x).

Gauss–Newton method

Let �(fj, x) represent a vector with the values of apparent 
resistivity and phase—module and phase of the complex 
impedance—observed at positions x and frequencies fj , and 
�(�, fj, x) be the corresponding calculated values for model 
� = (m1,… ,m2N−1) . From the iterative scheme to minimize 
the objective function proposed by Gersztenkorn et al. (1986):

(23)� = (��,… , ��)
�.

(24)�� = �.

(25)E(�) =

N∑
j=1

|||�(fj, x) − �(�, fj, x)
|||
p

,

where the parameter 1 ≤ p ≤ 2 . Note that E(�) is the 
Lp norm of the error of the theoretical � to the power p. 
According to the basic Gauss–Newton method, we linearize 
�(�, fj, x) by Taylor’s series about an estimate free parameter 
vector ��:

Substituting 26 into 25, we find a quadratic function of 
� , whose minimum satisfies

w h e r e  dk,j = �(fj, x) − �(��, fj, x)  ,  rk,j = |� (fj, x)−
�(�, fj, x)|p−2(1 ≤ j ≤ M) , �� = (��+� −��) and

By using a regularization factor � (Menke 1989), we 
compute the new solution ��+� as,

The conditions p = 2 and � = 0 correspond to the plain least 
squares method. The row i of the sensitivity matrix G is 
k-weighted by the ith diagonal component of the matrix Rk , 
which is a function of the deviation between the observed � 
values and those computed from the current model mk . The 
components of the sensitivity matrix are approximated by 
forward differences (Mcgillivray and Oldenburg 1990). We 
employ a conjugated gradient method to evaluate mk+1 from 
(14) and a harmonic measure of fitness (Porsani et al. 2000),

the ratio � varies within [− 1, 1] and approaches 1 as 
�(�, fj, x) approaches �(fj, x).

We use the Gauss–Newton and conjugate gradient 
techniques together for solving the normal equations, 
as it may effectively solve nonlinear inverse problems. 
The GNCG algorithm uses the combination of these two 
methodologies.

(26)

�(�, fj, x) ≈ � (�, fj, x) = �(��, fj, x)

−

N∑
i=1

�� (��, fj, x)

��
|��

(� −��).

(27)(GT
k
RkGk)�m = GT

k
Rk�dk,

(28)

�� =

||||||||

�� (��,f1,x1)

�m1

…
�� (��,f1,x1)

�m1�mN

⋮ ⋱ ⋮
�� (��,fM ,xM )

�m1

…
�� (��,fM ,xM)

�mN

||||||||
,

��� =

|||||||

dk,1
⋮

dk,M

|||||||
,�� =

|||||||

rk,1 0

⋱

0 rk,M

|||||||
.

(29)mk+1 = mk + (GT
k
RkGk + I)−1GT

k
Rk�dk.

(30)�(��) =
2
∑N

i=1
[�(fj, x)�(�, fj, x)]∑N

i=1
[�(�, fj, x)

2 + �(fj, x)
2]
,



1369Acta Geophysica (2019) 67:1365–1377 

1 3

Genetic algorithms

The genetic algorithms (GA) emerged in the 1960s from the 
ideas of evolutionary computing. Holland (1975) and Gold-
berg (1989) contain a description of the GA, and Ferreira 
et al. (2003) and Sen and Stoffa (1995) report two applica-
tions in geophysics. The GA employ the concepts of sur-
vival of the fittest, crossover, and mutation to generate a set 
of free parameter vectors that progressively approach field 
data. These methods fit into the class of global, probabilis-
tic optimization methods, based on the principle of natural 
selection and genetics.

For inverse modeling of MT soundings, we start by 
selecting a set (or population) of parameter models. For case 
1D, we defined the resistivity and number of layers of the 
model, and for case 2D we defined distinct regions and their 
respective resistivities. The second step is the search range 
setting for each model parameter (guide function):

where �k,j is the parameter vector and n is the number of 
parameters.

In the algorithms implemented in the GA we used, all 
the parameters of the models were encoded in binary form. 
Unlike the GAGNCG, the GA2D algorithm starts with a set 
of models generated from the interpretation of the inflection 
points of the apparent resistivity and phase data, derived 
from the complex impedance of the synthetic or real MT 
data, in a process similar to that of the interpretation of the 
electric probing curve vertical. The models are chosen for 
reproduction with a probability proportional to their fit-
ness value, and pairs of models are selected at random and 
exchange parts of their binary chain.

The crossover points are selected at random, and all the 
bits to the right side are interchanged with a crossover prob-
ability, generating new models. To assure genetic variability 
in the population, a mutation process is adopted by changing 
at random a bit inside the binary chain based on a mutation 
probability. In this case, we chose to use an inverse depend-
ence between the crossover probabilities ( Pc ) and mutation 
( Pm ). We have made Pm high at the beginning of the itera-
tions, decreasing with the evolution of the algorithm, with Pc 
having an inverse behavior. This will allow the substance to 
come out of possible global minima. The new set of models 
are accepted with an update probability by comparing them 
with the models in the previous generation. The process of 
selection, crossover, and mutation is applied until the fit-
ness values converge, i.e., until the mean fitness approaches 
the highest fitness value in the population. We combine 
the genetic with the Gauss–Newton methods, generating a 
hybrid algorithm GAGNCG (Porsani et al. 1993). An imple-
mentation scheme of this algorithm is shown in Fig. 1.

(31)�min
k,j

≤ �k,j ≤ �max
k,j

, 1 ≤ j ≤ n and k = 0,

Simulated annealing

Simulated Annealing (SA) is an optimization method that 
makes an analogy to the annealing process of metallurgy. 
Metropolis et  al. (1953) introduced a simple numerical 
method that represents the state of equilibrium of a set of 
atoms at a given temperature. Let �E be the energy of a 
system of atoms at a temperature T. At each step of the algo-
rithm, a random offset is given to an atom, which implies 
a new energy system, �E . If �E ≤ 0 , a new displacement 
is accepted; otherwise (𝛥E > 0) , the probability setup is 
accepted and will be given by the equation

Kb is the Boltzmann constant, and T is the absolute tempera-
ture in kelvin.

A uniformly distributed random number, r, must be gen-
erated in the range [0, 1]. If r ≤ P(�E) , the new setting is 
accepted. If r > P(𝛥E) , the previous configuration is used 
to start a new step. The choice of the probability function 
P(�E) , as described above, is due to the fact that the system 
evolves according to a Boltzmann distribution.

The algorithm parameters are: the cost function, which 
is the system energy; the design variables that describe the 
actual configuration; and the temperature, which is a con-
trol parameter (Corana et al. 1987). If T has a much higher 
magnitude than the function of the standard deviation in the 
range, almost all points are accepted, whereas if T is equal 

(32)P(�E) = e
−�E

KrmbT ,

Fig. 1  Flow chart for the GAGNCG algorithm
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to zero the method becomes a random search of a minimum. 
So, it is adopted: Ti as the standard deviation of the value 
of the objective function in the range studied and Tf  with 
the desired order of magnitude for the optimum accuracy. 
The SA approach is probabilistic: The SA requirement is 
not derived from information and is not affected by discon-
tinuities and nonlinearities. We combine the genetic with 
the SA methods, generating a hybrid algorithm GA2D for 
bidimensional inverse of MT data.

Numerical results of the 1D inverse 
modeling

The basis of the GNCG algorithm is the combination of 
the Gauss–Newton method with the Conjugate Gradient 
technique. The GAGNCG uses the same methodology of 
the GNCG with the inclusion of a GA algorithm module 
(hybridization). Both GNCG and GAGNCG solve a sys-
tem of equations relating the amplitude and the phase of a 
complex impedance. GAGNCG differs from GNCG in three 
aspects for estimating the parameters of the models: (1) gen-
eration of 100 initial models with each parameter within a 
range of minimum and maximum values determined by the 
aforementioned guide function; (2) insertion of the interpo-
lation function between the mutation and crossover prob-
abilities of the GA; and (3) simultaneous test and modifica-
tion of the models of the population at every iteration. This 
second aspect required the definition of probability values 
equal to 0.7 for the initial crossover and 0.2 for the final 
mutation. So, the crossover probability decreases and the 
mutation probability increases as the number of generations 
increases.

A 1D modeling assumes a stratified model of the earth. 
So, it is necessary to estimate the resistivity ( � ) and thick-
ness ( � ) values of each layer of the model. The synthetic 
model that we have chosen to analyze represents a 5-layer 
medium with the following parameters from Ramos and 
Sampaio (1993): �1 = 200Ω m, �2 = 20Ω m, �3 = 200Ω m, 
�4 = 15Ω m, �5 = 1000Ω m, �1 = 10  m, �2 = 200  m, 
�3 = 1000 m, and �4 = 4000 m. Figure 2 displays the result 
of the inversion of the synthetic data employing, respec-
tively, the modulus and the phase of the complex appar-
ent resistivity. Because we know the true model for the 
synthetic data, we represent not only the adjustment of the 
data at each iteration, but also the fit between the current 
and the true model. We adopt different strategies to select 
the range of values of � and � . In the present case, we 
have used a fixed range of 50% of the values of � and � for 
creating the input parameters for the initial model of the 
GNCG and GAGNCG inversions. Tables 1 and 2 show 
the resulting model for each performed setting and their 
initial parameters. The fit of both inverted data, using the 
modulus and phase of the complex impedance, is excellent, 
giving an error of less than 1% for the GAGNCG inversion 
(Fig. 2). Figure 2 also contains the evolution of the data 
fitness maximum, medium and minimum of the GAGNCG 
inversion, showing the convergence of the parameters for 
each iteration.

Figure 3 shows that the GAGNCG final model, result-
ing from the modulus and phase of the complex impedance 
inversion, agrees with the synthetic model excellently. How-
ever, the final GNCG model presents differences between the 
true and computed values of the thickness of the two deeper 
layers larger than 1% and 10%, respectively (see Table 1). 
Those differences reflect the feature of local search of the 

Fig. 2  Result of the joint inverse modeling of synthetic data of modu-
lus and phase of the complex impedance. Left—Curves of the model 
studied and the result of the joint inversion using the GNCG and the 
GAGNCG algorithms. Right—Evolution of deviations of the inverted 

resistivity and phase by the GNCG and the GAGNCG algorithms and 
the maximum, medium and minimum data fitness showing the con-
vergence of the parameters for each iteration
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GNCG method, which tends to local minimum values, since 
due to its more global nature, GA has helped the GAGNCG 
to better exploit global minimum values.

Numerical results of the 2D inverse 
modeling

Synthetic data

We consider the model of a semi-infinite vertical fault 
and the outcropping vertical dike in Figs. 4 and  5. For the 
inverse modeling of the mentioned synthetic models, we 
used a rectangular mesh and uniform spacing, with dimen-
sions − 5000m ≤ x ≤ 5000m and 0m ≤ z ≤ 4000m , with 
45 frequency values ranging from 10–2 Hz to 103 Hz in 
24 measurement stations and 45 depth values. Therefore, 
the initial mesh used in GA2D has dimension of 24 × 45 , 
being necessary operations to estimate 1080 parameters or 
values of resistivity in the nodes of that mesh. The GA2D 
developed in this research uses characteristics of genetic 
algorithms cited and some features of the SA method. These 
new implementations have been developed to replace the 
local methodology used in the 1D inversion of GAGNCG. 
For, even though it shows better outcomes for investments 
under the 1D condition, it presents a high computational 
cost due to the calculation of the sensitivity matrix in the 2D 
MT case. There are four main characteristics of the GA2D:

Table 1  Numerical comparison 
between the result of the GACG 
inversion and the respective 1D 
model

Physical properties Exact model Initial model Final model Percentage 
difference (%)

�
1

(Ωm) 200 100 200.1 − 0.001
�
2

(Ωm) 20 10 20.1 − 0.001
�
3

(Ωm) 200 100 185.3 − 0.15
�
4

(Ωm) 15 7.5 9.6 0.05
�
5

(Ωm) 1000 500 999.2 0.008
�
1

 (m) 10 5 9.9 0.001
�
2

 (m) 200 100 208.3 − 0.08
�
3

 (m) 1000 500 1160.6 − 1.60
�
4

 (m) 4000 2000 2518.2 14.82

Table 2  Numerical comparison 
between the result of the 
GAGNCG inversion and the 
respective 1D model

Physical properties Exact model Minimum 
parameter

Maximum 
parameter

Final model Percentage 
difference (%)

�
1

(Ωm) 200 100 400 199.9 0.001
�
2

(Ωm) 20 10 30 20 0.0
�
3

(Ωm) 200 100 400 200.2 − 0.002
�
4

(Ωm) 15 7.5 30 15 0.0
�
5

(Ωm) 1000 2000 15 1000 0.0
�
1

 (m) 10 5 10 9.9 0.001
�
2

 (m) 200 100 400 200 0.0
�
3

 (m) 1000 500 2000 999.7 0.003
�
4

 (m) 4000 2000 8000 4001.4 − 0.01

Fig. 3  Comparison between the resistivity-depth models for the syn-
thetic data and those obtained with the GNCG and the GAGNCG 
inversion algorithms shown in Fig. 2
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– Insertion of the probability function of the SA in the elit-
ism modulus of the GA.

– Substitution of the guide function of the GAGNCG by 
the routine that interprets an initial set of 100 models 
based on the inflection points of the observed data curves 
to yield the initial model.

– Concomitant use of real values of amplitude and phase 
of the complex impedance to estimate the parameters of 
the model.

– Insertion of the interpolation function between the muta-
tion and crossover probabilities of the GA modulus with 
the same consequences of the GAGNCG.

The GA2D does not start with the random generation of 
populations within a polling interval. Here, models or initial 
populations are interpreted automatically by the algorithm 
using the curves of modulus and phase of the calculated 

or observed complex impedance. The process begins with 
a subroutine identifying the inflection point in the phase 
curves, which delimits the passages with environment 
changes in the resistive mesh. Then, based on the minimum 
and maximum values of the apparent resistivity curves of 
these ranges, the subroutine estimates the resistivity values 
of the nodes belonging to each environment, as follows: 
� = �min

a
+ r ∗ � , 0 ≤ r ≤ 1 , and � = �max

a
− �min

a
.

After making this estimate, we continue with the calcula-
tion of fitness for each population created. The population 
or initial model is the group of true resistivity of each grid 
point that idealizes the modeled medium. GA2D also uses 
the linear relationship to define the probabilities of crossover 
operators and variable mutation, followed by genetic opera-
tions, which is applied to initially interpreted models. Thus, 
we computed the new fitness of the resulting population 
for this process, which constituted the elitism both of the 

Fig. 4  Sections of the 2D inversion for the vertical fault model. Left—TE mode: the vertical fault model (top) and section corresponding to the 
interpreted model (bottom). Right—TM mode: the vertical fault model (top) and section corresponding to the interpreted model (bottom)

Fig. 5  Sections of the 2D inversion for the vertical fault model. 
Left—TE mode: the outcropping vertical dike model (top) and sec-
tion corresponding to the interpreted model (bottom). Right—TM 

mode: the outcropping vertical dike model (top) and section corre-
sponding to the interpreted model (bottom)
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initially interpreted population and of the population inter-
preted after the genetic operations. The elitism process uses 
elements of the simulated annealing, because the probability 
for the acceptance of a new population depends on the prob-
ability P(�E) . This first cycle ends with the selection of the 
fittest models with their skills.

The second cycle starts with the generation of the over-
population. This concept applies to the cloning operation of 
the best models resulting from the previous cycle. After that, 
a second set of genetic operations acts upon this overpopula-
tion. This transaction increases the probability of the inclu-
sion of good features to the resulting models of this process, 
because there will be a selection of the fittest models of that 
overpopulation after these operations. A second elitism acts, 
then, among the population derived from overpopulation and 
the best people selected from the previous cycle. At the end 
of this second cycle, there will be a population of parameters 
which will bring together the feature of the best fitness.

In a third cycle, we compute both the current and the pre-
vious maximum populations, because the algorithm works 
with these two populations in parallel. Current population 
refers to a population that undergoes changes after the first 
two cycles. Previous population refers to the population 
interpreted initially during the first iteration and, subse-
quently, to the preservation of the best from the older popu-
lations. If the best model corresponds to the more apt or if 
the process reaches the maximum number of iterations, the 
algorithm ends.

However, to prevent premature convergence of the pro-
posed algorithm, the algorithm compares the skills of the 
best models and updates an index. If the best previous pop-
ulation prevails for five generations (iterations), the algo-
rithm creates a new interpreted population to substitute the 
best current population—followed by a new calculus of the 
skills and elitism of the current model population. Finally, it 

updates the best population parameters based on their fitness 
and heads to the resumption of the three cycles.

Figures 4, 5, 6, 7, 8, 9 and  10 display the results of the 
inverse modeling for TE and TM modes. On average, each 
model lasted two days to complete 200 iterations. Of course, 
more iterations could further improve the results. However, 
we did not pursue it further, because the results indicate a 
relatively satisfactory solution. This results show the sec-
tions with the best obtained inverse models, the section cor-
responding to the percentage deviation between observed 
and estimated models, and the pseudo-sections of the mod-
ulus and phase of the complex impedance. Figures 4, 6, 7 
and 8 show the results for vertical fault. The model of 
Fig. 4 shows the largest discrepancies on the fault plane 
(see also Fig. 6). It is worth to note that the less discrep-
ant values occur in the depth range between 0 and 1.5 km. 
Figures 5, 6, 9 and 10 show the results for the dike. The 
model of Fig. 5 shows the most significant errors in the dike 
area (see also Fig. 6). As in the fault model, the observed 
errors are concentrated on the interfaces between the media, 
what demonstrates the difficulty of the proposed method to 
recover the characteristics of the models in the presence of 
strong gradients.

Real data

This section illustrates the application of GA2D to real 
magnetotelluric data from 16 stations acquired in the 
Tucano basin, Bahia, Brazil. These stations constitute a 
band set of 48 frequency values in the broadband band, 
spaced 10 km. The mesh used by the GA2D was dimen-
sioned with 16x48, a total of 768 values of resistivity to 
be estimated at the nodes of this mesh. We also assumed 
that this mesh has a regular spacing, where their mini-
mum and maximum horizontal limits were defined by the 

Fig. 6  Sections corresponding to the deviation between the observed and the estimated values for the synthetic models used. Left—Vertical fault 
model: TE mode (top) and TM mode (bottom). Right—Outcropping vertical dike model: TE mode (top) and TM mode (bottom)
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Fig. 7  Pseudo-sections of the modulus of the apparent resistivity as a function of period and horizontal distance for the vertical fault model. 
Left—TE mode: observed (top) and the estimated values (bottom). Right—TM mode: observed (top) and the estimated values (bottom)

Fig. 8  Pseudo-sections of the phase of the apparent resistivity as a function of period and horizontal distance for the vertical fault model. Left—
TE mode: observed (top) and the estimated values (bottom). Right—TM mode: observed (top) and the estimated values (bottom)

Fig. 9  Pseudo-sections of the modulus of the apparent resistivity as a function of period and horizontal distance for the outcropping vertical dike 
model. Left—TE mode: observed (top) and the estimated values (bottom). Right—TM mode: observed (top) and the estimated values (bottom)
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coordinates of the first and last measurement stations, 
while its maximum vertical limit was defined by the skin 
depth. The skin depth value (Eq. 2) was defined by the 
lowest values of frequency of the MT survey and apparent 
resistivity.

Figure 11 illustrates the best result of data inversions of a 
set of 200 generated models, and Fig. 12 shows the relative 
deviations between observed and predicted resistivity values 
of this interpreted model, confirming the coherence of the 
interpretative process.

A brief interpretation of the geoelectric section, shown 
in Fig. 11, illustrates the vertical and lateral boundaries of 
the Tucano Basin (black dashed line). The depth of this 
basin was interpreted to be about 5–7 km along two tracks: 
between stations 111 and 108, located about 40 km from 
the extreme N of the profile and between stations 201 and 
205 at the south edge. On the other hand, the central part 
of the section—between stations 108 and 201—marks the 
asymmetry of this basin, with the presence of a 30 km wide 
structural high between two depocenters, indicating a depth 
varying between 10 and 15 km. Batista (2013) contains 

further details of the geology of the area and a more com-
plete geophysical interpretation of these data.

Conclusions

This paper presents and analyzes implemented 1D and 2D 
algorithms for solving inverse modeling problems. The 1D 
inversion algorithms have been developed with the gradient 
technique (GNCG), genetic algorithm and a combination 
(hybridization) of these two approaches (GAGNCG). The 
2D inversion has been developed based on the results of the 
1D inversion applied to synthetic data and combines genetic 
algorithms and simulated annealing (GA2D).

The implementation and application of the inverse 1D 
methodology to synthetic data were important to better 
understand the advantages and disadvantages of these two 
techniques. The results showed that the hybrid technique 
(GAGNCG) was more efficient than the local minimization 
(GNCG) and, therefore, served as a basis for the develop-
ment of the 2D inversion proposed algorithms.

Fig. 10  Pseudo-sections of the phase of the apparent resistivity as a function of period and horizontal distance for the outcropping vertical dike 
model. Left—TE mode: observed (top) and the estimated values (bottom). Right—TM mode: observed (top) and the estimated values (bottom)

Fig. 11  Geoelectric profile 
model generated from the 
inverted models by using the 
GA2D, TE mode
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The interpretive scheme in the GA2D for automatic 
construct of initial models, associated with the probabil-
istic virtue of the simulated annealing in the elitism model, 
replaced the local methodology presented in GAGNCG 
and overcame the difficulty of circumventing the problem 
of defining a medium made up of many parameters. The 
selection of the estimated models prevented, therefore, the 
premature convergence of the algorithm, which is a pecu-
liarity of the GA.

We initially applied the GA2D algorithm to two syn-
thetic models, the fault and vertical dike. This technique 
showed reasonable results in the definition of true resis-
tivity values and geometry of the modeled bodies, but 
it required a large processing time. The application of 
GA2D to real data acquired over the Tucano Basin, Bra-
zil, allowed to generate a succinct interpretation of this 
basin, limiting it both vertically and horizontally, and 
demonstrating the applicability of the proposed algo-
rithm. Therefore, the use of GA2D even with the amount 
of parameters estimated, for both synthetic and real data 
inversion, showed good results and can be improved with 
future implementations.
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Abstract
Coal seam is a sedimentary rock with bedding, which can be regarded as VTI medium. VTI medium model is more suitable 
for real coal seam. However, existing channel wave theories generally assume that coal seams are isotropic for mathematical 
simplicity, and there is no study on the properties of channel waves in VTI media. In this paper, we deduce the theoretical 
dispersion equation of Love channel waves in the three-layer VTI model and analyze the parameter effects on the disper-
sion curve for the first time. The channel wave field in VTI media is simulated by three-dimensional staggered-grid finite 
difference method. The results indicate that polarization of both qP- and qSV-waves is not parallel or perpendicular to the 
orientation of the wave traveling in VTI media, while the polarization of SH wave is normal to wave propagation direction 
at horizontal plane. Therefore, it is wise to use Love channel waves to conduct field exploration because of the uniqueness 
of dispersion curves in the VTI media for the Love channel waves comparing with that in isotropic media. The velocities of 
the Love channel wave in VTI media are higher than that in isotropic media. The coal seam thickness primarily influences 
the Airy frequency phase, while the Airy phase velocity remains stable. Both the S-wave velocity and γ parameter of coal 
seam significantly affect Airy phase velocity. Severe errors may occur during in the coal thickness inversion when using the 
dispersion curve of Love channel wave in isotropic media, and dispersion curve in VTI media should be adopted. In terms of 
the amplitude distribution, Love channel waves appear to have similar patterns in both the VTI media and the isotropic media.

Keywords Channel wave · Coal seam · VTI media · Frequency dispersion

Introduction

Minor abnormal structures (e.g., faults and collapse col-
umns) found in coal seams can severely endanger mining 
safety, such as roof collapse, water invasion and gas leaks. 
To predict these potential threats and minimize mining risks, 
channel wave (in-seam wave) exploration (Dresen and Rüter 
1994) is generally applied to detect abnormal structures in 
coal seams.

Due to mathematical complexities and computational 
limits, coal seams are usually assumed to be 2D in homog-
enous elastic models to investigate the propagation features 
of channel waves (Krey et al. 1982). Since we cannot obtain 
the analytical solution of a channel wave equation in a com-
plicated coal seam model, numerical methods are usually 
applied to qualitatively analyze the propagation features of 
channel waves (Korn and Emmerich 1988). Improvements 
in computational capability enable us to simulate the chan-
nel wave field and thoroughly understand the propagation 
features in a complicated 3D model by using the finite dif-
ference algorithm (Essen et al. 2007; Yang and Cheng 2012; 
He 2017; Wang et al. 2017). Essen et al. (2007) numerically 
simulated the channel wave propagation in models with 
faults and variable coal bed thicknesses and the results sug-
gested that a weak reflected channel wave is observed when 
there is an abnormal structure. However, a coal seam inter-
section is not reflected. Based on the high-order staggered-
grid finite difference algorithm, a mirror method (Ji et al. 
2012, 2018) was proposed to process the roadway model. 
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Yang et al. (2016) studied the seismic wave field ahead of 
roadways. The results suggest that Rayleigh channel waves, 
which have high energy concentrations, are more appropriate 
for the exploration of waves ahead of roadways, while the 
weak Love channel waves may not be an appropriate option. 
Li et al. (2015) applied finite difference method to numeri-
cally study the propagation properties of channel waves in 
a viscoelastic model.

Although coal seams usually appear to be anisotropic 
due to their mineralogical, joint surface, and depositional 
environment characteristics, there is still a lack of quantita-
tive investigations that have considered such physical prop-
erties in coal layer models (Dong 2008). Buchanan et al. 
(1983) found that the velocity anisotropy can reach 14% by 
calculating azimuthal velocity dispersion curves. There-
fore, they argued that an anisotropic coal layer could sig-
nificantly affect the propagation features of channel waves, 
which will mislead us to predict abnormal structures. Liu 
et al. (1991) studied the effects of cracks on the Love chan-
nel wave propagation in a 2D EDA media and found that 
there is reasonable agreement between the theoretical esti-
mations and actual records of the travel time, amplitude and 
dispersion properties of these waves. At present, the study 
of channel waves propagating in anisotropic coal seams is 
rare, especially in the three-dimensional channel wave field 
of anisotropic coal seams.

Dispersion is also vital for channel waves. Krey (1963) 
calculated theoretical dispersion curves in an elastic, iso-
tropic and horizontal three-layer coal model. Using theo-
retical derivations and numerical calculations, Rader et al. 
(1985) obtained a numerical solution to the channel wave 
dispersion curves in an elastic, isotropic and multilayer coal 
model. This study also analyzed the parameter effects on dis-
persion curves. Yang et al. (2014) investigated both the dis-
persive curves and an elasticity property of Rayleigh channel 
waves in a multilayer model and claimed that both the coal 
bed thickness and the quality factor of the coal seam can 
primarily influence the quality factor of a Rayleigh channel 
wave. He et al. (2017) concluded that the normal mode of 
the Rayleigh channel wave is theoretically observed, while 
both fundamental mode and first-order channel waves are 
usually recorded in field records. Feng and Zhang (2017) 
extracted the dispersion curve of Love channel wave by 
high-precision S-transform method. Some scholars (Wang 
et al. 2012; Hu et al. 2018) use the inverse method of disper-
sion curve to detect coal thickness.

The coal seam is a sedimentary rock with a bedding in the 
direction of the coal seam, which can be regarded as a Ver-
tical Transverse Isotropy (VTI) medium. The undeformed 
coal can generally be regarded as a VTI medium. Obviously, 
the VTI medium model is more consistent with the real situ-
ation of the coal seam than isotropic. In addition, coal seam 
in different areas has weak anisotropy, moderate or strong 

anisotropy (Wang et al. 2012; Morcote et al. 2010), which 
is more complex and diverse.

Based on Thomsen theory, this paper specially studies 
the properties of channel waves in weak anisotropic and VTI 
coal seam media. The similarities and differences in channel 
waves between the VTI media and isotropic media are ana-
lyzed emphatically. First, the constitutive dispersion equa-
tion for the Love channel wave propagating in a three-layer 
VTI model is theoretically deduced. Second, the parameter 
effects on dispersion curves are systematically analyzed. 
Third, the high-order staggered-grid finite difference algo-
rithm is considered to numerically model propagating fea-
tures of channel waves.

VTI medium theory

The transversely isotropic (TI) media have axial symme-
try. If the media are symmetrical along the vertical axis, 
then these are referred to as the VTI media. The VTI media 
consist of periodic thin layers (Fig. 1), which are similar to 
sedimentary strata.

According to the general stress–strain relation, the VTI 
media have five independent elastic parameters:

Despite the elastic matrix C determining the relation of 
stress and strain, its physical meaning is not apparent. A set of 

(1)� =

⎛⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66

⎞⎟⎟⎟⎟⎟⎟⎠

C66 =
C11 − C12

2

Fig. 1  VTI medium which has a vertical symmetry axis
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anisotropic parameters are proposed to characterize the fea-
tures of TI media to conduct theoretical investigations and field 
tests (Thomsen, 1986), and the following equations are used 
to characterize relations between the matrix C and Thomsen 
parameters of the VTI media:

where ρ is density, Vp is the velocity of qP-wave propagat-
ing in the perpendicular orientation, Vs is either qSV-wave 
or pure SH wave velocity passing through the perpendicular 
direction. ε, γ and δ are Thomsen parameters. In the isotropic 
media, ε, γ and δ are 0. ε reflects the P-wave anisotropy; 
the higher ε is, the greater the anisotropy of the qP-wave. 
δ is the qP-wave anisotropy transfer coefficient. γ indicates 
the S-wave anisotropy. The characteristics of SH waves are 
described by Vs and γ.

Dispersion equation of Love channel waves 
in the three‑layer VTI model

Since the Love channel wave is generally applied to detect 
the coal seam structures during the practical coal exploration, 
so we focus on the Love channel wave dispersion equation of 
VTI media, and take the commonly used three-layer horizontal 
medium as the model. VTI medium has vertical symmetrical 
axis, so the horizontal plane is isotropic, the vertical plane is 
anisotropic, and the vertical planes in all directions have the 
same anisotropic properties. We take the xoz plane which is 
formed by horizontal x-axis and vertical z-axis (Fig. 2) as an 
example to solve the dispersion curve of Love channel wave 
in VTI media.

Theoretical solution to the dispersion equation 
of Love channel waves

The SH wave equations in the VTI media can be written as:

(2)

VP =
√
C33∕�

VS =
√
C44∕�

� =
C11 − C33

2C33

� =
C66 − C44

2C44

� =
(C13 + C44)

2 − (C33 − C44)
2

2C33(C33 − C44)

(3)

�
�2v

�t2
=

��xy

�x
+

��yz

�z
= C66

�2v

�x2
+ C44

�2v

�z2

�yz = C44

�v

�z

�xy = C66

�v

�x

The plane-wave solution to the dispersion equation is 
v = v0e

�zei�(t−x∕cL) (Dresen and Rüter 1994). v is the displace-
ment. v0 is the displacement at zero time. β is the coefficient of 
the amplitude decaying exponentially with depth. cL denotes 
the phase velocity of channel wave. ω is the circle frequency.

Figure 2 displays schematic of three-layer VTI model. Both 
the top and bottom layer media are the rocks. The density, ver-
tical shear wave velocity and elastic parameters of the top rock 
are represented by ρ1, vs1 and C441 and C661, respectively. The 
density, vertical shear wave velocity and elastic parameters of 
the bottom rock are represented by ρ3, vs3 and C443 and C663, 
respectively. Meanwhile, the middle layer of three-layer VTI 
model shows the coal seam, and its respective parameters are 
ρ2, vs2, and C442 and C662. The velocity and density of the coal 
seam are less than those of the surrounding rocks. The coal 
seam thickness is represented by 2d. Furthermore, as shown in 
Fig. 2, the origin of coordinate assumes at the geometric center 
of the three-layer VTI model. The x-axis is along the boundary 
of three-layer VTI model, while the z-axis is perpendicular to 
that and oriented vertically downward.

The displacement of SH waves in the horizontal three-layer 
VTI model can be written as:

In Eq. (4), ei�(t−x∕cL) is the harmonic factor, and the left 
part of the harmonic factor is the displacement amplitude. a1, 
a2, a3 and a4 are the amplitude coefficients. β1, β2 and β3 are 
the coefficients of the amplitude decaying exponentially with 
depth. If we substitute these equations into Eq. (3), then β can 
be obtained:

(4)

⎧⎪⎨⎪⎩

v1 = a3e
𝛽1(z+d)ei𝜔(t−x∕cL) z < −d

v2 = (a1 cos 𝛽2z + a2 sin 𝛽2z)e
i𝜔(t−x∕cL) − d ≤ z ≤ d

v3 = a4e
−𝛽3(z−d)ei𝜔(t−x∕cL) z > d

(5)

�1=
�√
C441

�
−�1 +

C661

c2
L

�2=
�√
C442

�
�2 −

C662

c2
L

�3=
�√
C443

�
−�3 +

C663

c2
L

1 1 441 661Sv C Cρ

3 3 443 663Sv C Cρ

x

z

d

d

Surrounding rock

Surrounding rock

Coal seam
0

2 2 442 662Sv C Cρ

Fig. 2  Asymmetrical three-layer coal seam VTI model



1382 Acta Geophysica (2019) 67:1379–1390

1 3

where cL represents the phase velocity of the channel wave 
and � represents a positive real number; therefore, √

C662

�2
≤ cL ≤ min

(√
C661

�1
,
√

C663

�3

)
 . By combining these 

e qu a t i o n s  w i t h  E q .   ( 2 ) ,  we  c a n  o b t a i n 
v2
√
1 + 2�2 ≤ cL ≤ min(v1

√
1 + 2�1, v3

√
1 + 2�3) which 

shows the velocity range of cL.
Both the particle motion displacement and stress at the 

interfaces (z = − d and z = d) should satisfy following bound-
ary conditions:

According to Hooke’s law, �yz = C44�yz = C44
�v

�z
 ; if this 

equation is substituted into Eq. (6), then the equation of 
amplitude coefficient is obtained:

if a1, a2, a3 and a4 are not equal to zero, then the coefficient 
determinant needs to be zero:

Two solutions can be obtained:

If the top and bottom surrounding rock are identical, then 
the solutions of the Love channel wave are:

(6)

⎧
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v1
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��z=−d
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(7)

⎧⎪⎨⎪⎩

− cos(�2d)a1 + sin(�2d)a2 + a3 = 0

−C442�2 sin(�2d)a1 + C442�2 cos(�2d)a2 + C443�3a4 = 0

−C442�2 sin(�2d)a1 − C442�2 cos(�2d)a2 + C441�1a3 = 0

cos(�2d)a1 + sin(�2d)a2 − a4 = 0

(8)

⎡⎢⎢⎢⎢⎣

− cos(�2d) sin(�2d) 1 0

−C442�2 sin(�2d) C442�2 cos(�2d) 0 C443�3

−C442�2 sin(�2d) − C442�2 cos(�2d) C441�1 0

cos(�2d) sin(�2d) 0 − 1

⎤
⎥⎥⎥⎥⎦
= 0

(9)
tan(�2d) =

C443�3C441�1 − C2
442

�2
2
+
√

(C2
442

�2
2
+ C2

443
�2
3
)(C2

442
�2
2
+ C2

441
�2
1
)

C442�2(C441�1 + C443�3)

(10)
tan(�2d) =

C443�3C441�1 − C2
442

�2
2
−
√

(C2
442

�2
2
+ C2

443
�2
3
)(C2

442
�2
2
+ C2

441
�2
1
)

C442�2(C441�1 + C443�3)

(11)tan(�2d) =
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(12)tan(�2d) = −
C442�1
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Equation (12) can be changed to:

Obviously, Eqs. (11) and (13) can be unified into one 
equation by taking the arctangent function:

When n is 0, it is called the fundamental mode disper-
sion curve, and when n is 1, it is called the first-order 
dispersion curve, and so on.

Furthermore, we can solve the amplitude distribution 
in depth of Love channel wave. Substituting the values on 
the dispersion curve (Eq. (9)) into Eq. (7) and letting the 
coefficient a1 = 1, the other three coefficients a2, a3, a4 can 
be solved. Taking the coefficients into Eq. (4), then the 
amplitude distribution equation of Love channel wave in 
the VTI media can be obtained.

Dispersion analysis of the Love channel wave

The group velocity is easily deduced from the phase veloc-
ity (Dresen and Rüter 1994). If we take the parameters in 
Table 1 as an example to calculate the zero- to second-
order theoretical dispersion curves of the Love channel 
wave in both the VTI media and isotropic media (Fig. 3), 
the largest difference is in the velocity. The minimum 
velocity of the isotropic media is 1100 m/s in the coal 
seam, whereas the minimum velocity of the VTI media 
is 1250 m/s, which is approximately 14% higher than 
that via the isotropic media. The dominant frequencies 
of the fundamental mode of the Airy phase in the two 
media are almost identical (150 Hz), but there is a large 

(13)tan(�2d −
�

2
) =

C441�1

C442�2

(14)�2d = arctan
C441�1

C442�2
+

n�

2
, n = 0, 1, 2…

Table 1  Elastic parameters for the symmetrical three-layer VTI 
model

Parameters Vs (m/s) ρ (kg/m3) γ

Coal seam 1100 1300 0.15
Surrounding rock 2000 2400 0
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difference between them in terms of the high-order Airy 
phase. The frequency of the Airy phase in the second-
order VTI is 440–500 Hz, while that of the isotropic media 
is 400–450 Hz.

When detecting coal thickness in the working face, we 
invert for the velocity distribution of a certain frequency of 
Love channel wave, and then find out the corresponding coal 
thickness according to Love channel wave dispersion curve 
of various coal thickness (Wang et al. 2012; Hu et al. 2018). 
The dispersion curve of isotropic medium is used at present, 
but the dispersion of VTI medium and isotropic medium is 
quite different, so there may be a big error in the current 
method of detecting coal thickness, and the dispersion curve 
of VTI medium should be adopted.

The dispersion curves of Love channel waves in the iso-
tropic media are dramatically influenced by both the coal 
bed thickness and its S-wave velocity. The dispersion equa-
tion in the VTI media (Eq. (14)) is similar to the correspond-
ing equation in the isotropic media. Therefore, the thickness 
of the coal seam, S-wave velocity of the coal seam, and γ of 
the coal seam significantly influence the dispersion curve, as 
these parameters also influence the isotropic media. Because 
γ in the surrounding rock is relatively small, its effect is 
negligible. If we take the parameters in Table 1 as a basis, 
stabilize the other parameters and alter the thicknesses of 
the coal seams to be 2 m, 3 m, 5 m and 8 m (Table 2), then 
four groups of dispersion curves can be calculated (Fig. 4a). 
Because the Airy phase of the fundamental mode group 
velocity is most important, we focus on analyzing it.

The variable thickness of the coal seam seems to have 
a significant influence on the frequency range of the Airy 
phase, while the Airy phase velocity remains constant 

(Fig. 4a). Specifically, the thicker the coal seam is, the lower 
the frequency of the Airy phase. The frequency of the Airy 
phase is approximately 100 Hz in the 8-m coal seam model. 
However, it is 400 Hz, with a broad frequency band, in the 
2-m coal seam model. The frequency of the Airy phase var-
ies nonlinearly with the coal seam thickness. In addition, the 
S-wave velocity of the coal seam also significantly influences 
the velocity of the Airy phase. Specifically, the velocity of 
the Airy phase varies from 700 to 1300 m/s (Fig. 4b). The 
S-wave velocity has a minor effect on the frequency of the 
Airy phase; the frequency only varies from 100 to 200 Hz. 
The γ of the coal seam primarily influences the velocity of 
the Airy phase, which varies from 1000 to 1170 m/s, and it 
has a slight effect when compared with the S-wave velocity 
of the coal seam (Fig. 4c). Specifically, it has little effect on 
the frequency of the Airy phase.

Polarization characteristics and amplitude 
distribution analysis of the channel waves in VTI 
media

In the VTI media, the polarizations of the qP- and qSV-
waves are not parallel or perpendicular to the orientation of 
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Fig. 3  Theoretical dispersion curves of the zero- to second-order Love channel wave in both the VTI media and isotropic media. a VTI medium 
dispersion curves. b Isotropic medium dispersion curves. The solid line indicates the phase velocity. The dashed line indicates the group velocity

Table 2  Single parameter changes of Love channel waves in the VTI 
model

Parameters 1 2 3 4

Coal thickness 2 m 3 m 5 m 8 m
Coal vs 800 m/s 950 m/s 1100 m/s 1250 m/s
Coal γ 0.05 0.1 0.15 0.2
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wave propagation, while those of the Love channel wave in 
the horizontal plane is still norm to the orientation of wave 
propagation. The polarization of Rayleigh channel wave in 
the VTI media is very different from that in the isotropic 
media; therefore, it is difficult to extract the Rayleigh chan-
nel wave. However, since the polarization of the Love chan-
nel wave in the VTI media is similar to that in the isotropic 
media along the horizontal plane, we can extract the Love 
channel wave from a complicated wave field. Moreover, the 
SH wave shows no anisotropic velocity along the horizon-
tal plane, which allows us to efficiently process the channel 
wave. Consequently, the Love channel wave, instead of the 
Rayleigh channel wave, is considered when conducting field 
exploration.

Taking Table 1 as the medium parameter, when the phase 
velocity is 1700 m/s, the fundamental frequency correspond-
ing to the phase velocity based on the dispersion curve is 
112 Hz, the first-order frequency is 293.34 Hz, and the sec-
ond-order frequency is 456.29 Hz. According to the solution 
method of Love channel wave amplitude in the previous sec-
tion, we calculate the amplitude-depth distribution of Love 
channel wave under this condition (Fig. 5).

In Fig. 5, the amplitude distribution of Love channel 
waves in the VTI media is similar to that in the isotropic 
media. That is, the amplitude of the fundamental mode and 
second-order channel waves is maximum in the middle of 
coal seam and has an even symmetry. However, the ampli-
tude of the first-order channel wave in the middle of the 
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coal seam equals zero, while shows the maximum values at 
a distance equal to one-fourth of the coal seam thickness, 
which indicates odd symmetry.

Numerical simulation of channel waves 
in the 3D VTI model

First‑order velocity–stress elastic equation in the 3D 
VTI model

To eliminate computing the second derivative for displace-
ment, the variables Vx, Vy, and Vz in the first derivative for 
displacement are introduced. Without considering the exter-
nal force, the first-order velocity–stress elastic equations can 
be written as:

We perform numerical simulations of the channel wave in 
the 3D geological model by using the staggered-grid high-
order finite difference algorithm. Mirror image method is 
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used to treat free surface on the wall of the roadway (Ji et al. 
2012; Li et al. 2015).

Numerical modeling

Figure 6 displays the 3D model with the dimensions of 
200 × 200 × 25 m (X × Y × Z). Specifically, the middle layer 
of the model is the coal seam with the thickness of 5 m. 
The top and bottom media indicate surrounding rocks, 
which have similar physical properties. The grid unit of the 
3D model is 1 × 1 × 0.25 m (X × Y × Z), and the temporal 
sampling interval is 0.05 ms. For the coal seam, the verti-
cal P- and S-wave velocities are 1900 m/s and 1100 m/s, 
respectively. Its elastic parameters ε, γ and δ are equal to 
0.1, 0.15 and − 0.1, respectively. Bulk density of the coal is 
1300 kg/m3. For the surrounding rocks, the vertical P- and 
S-wave velocities are 3500 m/s and 2000 m/s, respectively. 
Their elastic parameters ε, γ and δ are equal to 0, indicat-
ing an isotropic case. Bulk density of the rock is 2400 kg/
m3. There are two vacuum roadways: one is at x = 11–15 m, 
y = 10–190 m and z = 11–14 m; another is at x = 186–190 m, 
y = 10–190 m and z = 11–14 m. The roadway section is 
4 m × 3 m. Survey line 1 (x = 185 m, z = 12.5 m) is located 
along the wall of the roadway to the right, and survey line 
2 (y = 100 m, z = 12.5 m) passes through the source point 
(black lines in Fig. 6b). The seismic source, which is the 
dominant frequency of the 150-Hz Ricker wavelet, is located 
at x = 16 m and y = 100 m (circled in Fig. 6b).

Figure 7 displays the 60 ms snapshot. The fastest wave 
front is a refracted P-wave followed by a high-order Ray-
leigh channel wave. The fundamental channel wave propa-
gates the slowest, with a high energy concentration. Mean-
while, the roadway channel wave is also observed, and 
it is generally slower than the traditional channel wave. 

(a) (b) (c)

Fig. 5  Depth distribution of the Love channel wave amplitude in VTI medium. a Amplitude distribution of fundamental mode. b Amplitude dis-
tribution of first-order. c Amplitude distribution of second-order
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Additionally, the z-component of the channel wave is also 
slower than both its x- and y-components.

Figure 8 shows the transmitted channel wave record of 
survey line 1. The figure shows that the fundamental mode 
of the channel wave is intensive, but it is also the slowest. 
Therefore, it is a high-order Rayleigh channel wave. The 
velocities of the x- and y-components are faster than that 
of the z-component, but their energies are more concen-
trated; the group velocity is approximately 1100 m/s and 
includes both the Love and Rayleigh channel wave. The 
fundamental mode of the z-component, which mainly con-
sists of a Rayleigh channel wave, is not very concentrated. 
The energies of both the x- and y-components are primar-
ily concentrated along the side of the survey line, which 
is due to the roadway effect.

We analyze the wave record and frequency dispersions 
for survey line 2 (Fig. 9). Because line 2 passes through 
the source, it is obvious that it only generates Love channel 
waves in the y-component. The dispersion power spectra 
in the V-f domain are extracted by using the 2D fast Fou-
rier transform (FFT). The dotted line (Fig. 9b) represents 
the theoretical dispersion curve calculated by the disper-
sion formula (Eq. 14). The theoretical curve and extracted 
dispersion image from the simulation is consistent which 
shows that the theoretical dispersion formula derived is 
correct. Figure 9b shows that the fundamental mode of the 
Love channel wave is mainly observed. The energy is con-
centrated within 150–250 Hz, and the velocity ranges from 
1250 to 2000 m/s, with a minimum velocity of 1250 m/s. 

If the model is isotropic, then the minimum velocity of the 
coal seam is 1100 m/s. Obviously, the two models are quite 
different.

If we use the isotropic model rather than the VTI model 
for the coal seam, the wave fields are similar to those in 
survey line 1 (Fig. 10); however, there is a large velocity 
difference. Compared with that in the isotropic media, the 
velocity is higher in the VTI media. The group velocity of 
the fundamental mode in both the x- and y-components is 
950 m/s, whereas that in the VTI media is 1100 m/s (Fig. 3). 
In addition, the high-order Rayleigh channel wave in the 
isotropic media is more intense than that in the VTI media. 
The dispersion curves of survey line 2 can distinctly show 
the difference in velocity between the isotropic media and 
VTI media (Fig. 11). The minimum phase velocity of the 
VTI media is 1250 m/s, while that of the isotropic media 
is 1100 m/s. This obvious velocity difference significantly 
influences the processed data for the channel wave. From the 
perspective of distributed energy in the frequency dispersion 
(Fig. 11b), we can see that these two cases are almost simi-
lar, which suggests that the VTI media may have a minor 
effect on the energy distribution of a channel wave.

Discussion

The anisotropy of coal seam is complicated. When there 
are near vertical cracks in coal seams (Chen et al. 2010; Ji 
et al. 2019), Horizontal Transverse Isotropy (HTI) medium 

(a) (b)

Source
Line 2

Line 1

Roadway

Coal Rock

Fig. 6  Working face model of a coal seam with roadways. a 3D 
model slices. Dark gray represents the surrounding rock, light gray 
represents the coal seam and white represents the roadway. b The 

horizontal slice in the center of the coal seam (z = 12.5 m). The black 
circle represents the source, and the black line represents the survey 
lines



1387Acta Geophysica (2019) 67:1379–1390 

1 3

can be used to be equivalent. When coal seams have both 
bedding and cracks, orthotropic medium can be used to be 
equivalent. Therefore, it is difficult to summarize the coal 
seam properties with one theoretical model.

At present, little is known about the properties of chan-
nel waves in anisotropic coal seams. This paper begins 
with the study of weak anisotropic and VTI model coal 
seams, so as to avoid the analysis difficulty caused by com-
plex models which should be further studied. In addition, 
other properties in anisotropic media such as multilayer 
Love channel wave dispersion, Rayleigh channel wave dis-
persion and channel wave field in coal seam with struc-
tures also need to be studied in the future.

In this paper, the channel waves in VTI medium are 
only studied in theory, and it is necessary to compare with 
the real data in the future.

Conclusions

The propagation patterns of the channel waves and the 
dispersion features of Love channel waves are investigated 
in VTI media which is weak anisotropy based on Thomsen 
theory. The conclusions are as follows.

In VTI media, the polarization of qP- and qSV-waves 
is not parallel or norm to the orientation of wave propaga-
tion. However, the horizontal plane in the VTI media is 
still isotropic, and the polarization direction of the SH 
wave is still perpendicular to the direction of wave propa-
gation, so Love channel waves can be accurately separated 
out. Therefore, it is wise to use Love channel waves to 
conduct field exploration.

The dispersion curves of Love channel waves in VTI 
media are quite different from those in isotropic media. The 
velocity of the Love channel wave in VTI media is higher 
than that in isotropic media. However, the Airy phase fre-
quency of the fundamental mode seems to be similar in both 
models. The thickness of the coal seam plays an important 
role in influencing the frequency of the Airy phase. Both 
the S-wave velocity and γ parameter of the coal seam sig-
nificantly affect the velocity of the Airy phase. In addition, 
the γ of the coal seam has little effect on the frequency of 
the Airy phase. In terms of the amplitude distribution, Love 
channel waves appear to have similar patterns in both the 
VTI media and the isotropic media.

According to our findings, big errors may occur in the 
inversion of the coal seam thickness when using the Love 
channel wave dispersion curve in isotropic media. Therefore, 
we propose using the more accurate dispersion curve of VTI 
media instead of that of the isotropic media.
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Fig. 8  Channel wave record by survey line 1 in VTI medium. a X-component. The refracted P-wave is the fastest, the high-order Rayleigh chan-
nel wave is the second-fastest, and the fundamental mode channel wave is the slowest. b Y-component. c Z-component
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Fig. 9  Y-component channel wave record by survey line 2 in VTI medium and its power spectrum in the V–f domain. a Y-component channel 
wave record. b Power spectrum in the V–f domain. The dotted line represents the theoretical dispersion curve

Fig. 10  Channel wave record by survey line 1 in isotropy medium. a X-component. b Y-component. c Z-component
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Abstract
Frequency-domain numerical simulation is the most important foundation of frequency-domain full-waveform inversion and 
reverse time migration. The accuracy of numerical simulation seriously affects the results of the seismic inversion and image. 
In this article, we develop an optimized compact finite difference scheme for acoustic wave equation in frequency domain 
to improve numerical simulation accuracy. For the sake of avoiding the extra memory and computational costs caused by 
solving the inverse of a pentadiagonal band matrix, we calculate the optimized compact finite difference discrete operator 
for the Laplace operator in the numerical simulation. Although the optimized compact finite difference scheme has only 
second-order formal accuracy, it has a spectral-like resolution feature. This method can significantly reduce the numerical 
dispersion and the numerical anisotropy. We find that the results of the optimized compact finite difference scheme agree 
well with the analytic solution according to accuracy analysis. Two numerical simulations are done to verify the theoretical 
analysis of the optimized compact finite difference scheme.

Keywords Optimization · Compact finite difference · Frequency domain · Modeling

Introduction

In recent years, due to the improvement of computing ability, 
reverse time migration (RTM) (McMechan 1983; Chang and 
McMechan 1987; Baysal et al. 1983; Whitmore 1983; Zhang 
et al. 2010) and full-waveform inversion (FWI) (Tarantola 
1984; Mora 1987; Pratt et al. 1998; Virieux and Operto 
2009; Shin and Cha 2008; Yuan et al. 2019) have developed 
rapidly and played a significant role in the field of explora-
tion geophysics. As the basis of the seismic image and inver-
sion, seismic wave numerical simulation can seriously affect 
the quality of the results. Seismic wave numerical simula-
tion can be done in frequency domain and time domain. 
Time-domain forward modeling has been greatly developed 

because of its wide applicability. However, for some prob-
lems, frequency-domain modeling is more convenient and 
efficient than time-domain forward modeling. For example, 
there are no stability problems for frequency-domain mod-
eling (Marfurt 1984) due to the implicit relationship. And 
the attenuation effects of the wave propagation in viscous 
media are easier to implement in frequency domain (Pratt 
1990). Moreover, for multi-shot parallel computation, the 
numerical simulation in frequency domain by the way of 
direct solver is more efficient than that in time domain.

Lysmer and Drake (1972) firstly did numerical simula-
tions in frequency domain for seismology. They calculated 
the propagation of seismic wave in the subsurface medium by 
the finite element method. Then, Marfurt (1984) and Marfurt 
and Shin (1989) examined the effect of this method and further 
developed it into wave equation for exploration geophysics. 
At the same time, the finite difference method became more 
and more popular for solving geophysical problems due to its 
ease of implementation, characteristic of parallelism and high 
efficiency (Alford et al. 1974; Virieux 1984; Alterman and 
Karal 1968; Virieux 1986; Shi et al. 2018). The frequency-
domain forward modeling with finite difference method was 
firstly applied to the crosshole seismic imaging and inversion 
by Pratt (1990) and Pratt and Worthington (1990). Compared 
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with the finite element method forward modeling in frequency 
domain, finite difference method can reduce computational 
costs. The spatial derivative is approximated by the second-
order central finite difference operator, so it requires too many 
sampling grid points per wavelength to achieve higher accu-
racy. To deal with the problem, Jo et al. (1996) presented an 
optimized 9-point scheme for the acoustic wave equation by 
using the weighted average mass acceleration term and the 
technique of rotated coordinate. They used the steepest descent 
method to optimize the numerical phase velocity curves to 
get the optimal coefficients. This method could reduce the 
value of required sampling points for per wavelength to 4 and 
successfully reduce computational costs. Based on the same 
method, by combining the finite difference operators of four 
rotated angles, Shin and Sohn (1998) presented an optimized 
25-point scheme for the acoustic wave numerical simulation. 
This new scheme reduced the number of required sampling 
points for per wavelength to 2.5. Hustedt et al. (2004) general-
ized this method to the numerical simulation of the variable 
density acoustic equation, and Operto et al. (2007) extended it 
to 3D case. It can be argued that those optimal schemes based 
on the coordinate rotation technique have achieved consid-
erable success. However, the method has a drawback that it 
demands the equal space sampling intervals, which seriously 
influences its practical applications. To overcome the limita-
tion of the rotated coordinate method, Chen (2012) proposed 
an optimized 9-point scheme for scalar wave equation by 
the way of average-derivate method (ADM). In this method, 
the finite difference of spatial derivative is approximated by 
the average derivative of three grid points in the orthogonal 
direction, which can be applied to unequal space sampling 
intervals, increasing the flexibility and widening its applica-
tion range. Compared with the rotated coordinate method, 
average-derivate method has higher accuracy, so it has been 
widely used. Tang et al. (2015) presented an optimized ADM 
17-point scheme to further improve the accuracy. Chen (2014) 
and Chen and Cao (2016) generalized this method to 3D case 
and elastic wave numerical simulation in frequency domain, 
respectively. All of the above methods are using explicit finite 
difference operators to discretize spatial partial derivatives. In 
fact, compact (implicit) finite difference operators can also be 
used to discrete spatial partial derivatives. Lele (1992) intro-
duced a series of schemes for calculating spatial partial deriva-
tives based on the pentadiagonal compact relationship. Those 
schemes have a spectral-like resolution, although they are only 
in the form of fourth-order accuracy. Subsequently, Kim and 
Lee (1996) optimized the high-order compact finite difference 
scheme for first derivatives to achieve maximum-resolution 
characteristics. Liu and Sen (2009) developed compact finite 
difference method for seismic numerical simulation in time 
domain. Chu and Stoffa (2012) used compact finite difference 
operator for numerical simulation in frequency domain, and 
they improved the accuracy and got better simulation results.

In this article, we propose an optimized compact finite 
difference scheme for acoustic wave modeling in frequency 
domain. The optimized compact finite difference scheme has 
a spectral-like resolution, although it just has the form of sec-
ond-order accuracy. In order to avoid the extra memory and 
computational costs caused by solving the inverse of a pentadi-
agonal band matrix, we calculate the optimized compact finite 
difference operators for the Laplace operator. In the following 
part, we firstly introduce the optimal compact finite difference 
scheme for acoustic wave. Next, we obtain the optimal coef-
ficients by optimizing the numerical phase velocity curves and 
evaluate the errors of the different schemes by the dispersion 
analysis. Then, we analyze the precision of numerical solu-
tions of different schemes by comparing with the analytical 
solution. Finally, we use two forward modeling examples to 
further verify the effectiveness of our method.

Theory

The optimized compact scheme

For a homogeneous medium, the frequency-domain acoustic 
wave equation in two-dimensional Cartesian coordinates is:

where v is the velocity of the wave, P is the pressure wave-
field, � is the circular frequency and s is the source in fre-
quency domain. By referring to the idea of Lele (1992), we 
introduce a compact finite difference that only needs five 
points to approximate the second-order space derivative 
�2P

/

�x2

where Pi is the pressure wavefield at the grid xi , h is the 
space sampling interval, P′′

i
 is the second-order space deriva-

tive of the pressure wavefield at the grid xi and �, �, a, b are 
the coefficients. Then, do Taylor expansion on both sides of 
the compact scheme (2). By comparing the same terms on 
both sides of the equation, we can obtain the relationships 
of �, �, a, b . The first mismatched coefficient of the relation-
ships determines the formal truncation error of the compact 
finite difference approximation (2). These constraint rela-
tionships are:

(1)∇2P +
�2

v2
P =

�2P

�x2
+

�2P

�z2
+

�2

v2
P = s,

(2)
�P��

i−2
+ �P��

i−1
+ P��

i
+ �P��

i+1
+ �P��

i+2

= b
Pi+2 − 2Pi + Pi−2

4h2
+ a

Pi+1 − 2Pi + Pi−1

h2
,

(3)b + a = 1 + 2� + 2� (second-order)

(4)(2)2b + (1)2a =
4!

2!

(

� + � ∗ 22
)

(fourth-order)
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Because there are four coefficients that we need to deter-
mine, only the eighth-order scheme has unique coefficients. 
The coefficients of other lower-order schemes are not deter-
mined because there are not enough constraints, which gives 
us the opportunity to optimize the coefficients to improve the 
resolution characteristics.

Fourier analysis is a common method to measure the 
accuracy of finite difference approximation. This method can 
provide the quantitative analysis of the optimized compact 
scheme. The compact Eq. (2) can be rewritten as:

By applying Fourier transform on both sides of the above 
equation, we can get:

Simplifying Eq.  (8), we obtain the scaled numerical 
wavenumber:

where k2 = �2h2 is the true wavenumber. The effect of com-
pact finite difference approximation (2) to the partial deri-
vate depends on the degree of agreement between the true 
wavenumber k2 and the scaled numerical wavenumber k̃2 . So 
we can optimize the coefficients that work best for numerical 
simulations.

Optimization and dispersion analysis

By minimizing the errors between the true wavenumber k2 
and the scaled numerical wavenumber k̃2 over a wavenumber 
range band, we can obtain the following integral error:

(5)(2)4b + (1)4a =
6!

4!

(

� + � ∗ 24
)

(sixth-order)

(6)(2)6b + (1)6a =
8!

6!

(

� + � ∗ 26
)

(eighth-order)

(7)

�P��(x − 2h) + �P��(x − h) + P
��(x)

+ �P��(x + h) + �P��(x + 2h)

= b
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i
+ P(x − 2h)

4h2

+ a
P(x + h) − 2P(x)

i
+ P(x − h)
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.

(8)

(i𝜁)2
[

𝛽 exp (−2i𝜁h) + 𝛼 exp (−i𝜁h) + 1

+ 𝛼 exp (i𝜁h) + 𝛽 exp (2i𝜁h)
]

P̃

=
b

4h2

[

exp (2i𝜁h) − 2 + exp (−2i𝜁h)
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P̃

+
a

h2

[

exp (i𝜁h) − 2 + exp (−i𝜁h)
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(9)k̃2 =
2a(1 − cos (k)) + b∕2(1 − cos (2k))

1+2𝛼 cos (k) + 2𝛽 cos (2k)
,

(10)E(𝛼, 𝛽, a, b) = ∫
ku

kl

(

k̃2 − k2
)2
𝜂(k)dk,

where �(k) is a weighting function, ku and kl and are the up 
and low limits of the integral. Kim and Lee (1996) found 
that a good weighting function could make Eq. (10) analyti-
cally integrable and reduce the high wavenumber influence. 
Here, we choose the most widely used weighting function 
as the following form:

There are many methods to solve the problem of (10). 
Here, we make use of the conjugate gradient method to 
determine the optimization coefficients. To obtain the best 
optimal values of �, �, a, b , in our study, we keep second-
order formal accuracy by using Eq. (3) as a constraint 
condition to the problem of (11). Then, we obtain the coef-
ficients of the optimized pentadiagonal compact finite dif-
ference scheme:

The optimized compact finite difference (FD) scheme has 
a spectral-like resolution, although it just has the form 
of second-order accuracy. Figure 1 shows that the scaled 
numerical wavenumber varies with the true wavenumber for 
different schemes. As illustrated in Fig. 1, the optimized 
second-order compact FD scheme stays close to the accu-
rate differentiation compared with the conventional eighth-
order compact FD scheme and the conventional fourth-order 
explicit FD scheme.

(11)�(k) = [1+2� cos (k) + 2� cos (2k)]2.

(12)
� = 0.4912, � = 0.0390,

a = 0.2241, b = 1.8363.

Fig. 1  The differencing error for second derivative: curve A stands 
for the exact differentiation, curve B stands for the conventional 
eighth-order compact FD scheme, curve C stands for the optimized 
second-order compact FD scheme and curve D stands for the conven-
tional fourth-order explicit FD scheme
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In order to verify the effect of the optimization compact 
scheme on the partial differential Eq. (1), we derive its nor-
malized numerical phase velocity:

where � is the wave propagation direction angle and 
G = 2�∕�h is the value of sampling points per wavelength. 
Figure 2 shows the normalized numerical phase velocity 
curves of the optimized second-order compact FD scheme, 
the conventional eighth-order compact FD scheme and the 
conventional fourth-order explicit FD scheme for different 

(13)

vph

v
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G

2�

√

A + B
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2a

�

1 − cos
�

2� sin �
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��

+ b∕2
�

1 − cos
�

4� sin �

G

��

1+2� cos
�

2� sin �

G

�

+ 2� cos
�

4� sin �

G

�

B =
2a

�

1 − cos
�

2� cos �

G

��

+ b∕2
�

1 − cos
�

4� cos �

G

��

1+2� cos
�

2� cos �

G

�

+ 2� cos
�

4� cos �

G

� ,

propagation angles � . As shown in Fig. 2, the numerical 
dispersion errors of the optimized compact FD scheme are 
smaller than those of the other schemes. To keep in the same 
normalized numerical phase velocity errors, the optimized 
compact FD scheme needs fewer G, which means that the 
optimized compact FD scheme can do numerical simulations 
on a coarse grid to reduce the computation cost.

The numerical phase velocity errors of FD schemes 
exhibit in the characteristic of the numerical anisotropy 
for multi-dimensional problems. Ideally, the normalized 
phase velocity should be constantly one for all waves (any 
direction and any wavenumber) in the isotropic medium. 
However, numerical simulation method leads to the 
numerical anisotropy. Figure 3 shows the numerical ani-
sotropic propagation of the optimized second-order com-
pact FD scheme, the conventional eighth-order compact 
FD scheme and the fourth-order explicit FD scheme. The 
curves in Fig. 3 are polar plots for all propagation angles 
� . For each FD scheme, the cases of G = 1, 2, 3, 4 are 
plotted. As illustrated in Fig. 3, we can see that the effect 
of FD numerical simulation is better for the larger G. The 

Fig. 2  The normalized numerical phase velocity curves of a the conventional fourth-order explicit FD scheme, b the conventional eighth-order 
compact FD scheme and c the optimized second-order compact FD scheme for different propagation angles �
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wave propagation is close to numerical isotropy, and the 
normalized numerical phase velocity is closer to 1. As G 
decreases, the numerical anisotropy of wave propagation 
increases. There is a phenomenon that, when the propaga-
tion angles is near 45 degrees, the numerical anisotropic 
effect and the dispersion error are the least, which is con-
sistent with the dispersion curves in Fig. 2. As shown in 
Fig. 3, in contrast to the conventional fourth-order explicit 
FD scheme and the conventional eighth-order compact FD 
scheme, the optimized second-order compact FD scheme 
can not only reduce the numerical dispersion, but also 
reduce the numerical anisotropy.

Solve the compact scheme in frequency domain

The optimized second-order compact FD scheme has obvious 
advantages for frequency-domain forward modeling, but we 
need to solve the compact FD system. Here, we derive the 
compact FD operator for the Laplacian operator based on the 
idea of Chu and Stoffa (2012). The corresponding compact 
spatial FD scheme can be expressed as:

(14)
2
∑

m=−2

�x
m

�

�x2
Pm,0 =

2
∑

i=−2

�x
i
Pi,0,

Fig. 3  Polar plot of the normalized phase velocity numerical anisot-
ropy of second derivative for different schemes. The case of G = 1, 2, 
3, 4 is plotted: a the conventional fourth-order explicit FD scheme, 

b the conventional eighth-order compact FD scheme and c the opti-
mized second-order compact FD scheme
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We construct the compact FD scheme for 2D Laplacian 
operator, which has the following form:

By applying Fourier transform on both sides of Eqs. (14), 
(15) and (16), we can obtain the following equations:

Substituting Eqs. (17) and (18) into Eq. (19), we can get the 
following relationship:

Applying Eq. (16) to Eq. (1), we can get the discretized com-
pact FD linear equation:

where A� and A� are the discrete diagonal FD matrices, V  
is a diagonal matrix formed by the mass acceleration term 
�2

/

v2 . Multiplying both sides of Eq. (22) by A� , we have 
the following linear systems:

Then, we can get the result of numerical simulation by solv-
ing linear Eq. (23).

Accuracy analysis

In order to confirm the accuracy of our optimized second-
order compact FD scheme, we make the accuracy analysis in 
contrast to the analytical solution. For the acoustic wave equa-
tion in a homogeneous medium, Alford et al. (1974) gave the 
analytical solution as the following expression:

(15)
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where H(2)

0
 is the second kind of Hankel function of zero 

order, r is the distance from the receiver to source, i is the 
imaginary unit and F(�) is the frequency-domain source.

Figure 4a shows the geometric relationship between the 
receiver point and the source point in the homogeneous 
medium. We take the velocity of the homogeneous model 
to be 2000 m/s. The numbers of vertical and horizontal spa-
tial grid points of the homogeneous model are both 100. 
The space sampling interval is taken as h = 18 m. We put 
a Ricker wavelet whose dominant frequency is 20 Hz in 
the center of the homogeneous model as the source. The 
receiver is placed at nx = 20 and nz = 50 . Figure 4b shows 
the results computed by the optimized second-order com-
pact FD scheme, the conventional eighth-order compact FD 
scheme, the conventional fourth-order explicit FD scheme 
and the analytical solution. Figure 4c, d shows the corre-
sponding frequency-domain normalized seismograms for 
f = 10 HZ and f = 30 HZ . It is obvious that the numerical 
solution of the optimized second-order compact FD scheme 
is more consistent with the analytic solution than the other 
FD schemes.

Numerical examples

We examine the validity of the optimized second-order com-
pact FD scheme on two models through numerical simula-
tions. By contrast, we also use the conventional fourth-order 
explicit FD scheme and the conventional eighth-order com-
pact FD scheme to do numerical simulation in frequency 
domain on two models. As a reference, we also do FD 
numerical simulation in time domain with the second order 
in time and the 12th order in space on two models.

Two‑layer model

Firstly, we consider a two-layer model to test the optimized 
second-order compact FD scheme as shown in Fig. 5a. The 
up-layer velocity of the two-layer model is 2000 m/s, and the 
low-layer velocity is 3500 m/s.

The numbers of vertical and horizontal spatial grid points 
of the two-layer model are both 101. The space sampling 
interval is taken to be 18 m. We take the time sampling 
interval to be 0.002 s and the length of recorded seismogram 
time to be 1.0 s. The PML boundary conditions are designed 
around the two-layer model to eliminate the artificial bound-
ary reflections (Berenger 1994; Yuan et al. 2014) during 
forward modeling. The number of the PML thickness is 25. 
The Ricker wavelet is used as the source, and its dominant 

(24)P(x, z, t) =
1

2� ∫
+∞

−∞

−i�H
(2)

0

(

�

v
r
)

F(�)d�.
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Fig. 4  a The geometric relationship of the receiver and the source in 
homogeneous model. b The time-domain normalized seismograms. 
c The frequency-domain normalized seismograms for f = 10 HZ . 
d The frequency-domain normalized seismograms for f = 30 HZ . 

Curves A, B, C and D stand for the results of the optimized second-
order compact FD scheme, the conventional eighth-order compact FD 
scheme, the conventional fourth-order explicit FD scheme and the 
analytical solution

Fig. 5  a The two-layer model and b 22-Hz monochromatic wavefield computed by the optimized second-order compact FD scheme in frequency 
domain
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frequency is 20 Hz. The source is located at nx = 51 and 
nz = 10 . The receiver array is placed at the second level of 
the two-layer model.

Figure 5b shows the 22-Hz monochromatic wavefield 
computed by optimized second-order compact FD scheme. 
The position of the reflection interface is clearly visible in 
Fig. 5b. Figure 6 shows the time-domain seismograms com-
puted by the optimized second-order compact FD scheme, 
the conventional eighth-order compact FD scheme, the 
conventional fourth-order explicit FD scheme in frequency-
domain and FD numerical simulation in time domain with 
the second order in time and the 12th order in space for 
the two-layer model. From Fig. 6a, one can find that the 
conventional fourth-order explicit FD scheme has a serious 
numerical dispersion. As shown in Fig. 6b, the conventional 
eighth-order compact FD scheme can reduce the numeri-
cal dispersion in contrast to the conventional fourth-order 
explicit FD scheme. Figure 6c shows that the optimized 
second-order compact FD scheme can more significantly 

reduce the numerical dispersion relative to the conventional 
eighth-order compact FD scheme. The optimized compact 
FD scheme can even achieve the effect of high-precision 
numerical simulation in time domain. Figure 7 shows the 
time-domain snapshots corresponding to the above meth-
ods at 0.54 s, respectively. The incident wave, transmitted 
wave and reflected wave are clearly visible at the interface 
of medium. As shown in Fig. 7, the time-domain snapshots 
computed by the optimized compact FD scheme have rela-
tively less numerical dispersion. So, we obtain the conclu-
sion that our optimized compact FD scheme can signifi-
cantly decrease the numerical dispersion and improve the 
precision of numerical simulation.

Salt model

As illustrated in Fig. 8a, we use the two-dimensional trun-
cated section of SEG/EAGE salt model to further prove 
the effectiveness of our optimized compact FD scheme. 

Fig. 6  Time-domain seismo-
grams of the two-layer model. 
Time-domain seismograms 
computed by a the conven-
tional fourth-order explicit FD 
scheme, b the conventional 
eighth-order compact FD 
scheme, c the optimized second-
order compact FD scheme in 
frequency domain and d the FD 
numerical simulation in time 
domain with the second order in 
time and the 12th order in space
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Fig. 7  Snapshots at 0.54  s. Snapshots computed by a the conven-
tional fourth-order explicit FD scheme, b the conventional eighth-
order compact FD scheme, c the optimized second-order compact 

FD scheme in frequency domain and d the FD numerical simulation 
in time domain with the second order in time and the 12th order in 
space

Fig. 8  a The section of the SEG/EAGE salt model and b 25-Hz monochromatic wavefield computed by the optimized second-order compact FD 
scheme in frequency domain
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The velocity range of the salt model is from 1999.6 to 
4980.8 m/s. The spatial sampling interval is set to be 
15 m. The vertical and horizontal spatial grid points of the 
model are nz = 160 and nx = 400 , respectively. The time 
sampling interval is set to be 0.002 s, and the recorded 
seismogram time is 2.5 s. We still set the PML boundary 
condition around the salt model to attenuate the undesired 
boundary reflection, and the number of PML thickness is 
25. The Ricker wavelet is used as the source, and its domi-
nant frequency is 20 Hz. The source is located at nx = 200 

and nz = 10 . The receiver array is placed at the first level 
of the salt model.

Figure 8b shows the 25-Hz monochromatic wavefield 
computed by optimized second-order compact FD scheme 
in frequency domain. The irregular variable velocity 
interface leads to a complicated frequency-domain wave-
fields in Fig. 8b. Figure 9 shows the time-domain seismo-
grams computed by the optimized second-order compact 
FD scheme, the conventional eighth-order compact FD 
scheme, the conventional fourth-order explicit FD scheme 

Fig. 9  Time-domain seismo-
grams of the salt model. Time-
domain seismograms computed 
by a the conventional fourth-
order explicit FD scheme, b 
the conventional eighth-order 
compact FD scheme, c the 
optimized second-order com-
pact FD scheme in frequency 
domain and d the FD numeri-
cal simulation in time domain 
with the second order in time 
and the 12th order in space. 
f Comparison of single trace 
extracted from the above results 
at 1250 m
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in frequency-domain and FD numerical simulation in time 
domain with the second order in time and the 12th order 
in space for the salt model. Figure 9f shows single trace 
extracted from the time-domain seismograms computed 
by different methods at 1250 m. Figure 10 shows the time-
domain snapshots corresponding to the above methods at 
0.72 s, respectively. The irregular variable velocity inter-
face also makes the time-domain seismograms and snap-
shots become very complex. By comparing and analyzing 
the results of the salt model, we still obtain the conclusion 
that the optimized compact FD scheme can significantly 
decrease the numerical dispersion and improve the preci-
sion of numerical simulation for the salt model.

Conclusions

We have introduced an optimized compact FD scheme for 
acoustic wave numerical simulation in frequency domain. 
We perform optimization to obtain the coefficients of 
the optimized compact FD scheme and make dispersion 
analysis. The dispersion analysis shows that the dispersion 
errors of the optimized compact FD scheme are smaller 
than those of the conventional compact FD scheme, and 

it can also reduce the numerical anisotropy. To avoid the 
extra memory and computational costs in the numerical 
simulation, we use the method that calculates the compact 
FD operator for the Laplace operator. This is followed by 
accuracy analysis. Accuracy analysis shows the numeri-
cal solution of the optimized second-order compact FD 
scheme is more consistent with the analytical solution 
than the results of conventional eighth-order compact FD 
scheme. Finally, the numerical simulations of the two-
layer model and salt model are used to verify the theo-
retical analysis of the optimized compact FD scheme. We 
use the results of the optimized second-order compact FD 
scheme, the conventional fourth-order explicit FD scheme 
and the conventional eighth-order compact FD scheme 
to make a comparison. As a reference, we also do time-
domain forward modeling with the second order in time 
and the 12th order in space on two models.
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Fig. 10  Snapshots at 0.72  s. Snapshots computed by a the conven-
tional fourth-order explicit FD scheme, b the conventional eighth-
order compact FD scheme, c the optimized second-order compact 

FD scheme in frequency domain and d the FD numerical simulation 
in time domain with the second order in time and the 12th order in 
space
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Abstract
The signal-to-noise ratio (SNR), vertical resolution and fidelity of marine seismic data are closely related to the characteristics 
of hydrophones, namely the sensitivity and the frequency band range. In this article, we analyzed and processed seismic data 
collected in 2017 from a towed marine streamer equipped with optical fiber cable and hydrophones. Results from a pre-stack 
time migration section revealed that the optical fiber seismic data yielded high SNR, vertical resolution and fidelity. For 
validation purpose, a comparison of these data with those acquired by classic piezoelectric hydrophones along a migration 
section located in a very close location was carried out. This comparison showed that the SNR, fidelity and vertical resolu-
tion from the two means of measurements were comparable.

Keywords Fidelity · Hydrophones · Migration section · Optical fiber · Signal-to-noise ratio (SNR) · Vertical resolution

Introduction

Hydrophones constitute the main means of measurement 
of marine seismic data, and their performance is evaluated 
based on the signal-to-noise ratio [SNR = 10log(Ps/Pn), 
here Ps and Pn are the effective power of signal and noise], 
vertical resolution and fidelity. Piezoelectric hydrophones 
have been typically used (Hart 2007) for marine seismic 
exploration but present various disadvantages such as low 
sensitivity, small dynamic range and poor anti-interference 
ability. These shortcomings lead to the loss of abundant 
low-frequency information contained in the seismic data. 
Over the past two decades, the optical fiber technology has 
been developing rapidly and has since become increasingly 
used in geophysical exploration (Shao et al. 2011; Luo et al. 
2012; Wang et al. 2010; Ni et al. 2004), as the optical fiber 

allows for the fast and continuous transmission of massive 
amounts of data (Peng and Zhang 2018; Keith 2018; Yun 
et al. 2012; Zhang and Ni 2004). Optical fiber hydrophones 
have also a wider bandwidth, higher sensitivity and a better 
high frequency response. For example, the low frequency 
of optical fiber hydrophones can be 1 Hz while the low fre-
quency of piezoelectric hydrophones now usually is 3 Hz. 
These characteristics have greatly improved the quality of 
the marine seismic data, although several aspects have yet 
to be improved.

In this study, an innovative seismic data hardware col-
lection system using optical fiber cable and hydrophones 
is introduced in “Hardware collection system” section. The 
acquisition parameters of one marine seismic exploration 
experiment conducted in 2017 by Guangzhou Marine Geo-
logical Survey with this system is then presented in “Data 
acquisition” section, followed by the analysis of the differ-
ent types of noise measured and a description of the various 
steps necessary to process the data, such as noise elimina-
tion, velocity analysis and suppression of multiples (“Data 
processing” section). The results of a pre-stack time migra-
tion section were then analyzed in “Migration results” sec-
tion, revealing the high SNR, vertical resolution and fidelity 
of the system. A comparison with traditional piezoelectric 
hydrophones seismic data is also presented in this section, 
as a way to validate our results. Concluding remarks are 
provided in “Discussion and conclusion” section.
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Hardware collection system

The hardware collection system was developed by Bei-
jing Appsoft Technology Co., Ltd. The system uses inter-
ferometric fiber-optic hydrophones and is composed of 
an optical fiber hydrophone array, a light source optical 
modulation amplification system, a photoelectric signal 
processing system, an hydro-acoustic signal processing 
unit, and an integrated information storage display con-
trol setup (Hao et al. 2018). The complete system basic 
principle can be summarized as follows: The laser light 
emitted by the laser device is divided into two paths by 
fiber coupling with one path constituting the signal arm 
of the fiber interferometer which receives the modulation 
of the sound wave. The other path constitutes the refer-
ence arm, which does not receive the modulation of the 
acoustic wave, contrary to that of the information arm. The 
optical signal receiving the modulated acoustic wave is 
reflected by the rear end reflection film and then returned 
to the fiber coupler causing an interference. The interfered 
optical signal is then converted into an electrical signal 
by a photodetector, following which the information of 
the acoustic wave can be obtained via signal processing.

Data acquisition

In 2017, the optical fiber seismic data collection system 
was used to collect marine seismic data along the survey 
line shown in Fig. 1. The line is located in the northern 
continental margin of the South China Sea, and in this 
area the gas hydrate has been found by many means. The 
acquisition parameters were as follows: The low-cut fre-
quency was 5 Hz (the low-cut frequency can be selected, 
indeed the low frequency of optical fiber hydrophones can 
be 1 Hz), the cable length 800 m, the number of traces 
in one shot gather was 256, the first part (A) of the cable 
was located at a depth of 5 m, and the second part (B) at 
10 m. The channel spacing was 3.125 m and there was only 
one hydrophone per channel. The shot spacing was 25 m 
and the time sampling interval 0.25 ms, whereas the time 
record length was 7 s and the minimum offset was 191 m. 
The total length of the survey line was 48 km.

To compare the optical fiber hydrophones’ ability for 
marine seismic exploration, seismic data using piezoelec-
tric hydrophones collected in 2015 by Guangzhou Marine 
Geological Survey are also processed. The acquisition sys-
tem was SEAL428 with the following acquisition parame-
ters: the low-cut frequency was 3 Hz, the cable length was 
750 m, the number of traces in one shot gather was 120, 
and the cable depth was 5 m under the sea surface. The 

channel spacing was 6.25 m and the shot spacing 25 m. 
The time sampling interval was 0.25 ms with a recording 
time length of 5 s, and the minimum offset was 100 m. The 
total length of the survey line was also 48 km.

The shot lines of the two surveys are almost at the same 
position, and the receiver lines’ interval of the two surveys 
was about 320 m; therefore, the reflection point lines’ inter-
val of the two surveys was about 160 m.

Data processing

Processing workflow

Standard marine seismic data processing techniques are 
adopted for processing both the optical fiber hydrophones’ 
data and the piezoelectric hydrophones’ data. Because the 
channel interval of the optical fiber acquisition system is 
3.125 m and that of the piezoelectric acquisition system is 
6.25 m, two channel data of the optical fiber system were 
selected for processing. In order to reduce the amount of 
data and further harmonize the parameters of the two sur-
vey’s data, the time sample interval was resampled to 1 ms 
for the two sets of data. The processing steps and the pro-
cessing parameters of the two datasets are similar except for 
the noise elimination of the optical fiber system, whose data 
include noises which present different characteristics. The 
whole processing workflow is shown in Fig. 2. The main 
processing techniques are a pre-stack noise attenuation for 
improving the SNR, amplitude compensation for improving 
the energy of the deep reflection events, predictive deconvo-
lution for enhancing the data’s vertical resolution, multiples 

Fig. 1  Survey Geometry. The red line is the source line and the blue 
line is the receiver line. As ocean waves occurred during the experi-
ment, the source and receiver lines do not coincide perfectly
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attenuation for eliminating multiple echoes, and velocity 
analysis for achieving the velocity model. Finally, the pre-
stack time migration is conducted and the final pre-stack 
time migration sections were obtained.

Noise analysis and elimination

Noise suppression is a very important step in the process-
ing of marine seismic data. Under normal circumstances, 
underwater cables are mainly affected by three types of 
noise: mechanical noise, turbulent noise and acoustic noise. 
Acoustic noise is caused by the external environment, while 
mechanical noise and turbulence noise are related to the 
hydrophones. Here, four shot gather optical fiber seismic 
records are shown in Fig. 3 with the water depth decreas-
ing from the left to the right panels. The characteristics of 

the noise are different in each shot gather, which differs 
from the piezoelectric hydrophones’ data whose noise is 
almost similar in each shot gather. Figure 3a–d shows that 
all the low-frequency linear noise is from the shot side to the 
receiver side, and its apparent velocity is about 1019 meters 
per second (m/s).

The spatial periodic noise in the seismic record within 
a distance of 16 channels (50 m) is shown in Fig. 4. The 
whole optical fiber cable consists of 16 short optical fiber 
cables whose length is 50 m, connected with each other by 
pairs of short cables. Possible flaws in the connection design 
may cause some spatial periodic noise in the data record. 
Another type of noise, possibly caused by surge waves, is 
apparent from the data and is shown in Fig. 5. It is relatively 
concentrated, has a strong energy, and its velocity is about 
30 m/s for a main frequency of 3.3 Hz.

Raw data Processing

Geometry Definition

Pre-stack noise Attenuation

Amplitude Compensation

Deconvolution Trace gathering Sorting

Multiple Suppression

Velocity Analysis

Pre-stack Time Migration

Fig. 2  Seismic data processing workflow

Fig. 3  Four shot gather seismic records. From left to the right, the water depth decreases. Note that the noise in the four shot gathers data is not 
consistent. This phenomenon differs from the piezoelectric hydrophones’ noise, which is similar in each shot gather

Fig. 4  Spatial periodic noise. The noise shown here may be caused by 
the connection of the cable
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Lastly, a low-velocity and linear noise is seen spread-
ing from the receiver side to the shot side in Fig. 6 with 
an apparent velocity of about 1093 m/s. It presents good 
linear and regular features.

Overall, the optical fiber system data are affected by 
four kinds of noise against only one type of noise (surge 
noise) for the piezoelectric acquisition system data. The 
noise from the optical fiber system is suppressed via the 
frequency division de-noising technique. The seismic data 
are first separated into several frequency bands, whose 
noise is then suppressed. The final processed signal is 
then obtained by combining the various processed bands. 
Figure 7a, b, which displays the shot gather prior and fol-
lowing the noise suppression processing, demonstrates the 
efficiency of the method, as most of the noise has been 
suppressed and only weak residual noise remains.

Multiples elimination

As a strong impedance difference interface exists between 
the air and the sea water, multiple echoes (hereafter referred 
to as multiples) are generated at the interface during the 
wave propagation. The suppression of multiples is not trivial 
as the maximum offset of the data is less than 1000 m. Here, 
we use successively several methods to suppress the multi-
ples, i.e., the surface-related multiple elimination (SRME), 
predictive deconvolution and the radon transform. The 
SRME technology is a data-driven mode, as it convolutes the 
data with itself in both the time and space domains to predict 
the occurrence of multiple waves, and does not require any 
information about the bottom properties. The results of the 
multiples suppression are exemplified by the stack section 
shown in Fig. 8, before (Fig. 8a) and after (Fig. 8b) imple-
mentation of this processing. The number and intensity of 

Fig. 5  Low-velocity and low-frequency noise. The energy of the 
noise is strong; its main frequency is about 3.3 Hz, and the apparent 
velocity is about 30 m/s. This may be a surge noise

Fig. 6  Low-velocity linear noise. The linear noise is seen spreading 
from the receiver side to the shot side with an apparent velocity of 
about 1093 m/s

Fig. 7  Effects of noise suppres-
sion by the frequency division 
technique. a Shot gather prior 
and b after the noise suppres-
sion processing
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the multiples have been considerably reduced, and the few 
remaining residuals are possibly peg-leg multiples that were 
impossible to eliminate.

Velocity analysis and velocity model

Based on the approximately hyperbolic shape of the reflec-
tion events, the seismic data are extracted into common 

Fig. 8  Multiples suppression. Example of a portion of the stack section a before and b after suppression of the multiples. The data were pro-
cessed by Radon transform, the SRME and predictive deconvolution
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middle point (CMP) gathers in order to obtain the velocity 
field via a velocity analysis. Figure 9a, b presents the veloc-
ity spectra from a CMP trace before and after the various 
processing steps, respectively. The velocity spectrum after 
correction is seen to be better focused, which makes the 
velocity curve (black line in Fig. 9) easier to detect. Note 
that the trace of multiples velocity in the spectrum is hardly 
distinguishable following the suppression of the multiples 
in the data. Following the noise suppression processing, the 

CMP gather data present a higher SNR, while the reflection 
events are almost flattened after applying the normal move 
out (NMO) correction.

Using the velocity profile detected after the various pro-
cessing steps, the velocity field is obtained, as shown in 
Fig. 10. Here, the velocity distribution is consistent with 
the structural characteristics of the bottom, and a local high 
velocity area can be seen in the middle of the survey line. 
This velocity field is further used for the pre-stack time 
migration processing.

Fig. 9  Velocity spectra and the CMP gather. CMP gather (right) and its velocity spectra (left) before (a) and after (b) the applications of the vari-
ous processing steps

Fig. 10  Velocity Field. A local 
high velocity is visible in the 
middle of the survey section, 
and the velocity distribution is 
consistent with the structural 
characteristics
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Migration results

Figure 11a, b presents the pre-stack time migration sec-
tion obtained from the optical fiber hydrophones’ data and 
from the piezoelectric hydrophones’ data, respectively, 
while Fig. 12a, b shows a close-up view of the pre-stack 
time migration section from each of the two systems. These 
figures reveal that the overall geological structure is clear, 
and the two sections resolution is equivalent and present a 
similar SNR. In Fig. 11a, there is a blur area around CMP 
8001; this is because there are no data collected. Because 
the length of the migration sections is 48 km, it is hard to 
distinguish their differences in Fig. 11. Only limited differ-
ences exist in some geological details in Fig. 12.

Discussion and conclusion

The seismic data from the optical fiber system typically 
present four kinds of noise. The presence of the two types 
of noise whose velocity approximates 1000 m/s may be 
caused by our use of the piezoelectric system’s auxiliary 
devices for this experiment, while the noise whose veloc-
ity is about 30 m/s may be a surge noise. The difference 
between the noises from each system may be explained by 
the presence of only one hydrophone per channel for the 
optical system versus several hydrophones per channel for 
the piezoelectric hydrophones system. The periodic noise 
issue has been proved to be caused by faulty cable connec-
tions and has since been solved. After suppression of these 
various types of noise, the comparison of the pre-stack 

Fig. 11  Migration sections. 
Pre-stack time migration sec-
tion from a the optical fiber 
hydrophones’ data and b the 
piezoelectric hydrophones’ data
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time migration sections obtained via the two systems 
exhibited little difference. The small differences between 
the two sections data may be explained by the 160 m inter-
val between the two sections, which should induce small 
differences in the geological structures observed. Yet, the 
geological structure seen by both systems was consistent 
overall, and the resolution and SNR of the optical fiber 

system were both very high. These results thus validated 
the feasibility of data acquisition, and the quality of the 
optical fiber cable and hydrophone system for marine seis-
mic surveying. For the optical fiber system needs little 
electric energy, in the future the optical fiber cable can be 
designed longer than the electric cable.

Fig. 12  Close-up view on 
the migration sections. a As 
obtained by the optical fiber 
hydrophones’ data and b by the 
piezoelectric hydrophones’ data
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Abstract
Sparkers are the sound source widely used in marine seismic exploration to provide high-resolution vertical sections. Spark-
ers are relatively simple, inexpensive, high-frequency sources. In this study, the types of noise occurring in sparker source 
data were analyzed and attenuated by a processing technique. Frequency–wave number (f–k) filtering is used for attenuating 
the linear noise. Predictive deconvolution is used for attenuating the ghost waves and bubble effects. A complete processing 
workflow was designed for processing the data, and the migration section was obtained. The results show that the sparker 
source data are capable of achieving vertical sections with very high resolution. It is suggested as a necessary technique for 
high-accuracy gas hydrate exploration in the South China Sea.

Keywords Sparker · Marine seismic · Deconvolution · Migration · Gas hydrate

Introduction

Ice-like gas hydrate is formed by methane and water mole-
cules with a clathrate structure and is stable under conditions 
of high pressure and low temperature. It is widely distributed 
in marine sedimentary layers at depths of several hundred 
meters beneath the seafloor on most continental slopes (Kong 
et al. 2012). Its thickness varies greatly in the horizontal 
direction. As a result, high-resolution seismic exploration is 
a necessary requirement for gas hydrate identification.

The use of relatively short, high-resolution digital hydro-
phone streamers with sparker sources provides many oper-
ational advantages. Sparkers use an impulsive electrical 
discharge to produce a sound pulse that, in theory, can pro-
duce very high-resolution images of the shallow subsurface 
because of its higher frequencies and bandwidth.

However, many marine seismic surveys that use sparker 
sources often apply standard processing flows that fail 

to take advantage of the broadband characteristics of the 
sparker source, thus compromising the solution (Kluesner 
et al. 2018). Maximizing the data resolution is critical in 
studies of near-surface processes such as Quaternary geol-
ogy, tectonic geomorphology, substrate fluid flow, and sub-
marine landslide generation (Jones 2013; Liberty et al. 2013; 
Brothers et al. 2018; Haeussler et al. 2015; Johnson et al. 
2017; Hill et al. 2017; Maier et al. 2018; Beeson et al. 2017; 
Conrad et al. 2018).

In this study, data from sparker sources were analyzed 
and processed to confirm their feasibility for high-resolution 
gas hydrate exploration. Wavelet stability was analyzed, 
together with the types of noise in the data and attenuated 
them using a processing technique that employs f–k filter-
ing to attenuate the linear noise. Application of predictive 
deconvolution is useful for attenuating the ghost waves and 
bubble effects. A complete processing flow was designed, 
and the data were processed to obtain stack and migration 
sections. The results show that sparker source data can pro-
duce very high-resolution vertical sections.

Data acquisition

An acquisition test of sparker-sourced seismic exploration 
was completed for the northern slope of the South China 
Sea by the Guangzhou Marine Geological Survey Bureau 
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in 2015. The depth of the sea in the test area is about 
600–2000 m. One shot line was deployed on the sea sur-
face, with shot intervals of 25 m and 120 traces per shot. 
The record length was 5 s; sample interval was 0.25 ms. 
The source was a 50 kJ sparker array. Receiver interval 
was 6.25 m. The depth of the sources and streamer was 
all 5 m. Offset was between 100 m (minimum) and 850 m 
(maximum).

Data analysis

Direct‑arrival wave analysis

The direct-arrival wave quality is an indicator of the qual-
ity of the spark source. The same traces of two different 

sources were selected. Figure 1 shows that the waveforms 
are almost identical. This confirms that the spark sources are 
stable; therefore, the deconvolution technique is applicable 
for processing the data and improves the vertical resolution.

Noise analysis

Noise suppression is a very important step in the processing 
of marine seismic data. To effectively suppress noise, it is 
necessary to recognize the noise and its characteristics. Four 
categories of noise can be clearly recognized in the sparker 
source seismic data. The first is turbulence noise (Fig. 2a). 
The energy of turbulence noise is very strong and its main 
frequency is very low, with amplitude peaks at 3 Hz and 
8 Hz. The second kind is random noise (Fig. 2b), evident 
in all of the shot gather data. The third kind is abnormal 

Fig. 1  Direct-arrival waves from two sources are consistent

Fig. 2  Noise analysis: a turbulence noise; b random noise; c abnormal amplitude noise; and d linear noise
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amplitude noise on the shot side. Figure 2c shows abnormal 
amplitude noise (which is linear noise) throughout the whole 
record length. The fourth kind is linear noise (velocity about 
2100 m/s and main frequency about 102 Hz) on the receiver 
side (Fig. 2d).

Ghost wave analysis

The reflections of the layers near the seafloor are very con-
sistent (Fig. 3); however, they are not all true reflections 
of the layers. Some of the events are ghost waves, due to 
seismic energy that travels upward from the sparker source 
and is reflected at the seawater/air interface, which is an 
impedance boundary with reflection coefficient approxi-
mately equal to − 1 (Baldock et al. 2013). This type of 
air–sea reflection (‘source ghost’) closely follows the pri-
mary pulse in time. Periodic notch frequency points occur in 
the frequency–spectrum figure, which may seriously reduce 
the vertical resolution.

Data processing

Routine marine seismic data processing was adopted in this 
study. The complete processing workflow is shown in Fig. 4. 
The main processing techniques are:

• pre-stack noise attenuation to improve the signal-to-noise 
ratio (SNR)

• amplitude compensation to improve the energy of deep 
reflection events

• predictive deconvolution to improve vertical resolution
• seismic-multiples attenuation to eliminate the multiples
• velocity analysis for achieving the velocity model

Finally, the pre-stack migration processing was conducted 
and the final migration section was obtained.

Noise attenuation

Random noise in sparker source data is more serious than 
from an air gun source, so attenuation of the random noise 
is a key step in improving SNR. Figure 5 shows that SNR 
was clearly improved after processing.

There is an abnormal linear noise in the shot side and the 
receiver side, which needs to be attenuated. Here, the seis-
mic data are firstly separated in different frequency ranges, 
then the linear noise is attenuated in the different frequency 
ranges, and finally the seismic data are integrated. Figures 6 
and 7 clearly show improved SNR after processing.

Fig. 3  Ghost waves follow the 
primary pulse in time. Periodic 
notch frequency points in the 
frequency–spectrum graph 
severely reduce vertical resolu-
tion of the image

Raw data Processing

Geometry Definition

Pre-stack noise Attenuation

Amplitude Compensation

Deconvolution Trace gathering Sorting

Multiple Suppression

Velocity Analysis

NMO

Pre-stack Migration

Fig. 4  Seismic data processing workflow. Main processing techniques 
are pre-stack noise attenuation, amplitude compensation, predictive 
deconvolution, multiples attenuation, velocity analysis, and normal 
moveout (NMO)
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Ghost attenuation

In an effort to increase resolution and better isolate the 
Earth’s impulse response, geophysicists commonly use 
processing techniques such as deconvolution to reduce the 
energy of multiples and sharpen the source signature on seis-
mic reflection records (Yilmaz 2001; Duchesne et al. 2007; 

Sheriff 2005; Crocker and Fratantonio 2016; Scheuer and 
Oldenburg 1988). In the present study, the predictive decon-
volution technique was used to attenuate the ghost wave 
and bubble effects. Figure 8 shows that after processing, 
the amplitudes at the notch frequency points were clearly 
improved. The spectrum becomes flat, and the vertical reso-
lution is improved accordingly.

Fig. 5  Random noise. Shot 
gather a before suppressing 
random noise and b after sup-
pressing random noise

Fig. 6  Suppression of abnormal linear noise. Shot gather a before suppression; b after suppression; and c the suppressed linear noise
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Migration section

Figure 9 shows the final migration section. The seafloor 
and the bottom-simulating seismic reflector (BSR) can be 
clearly seen in the migration section. The reflection blank 
zone between seafloor interface and the BSR is very clear. 
The frequency bandwidth is about 10–400 Hz, indicating 
that the vertical resolution of the migration is very high.

Conclusion

The analysis showed that there are four kinds of noise in 
the sparker source seismic data: random noise, turbulence 
noise, linear noise on the receiver side, and abnormal linear 
noise on the shot side. These were attenuated by processing.

The migration section shows that the data provided very 
high vertical resolution sections. This is suggested as a very 
necessary technique for high-accuracy gas hydrate explora-
tion in the South China Sea.

Fig. 7  Attenuation of abnor-
mal linear noise. Shot gather a 
before suppression and b after 
suppression

Fig. 8  Attenuation of ghost wave by predictive deconvolution. Shot gather a before suppression and b after suppression
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Abstract
The gamma distribution functions with one shape parameter, employed to describe the parametric hydrograph, proved inef-
fective for the upper Vistula River and the middle Oder River water regions. It was therefore necessary to find a different 
function. The Pearson Type IV distribution functions proposed by Strupczewski with one and two shape parameters were 
analyzed for their applicability based on the data acquired from 60 water gauges, 30 of which were located on the Vistula 
River and the other 30 were on the Oder River. The shape parameter (parameters) and the time of rising limb were opti-
mized based on the calculated hydrograph widths at 50% and 75% of peak flow (W50 and W75) as well as on the skewness 
coefficient s. The calculated parametric hydrographs were compared with the nonparametric input hydrographs with regard 
to the closeness of their volumes and the position of their centers of gravity. Both Pearson Type IV distribution functions 
proved to fit well. However, the function with two shape parameters did not yield the exact solution since the condition of 
the assumed objective function was met by a very large group of pairs of m and n shape parameters. It was therefore assumed 
that the recommended function is the Pearson Type IV distribution with one shape parameter. This function has an additional 
advantage of having an inflection point located between the W50 and W75, which allows to use the exponential function for 
the rising or recession limb that better describes either part of the hydrograph.

Keywords Parametric hydrograph · Strupczewski’s methods · Gamma distribution function · Archer’s method · Pearson 
Type IV distribution function

Introduction

Both climate change (Hattermann et al. 2013) and the effect 
of anthropopressure enforce the use of hydrological meth-
ods to assess the scale of threats and to predict their occur-
rence that have been neglected so far. Hydrological methods 
attempt to describe extreme phenomena. Increasing attention 
is paid to their definition in a time-variant system, i.e., focus-
ing not only on extreme values but also on the time course 
of these phenomena, which is related to the determination 
of the shape of a flood wave.

The knowledge of the theoretical shape of a flood wave 
and the possibility of its definition using its basic parameters 
is very much needed and desired in a number of design tasks 
in the field of water management, hydraulic engineering 
(Mioduszewski 2014), water and sewage management, spa-
tial management (Zevenbergen et al. 2011) as well as forest 
management. In contrast to the commonly used design flows, 
the hypothetical waves expand the range of usable data, e.g., 
by the volume of a flood wave with a given exceedance prob-
ability and the variation of the flow rate for the rising and 
falling limbs. Therefore, the design can take into account the 
flow in the form of a hydrograph with a given exceedance 
probability (Ciepielowski 1987, 2001).

The hypothetical hydrograph is understood as such the-
oretical hydrograph that demonstrates representative flood 
wave form, which may occur under specific conditions at 
a selected location, for a given maximum (design) value 
(Gądek and Środula 2014). It is being increasingly utilized 
in the widely understood flood risk assessment (Apel et al. 
2006; Vrijling et al. 1998; Zeleňáková et al. 2017) and in 
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the estimation of loss of lives and property (Ernst et al. 
2010; Jonkman and Vrijling 2008).

These hydrographs are presented in an analytical form, 
using a variety of functions, or in a synthetic form, which 
uses two-dimensional statistical analysis (De Michele et al. 
2005; Serinaldi and Grimaldi 2011). In some countries, 
analytical hydrographs are called parametric flow hydro-
graphs. Their main advantage is that they can be deter-
mined at any cross section of the river, with the influence 
of climate change on their course taken into consideration 
(O’Connor et al. 2014; Bayliss 1999; Mills et al. 2014). 
In order to describe the course of the parametric design 
hydrograph, it is necessary to use the appropriate math-
ematical function. The most common one is the gamma 
distribution function, which was proposed by Nash in 1957 
(Nash 1957).

The function gamma describes the rising limb very well 
with large flow heights (above 50% of the maximum flow 
Qmax), but in the lower part of the recession (falling) limb, 
large discrepancies occur. For this reason, in Ireland, the 
exponential function known as the UPO-ERR-Gamma (unit-
peak-at-origin gamma curve coupled with an exponential 
replacement recession curve) has been introduced for the 
recession limb (O’Connor et al. 2014).

It is more reasonable to use homogeneous functions 
instead of spline functions for the needs of analytic hydro-
graphs. The attempt to use the Hayashi distribution (Hayashi 
et al. 1986; Aziz et al. 2006), the negative binomial dis-
tribution, the inverse Gaussian distribution and the gamma 
distribution with algebraic replacement recession curve 
was considered unconvincing (O’Connor et al. 2014). The 
authors of this manuscript also verified the applicability of 
the three-parameter Pearson Type III distribution function 
with two shape parameters (Gądek et al. 2017b). Although 
the proposed method yielded positive results, it could not 
be recommended due to the very large number of solutions 
for the parameters tp, m and n (where m and n represent 
the shape parameters). The function describing a hydro-
graph must not only be adapted to the time course of flow 
variations but also yield the unique solution. Such rigorous 
assumption allows to determine the parametric design hydro-
graph in any section of the river, which has only been pos-
sible so far using hydrological models (Ozga-Zielińska et al. 
2002; Wałęga 2013; Pietrusiewicz et al. 2014), being a rather 
cumbersome process and not always yielding unambiguous 
results, mainly due to the lack of procedures to determine the 
course of a hyetograph or a possibility to assess the moisture 
conditions in the catchment.

In the design hydrology, parametric hydrographs may be 
determined in any cross section of the river. This is in line 
with the expectations regarding this type of solutions and the 
idea originating in the 1930s associated with the isochrones 
theory developed by Dubelir, Boldakov and Čerkašin. This 

theory is based on the genetic flood wave equation which is 
given by:

where Qt is the outflow rate from the catchment at time t, ht−τ 
the thickness of water layer discharged by the catchment in 
the time unit t − τ, bτ the average width of the partial runoff 
area, vτ the runoff velocity, t the time of discharge from the 
catchment, and τ the time needed for water to reach the cross 
section.

 This method was used until the mid-1960s and resulted 
in the creation of hydrographs presented in the form of a 
triangle or trapezium. Its advantage was the ability to deter-
mine the hydrograph in a selected cross section, which 
was not possible later as a result of the use of the so-called 
hypothetical hydrographs determined by the Reitz and Kreps 
method (Reitz and Kreps 1945), the Warsaw University of 
Technology method (Gądek et al. 2017b), the Hydroprojekt 
method (Gądek and Środula 2014) or the Krakow method 
(Gądek and Tokarczyk 2015).

The modified Pearson Type III distribution function, con-
sistent with the nonparametric hydrograph with one shape 
parameter m, is given by (Gądek et al. 2017b):

and with two shape parameters:

where qt is the percentage of peak flow at time t [%], tp the 
time to peak [h], t the time from the beginning of rising limb 
[h], and m, n the shape parameters [−].

Similar solutions with one shape parameter were pre-
sented in the USA (McEnroe 1992) and in Ireland under the 
name UPO gamma (unit-peak-at-origin gamma) (O’Connor 
et al. 2014).

The authors of this research paper propose to use the Pear-
son Type IV distribution with one shape parameter and two 
shape parameters for the description of the analytical hydro-
graph. This distribution was tested for the analytical descrip-
tion of hydrographs in the 1960s, which was then considered 
to be less accurate than the Pearson Type III distribution with 
two shape parameters (Strupczewski 1964; Strupczewski et al. 
2013). Currently, this distribution is practically disused. The 
authors modified the Pearson Type IV distribution functions 
proposed by Strupczewski to match the analytical hydrograph 
to the nonparametric hydrograph determined by the Archer’s 

(1)Qt =
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∫
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method. The objective of this paper is to prove that the modi-
fied Pearson Type IV distribution functions are well suited for 
describing a parametric hydrograph based on three parameters: 
hydrograph widths at 50% and 75% of peak flow (W50 and 
W75) and the skewness coefficient s. Innovative research has 
been carried out for two water regions of Poland: the upper Vis-
tula River and the middle Oder River. Thirty gauged cross sec-
tions were included in the calculations for each of these regions. 
To determine the parameters W50, W75 and s, nonparametric 
hydrographs were developed in each of these cross sections. 
The developed method ought to have a universal character; it 
should enable determining parametric hydrographs in any cross 
section of any river. In order to prove the universality of the pro-
posed distribution functions, a large number of catchments with 
diverse hydrological regime were adopted for the calculations.

Materials and methods

Study area

The research studies were carried out based on the recorded 
hydrographs in 60 measurement cross sections, located in 
the upper Vistula River and the middle the Oder River water 
regions (Fig. 1). The selected catchments represented the 
areas of various types of hydrograph formation. The selec-
tion was made so that they represented different types of 
geographic areas: mountain, highland as well as lowland 
catchments. Eight unimodal hydrographs with the highest 
flow values Qmax selected from the period 1960–2014 were 
adopted. Table 1 illustrates the gauged stations systematized 
from 1 to 30 for the Vistula River, and from 31 to 60 for the 
Oder River. Some gauged stations are located downstream 
of the water reservoirs, but the distances from the reservoirs 
are so large that no influence of the reservoirs on the hydro-
graphs in gauged stations could have been assumed.

Methods

Parametric flow hydrographs can be determined in any cross 
section of the river regardless of the size of the catchment. It 
is made possible thanks to the Archer’s method of determin-
ing nonparametric hydrograph (i.e., the median of recorded 
hydrographs). The nonparametric hydrograph determined 
by the Archer’s method is used only to determine the value 
of hydrograph width at 50% (W50) and 75% (W75) of peak 
flow and the skewness coefficient s (Archer et al. 2000). The 
Archer’s method uses W50 and W75 similarly to the Snyder 
method (1938) where with similar parameters characterizing 
the Synthetic Unit Hydrograph (Snyder 1938; Challa 1997).

According to this method, the nonparametric hydro-
graph has an independent rising limb and an independ-
ent recession limb (Fig. 2). The flows are presented as 

percentages of peak flow. The horizontal axis indicates the 
duration of percent flow exceeding the given value. The 
time for the rising limb of the hydrograph is expressed 
in negative values, and for the recession limb in positive 
values. At the time t = 0 there is a maximum percentage of 
peak value q = 100%. The time t of the individual percent 
flows is the median of the durations of percent flow of the 
recorded hydrographs, separately for the rising limb and 
separately for the recession limb (O’Connor et al. 2014; 
Gądek et al. 2017a). Such a nonparametric hydrograph 
is determined based on the recorded hydrographs. The 
applied methods of analytical hydrographs determination 
based on nonparametric hydrographs assume various num-
bers of unimodal flow hydrographs. The Warsaw Univer-
sity of Technology method uses six unimodal flow hydro-
graphs (Gądek et al. 2016), the Hydroprojekt method—one 
(Gądek and Środula 2014), and the Krakow method—eight 
(Gądek and Tokarczyk 2015; Gądek et  al. 2016). The 
authors applied the maximum number of hydrographs 
from used methods, i.e., eight unimodal flow hydrographs.

In 1964, Strupczewski proposed to use the Pearson Type 
III distribution function with one shape parameter m and 

Fig. 1  Location of water gauge in: a the middle Oder River water 
region and b the upper Vistula River water region (see Table 1)
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with two shape parameters m and n as well as Type IV with 
one shape parameter to describe the parametric hydrographs 
(Strupczewski 1964; Ciepielowski 1987, 2001). The solu-
tions proposed by Strupczewski concerned the methods 
based on the traditional presentation of nonparametric and 
parametric hydrographs. The authors of this manuscript 
adapted the function notation to the description consistent 
with the properties of the nonparametric hydrograph (median 
of the hydrographs), developed using the Archer’s method. A 
parametric hydrograph is created from the parameters W50, 
W75 and s determined of the nonparametric hydrograph 
developed using the Archer’s method (see Fig. 3).

The parametric hydrograph is developed on the basis 
of the Archer’s nonparametric hydrograph. For analytical 
description, two versions: the first with one shape parameter 
and the second with two shape parameters, of the Strupcze-
wski Pearson Type IV distribution function were adopted. 
The first function is defined as follows

The second function is given by:

The authors modified Eqs. (4) and (5):
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Table 1  Water gauges in the hydrologic order for the Oder River and Vistula River water region

Nos. River Water gauge A  (km2) Nos. River Water gauge A  (km2)

1 Odra Głogów 36,403 31 Wisła Skoczów 296
2 Odra Cigacice 39,900 32 Wisła Sandomierz 31,847
3 Nysa Kłodzka Międzylesie 49.7 33 Wisła Zawichost 50,732
4 Nysa Kłodzka Bystrzyca Kłodzka 260 34 Przemsza Jeleń 2006
5 Nysa Kłodzka Kłodzko 1084 35 Bystra Kamesznica 48.2
6 Nysa Kłodzka Bardo 1744 36 Żabniczanka Żabnica 22.8
7 Wilczka Wilkanów 35.1 37 Skawa Sucha Beskidzka 468
8 Bystrzyca Bystrzyca Kłodzka 64 38 Skawa Wadowice 835
9 Biała Lądecka Lądek Zdrój 166 39 Wieprzówka Rudze 154
10 Bystrzyca Dusznicka Szalejów Dolny 175 40 Raba Kasinka Mała 353
11 Ścinawka Tłumaczów 256 41 Raba Stróża 644
12 Ścinawka Gorzuchów 511 42 Raba Proszówki 1 470
13 Biała Głuchołaska Głuchołazy 283 43 Lubieńka Lubień 46.9
14 Bystrzyca Jugowice 122 44 Uszwica Borzęcin 265
15 Bystrzyca Jarnołtów 1721 45 Dunajec Nowy Targ-Kowaniec 681
16 Piława Mościsko 292 46 Dunajec Nowy Sącz 4341
17 Czarna Woda Gniechowice 251 47 Dunajec Żabno 6735
18 Strzegomka Łażany 362.3 48 Grajcarek Szczawnica 73.6
19 Kaczawa Świerzawa 133.7 49 Poprad StarySącz 2071
20 Kaczawa Rzymówka 313.7 50 Biała Tarnowska Koszyce Wielkie 957
21 Kaczawa Dunino 774 51 Nida Brzegi 3359
22 Kaczawa Piątnica 1807 52 Czarna Nida Morawica 755
23 Nysa Szalona Jawor 298 53 Czarna Staszów 571
24 Czarna Woda Bukowna 430.5 54 Jasiołka Jasło 164
25 Bóbr Kamienna Góra 190 55 Koprzywianka Koprzywnica 498
26 Bóbr Wojanów 535.2 56 San Przemyśl 3686
27 Bóbr Jelenia Góra 1047 57 San Rzuchów 12,180
28 Bóbr Dąbrowa Bolesławiecka 1713 58 San Radomyśl 16,824
29 Bóbr Szprotawa 2879 59 Osława Szczawne 302
30 Bóbr Żagań 4255 60 Wisłok Puławy 131
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The optimization of the shape parameters and the time to 
peak tp in all formulas was carried out based on the values 
W50 and W75 of the Archer hydrograph and the skewness 
coefficient s, determined for the hydrograph width W50 (see 
Fig. 2). It was also assumed that the shape parameters were 
positive values to enable application of empirical formulas. 
The descriptors and the skewness coefficient s were calcu-
lated based on the median of hydrographs for 30-year data 
sequences for both catchments.

The smallest deviation of the values calculated from the 
given values of hydrograph width at 50% and 75% of peak 

flow was adopted as the selection criterion (the objective func-
tion) in accordance with the following dependence:

where W75 is the hydrograph width at 75% of peak flow 
determined by the nonparametric hydrograph [h], â the 
hydrograph width at 75% of peak flow W75 calculated 
from one of the formulas (6) and (7) [h], b the duration of 
the percent flow exceeding 50% for the rising limb of the 
nonparametric hydrograph, b = s·W50 [h], b̂ the duration of 

(8)S = (W75 − â)2 +
(
b − b̂

)2
+ (c − ĉ)2 = min

Fig. 2  Exemplary nonparamet-
ric hydrograph according to 
Archer

Fig. 3  Exemplary parametric 
design hydrograph
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the percent flow exceeding 50% calculated from one of the 
formulas (6) and (7) [h], c the duration of the percent flow 
exceeding 50%, for the recession limb of the nonparamet-
ric hydrograph [h], and ĉ the duration of the percent flow 
exceeding 50% calculated from one of the formulas (6) and 
(7) [h].

Results

The calculations consisted of:

1. Determination of Archer’s nonparametric hydrographs 
for 60 water gauges.

2. Determination of parameters based on the Archer’s non-
parametric hydrographs: hydrograph width at 50% of 
peak flow (W50), hydrograph width at 75% of peak flow 
(W75) and skewness coefficient s.

3. Definition of hydrograph shape parameters (m and n) 
and the rising time tp for each water gauge cross section 
according to the selection criterion (Eq. 8).

4. Determination of the Pearson Type IV parametric hydro-
graphs with one and two shape parameters for the calcu-
lated parameters: m, n and tp.

5. Determination of the W50, W75 and s parameters of the 
Pearson Type IV parametric hydrographs.

Specific steps of calculation were adopted for the calcu-
lated shape parameters m and n (0.01) and for the time of 
rising limb tp (1 h).

The analytical hydrographs calculated using the Pearson 
Type IV function with one and two shape parameters exhibit 
similarity.

Figure 4 shows the values of W50, W75 and s of selected 
Archer’s hydrographs calculated using the Pearson Type IV 
distribution function with one and two shape parameters. 
Table 2 shows the hydrograph parameters for all 60 water 
gauges.

Figure 4 confirms that parametric hydrographs (Pearson 
1 and Pearson 2) deviate from nonparametric hydrographs 
determined by the Archer’s method. Much better fit occurs 
in the upper parts of the hydrographs (above W50). The fit 
in the lower parts is much worse which can be expected 
because of the assumption that the hydrographs are adjusted 
based on the W50 and W75 parameter values.

Analysis and discussion

Several types of quality measures for matching nonparamet-
ric and parametric hydrographs were adopted for the analy-
sis. Relative error (RE) and mean relative error (MRE) are 
criteria recommended in Technical Research Report Volume 
III Hydrograph Analysis (O’Connor et al. 2014) to assess 
the compliance of the parametric and nonparametric hydro-
graphs (Fig. 5). 

Relative error of hydrograph width was calculated from 
the following formula:

where  REp is the relative error of hydrograph width Wp, 
p = 50%, p = 75% [−], Wp the hydrograph width at p = 50%, 
p = 75% determined from nonparametric design hydrograph 
[h], and Ŵp the hydrograph width at p = 50%, p = 75% deter-
mined from parametric hydrograph for specific formulas 
which were used (gamma and Strupczewski) [h].

To analyze the calculated values of relative errors of 
hydrograph width Wp, the following quality assessment 
measures for W50 and W75 were adopted (Table 3). 

More stringent criteria were adopted for the W50 due to 
the objective function used in the optimization process. The 
best possible adjustment of the parametric hydrograph to 
nonparametric for this value was the main assumption of 
the objective function.

 With the adopted criteria, the match quality of the W50 
value of the parametric hydrograph to nonparametric is very 
good (see Fig. 6a), while for the W75 value is good (see 
Fig. 6b), which confirms the correctness of the objective 
function adopted in the study (Fig. 7). 

Mean relative error (Elshorbagy et al. 2000) was calcu-
lated for the p percent flow, p = 75% and p = 50%, using the 
following definition:

where MREp is the mean relative error for the p percent 
flow p = 75% and p = 50%, Np the number of percent flows 
exceeding p percent flow, 6 for p = 75% and 11 for p = 50%, 
 REi the relative error of percent flows, p1 = 98, p2 = 95, 
p3 = 90, p4 = 85, p5 = 80, p6 = 75,…, p11 = 50 (see Fig. 3) [−], 
and i the percent flow number.

To analyze the calculated values of mean relative errors 
for the p percent flow, the following quality assessment 
measures for W50 and W75 were adopted (Table 4).

Figure 8 shows that the mean relative error criterion for 
the p percent flow for evaluating the fit of the parametric 

(9)REp =

|
|
|
Wp − Ŵp

|
|
|

Wp

(10)MREp =
1

N p

Np∑

i=1

REi

Fig. 4  Parametric hydrographs calculated using the Pearson Type 
IV distribution with one shape parameter (Pearson 1) and two shape 
parameters (Pearson 2), and nonparametric hydrographs determined 
by the Archer’s method for the following cross sections: a Odra–
Cigacice (2), b Nysa Kłodzka–Kłodzko (5), c Kaczawa–Piątnica (22), 
d Bóbr–Kamienna Góra (25), e Wisła–Sandomierz (32), f Lubieńka–
Lubień (43), g Koprzywianka–Koprzywnica (55), h San–Radomyśl 
(58)

◂
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Table 2  Values of parameters 
W50, W75 and s of the Archer’s 
nonparametric hydrographs and 
the Pearson Type IV parametric 
hydrographs with one shape 
parameter (Pearson 1) and two 
shape parameters (Pearson 2)

Water 
gauge nos.

Archer Pearson 1 Pearson 2

W75 W50 s W75 W50 s W75 W50 s

1 107.4 268.9 0.439 171.9 268.8 0.437 163.3 260.3 0.379
2 109.8 250.3 0.371 155.8 250.2 0.368 151.0 245.7 0.336
3 3.9 9.1 0.453 5.7 9.1 0.395 5.7 9.1 0.395
4 3.3 11.0 0.552 7.0 10.9 0.456 7.0 10.9 0.455
5 6.9 15.1 0.473 9.6 15.1 0.437 9.5 15.0 0.424
6 10.7 26.3 0.417 16.6 26.3 0.402 16.7 26.3 0.401
7 7.3 14.7 0.440 9.3 14.7 0.406 9.3 14.7 0.406
8 11.9 24.3 0.185 12.2 25.0 0.170 11.4 24.4 0.165
9 11.4 25.7 0.348 15.6 25.8 0.329 15.7 25.7 0.329
10 6.3 10.1 0.371 6.0 10.1 0.319 6.1 10.1 0.322
11 11.5 23.4 0.522 15.0 23.3 0.456 14.8 23.1 0.459
12 11.0 24.5 0.392 15.2 24.5 0.373 15.3 24.4 0.371
13 6.4 15.9 0.291 8.9 15.7 0.254 9.1 15.9 0.262
14 8.7 18.2 0.531 11.5 18.0 0.456 11.5 18.0 0.450
15 36.3 77.5 0.241 42.4 77.5 0.233 43.4 77.4 0.234
16 34.5 68.1 0.326 40.9 68.0 0.319 41.3 68.1 0.319
17 39.9 75.3 0.386 47.2 75.2 0.383 47.3 75.2 0.383
18 38.0 57.8 0.282 33.3 57.8 0.272 33.7 57.7 0.272
19 8.6 17.9 0.377 11.0 17.9 0.350 11.0 17.9 0.349
20 15.5 28.0 0.305 16.4 28.0 0.289 16.6 28.0 0.286
21 14.2 32.8 0.316 19.6 32.8 0.307 19.7 32.8 0.305
22 37.9 82.7 0.218 43.7 81.9 0.216 45.1 82.8 0.213
23 13.5 25.9 0.429 16.4 25.8 0.410 16.4 25.9 0.409
24 100.2 167.1 0.202 72.7 158.5 0.146 89.0 167.1 0.198
25 12.9 22.7 0.505 14.4 22.5 0.456 14.1 22.2 0.424
26 15.7 38.2 0.398 24.0 38.2 0.386 24.1 38.2 0.387
27 23.4 44.6 0.443 28.5 44.6 0.432 28.5 44.6 0.432
28 27.0 78.4 0.254 43.9 78.6 0.247 44.3 78.2 0.242
29 35.3 98.4 0.194 44.9 94.5 0.159 50.6 98.0 0.184
30 45.2 114.8 0.247 63.4 113.7 0.244 65.1 114.5 0.245
31 12.8 24.6 0.386 15.3 24.6 0.369 15.5 24.6 0.390
32 52.9 95.1 0.308 56.7 95.4 0.304 56.0 90.6 0.332
33 48.4 143.8 0.294 83.7 143.2 0.286 85.3 144.0 0.286
34 62.2 131.7 0.398 83.1 131.8 0.396 80.6 129.2 0.365
35 22.2 44.8 0.469 28.7 44.8 0.456 28.4 44.4 0.432
36 10.2 16.0 0.377 10.9 17.5 0.371 10.9 17.5 0.371
37 13.2 26.5 0.490 19.0 29.8 0.436 16.8 26.2 0.448
38 11.2 19.4 0.388 12.0 19.4 0.364 12.0 19.3 0.362
39 10.1 22.3 0.427 14.1 22.3 0.408 14.0 22.0 0.410
40 10.2 20.5 0.432 13.0 20.5 0.408 13.0 20.5 0.407
41 11.2 23.8 0.498 15.2 23.6 0.456 15.1 23.6 0.450
42 21.6 44.6 0.510 28.4 44.2 0.456 28.1 44.0 0.443
43 15.3 30.5 0.457 19.5 30.5 0.440 19.4 30.4 0.424
44 17.4 34.2 0.423 21.6 34.2 0.405 21.3 33.7 0.407
45 11.1 23.3 0.427 14.8 23.4 0.406 14.8 23.3 0.405
46 18.9 40.1 0.417 25.4 40.1 0.404 25.4 40.1 0.404
47 27.9 57.2 0.576 36.1 56.2 0.456 35.8 55.8 0.452
48 13.3 30.1 0.479 19.3 30.0 0.456 19.1 29.8 0.445
49 27.9 54.8 0.512 34.9 54.3 0.456 34.3 53.7 0.434
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hydrograph to nonparametric one is weak. The visual evalu-
ation of the hydrographs shown in Fig. 4 suggests much 
smaller matching errors.

The REp and MREp measures do not answer unambigu-
ously as to whether the functions used should be recom-
mended for the Vistula or the Oder water regions, or not. 
A similar observation was reported by Chai and Draxler 
(2014).

Therefore, two other measures were assumed to assess the 
similarity of the parametric and nonparametric hydrographs: 
the volume of hydrograph, V, and the center of gravity time 
coordinate, rp.

The volume of hydrograph was determined above the p per-
cent flow, p = 50% and p = 75%, using the following definition 
(see Fig. 9):

where Vp is the volume of hydrograph above the p percent 
flow, p = 50%, p = 75%, Np the number of percent flows 
exceeding p percent flow: 6 for p = 75% and 11 for p = 50%, 
and Vp,i the partial volume of the hydrograph between suc-
cessive p percent flows.

The center of gravity time coordinate was determined for 
the hydrograph part above the p percent flow, p = 50% and 
p = 75% (see Fig. 9).

(11)Vp =

Np∑

i=1

Vp,i

(12)rp =

∑Np

i
Vp,ili

∑Np

i
Vp,i

Table 2  (continued) Water 
gauge nos.

Archer Pearson 1 Pearson 2

W75 W50 s W75 W50 s W75 W50 s

50 9.3 18.6 0.472 11.9 18.6 0.443 11.9 18.6 0.443
51 32.3 69.2 0.303 40.9 69.5 0.293 41.2 69.3 0.293
52 30.2 54.2 0.337 34.5 53.8 0.456 33.9 53.1 0.434
53 21.2 46.7 0.470 30.0 46.7 0.456 30.0 46.7 0.456
54 15.9 31.9 0.515 20.4 31.8 0.456 20.2 31.5 0.449
55 17.6 33.7 0.446 21.5 33.7 0.435 21.5 33.7 0.435
56 34.2 58.3 0.623 36.4 56.7 0.456 36.6 56.9 0.462
57 53.7 94.2 0.571 59.3 92.5 0.456 59.0 92.0 0.451
58 55.2 109.4 0.433 69.7 109.3 0.428 67.2 106.9 0.384
59 14.4 29.4 0.455 18.6 29.4 0.411 18.6 29.4 0.410
60 10.4 24.3 0.466 15.6 24.3 0.445 15.4 24.2 0.424

Fig. 5  Relative errors of hydrograph width Wp: a for p = 50%; b for p = 75%

Table 3  Quality measures for relative errors of hydrograph width Wp

Quality W50 W75

Very good < 1% < 20%
Good < 1%, 2%) < 20%, 40%)
Weak < 2%, 4%) < 40%, 60%)
Very weak ≥ 4% ≥ 60%



1428 Acta Geophysica (2019) 67:1419–1433

1 3

where rp is the time coordinate of the center of gravity of the 
hydrograph above the p percent flow, p = 50% and p = 75% 
[h], Np the number of percent flows exceeding p percent flow, 
6 for p = 75% and 11 for p = 50%, Vp,i the partial volume of 
the hydrograph between successive p percent flow [h], li the 
time coordinate of the gravity center ri of the partial volume 
[h], and ri the gravity center of the partial volume.

The analysis involved the assessment of the conform-
ity between the centers of gravity of the parametric hydro-
graphs relative to the flow axis for the percentage of peak 
p = 75% and higher, and for the percentage of peak p = 50% 
and higher (Fig. 10). The position of the center of gravity 

indicates the proportion between the rising limb volume 
and the recession limb volume of the hydrograph. The 
slope coefficient of the trend line represents the relation-
ship between the position of the center of gravity of the 
parametric hydrograph rp and the nonparametric hydrograph 
rar. Slope coefficient values below 1 indicate that the center 
of gravity of the nonparametric hydrograph rar is located 
further away from the q axis than the center of gravity of the 
parametric hydrograph rp. Figure 10 shows that the position 
of the centers of gravity of both hydrographs is better in case 
of distribution with two shape parameters m and n than with 
one parameter.

The analysis of the volume of the parametric hydrographs 
Vp compared to the nonparametric Var, for the percentage 
of peak p = 75% and higher, and for the percentage of peak 
p = 50% and higher (Fig. 11), shows a better fit above W50. 
This analysis confirms that the fit of parametric hydrographs 
to nonparametric ones above W75 is weak and the volume 
of parametric hydrographs is about 30% larger than that of 
the nonparametric ones.

The proposed criteria (13) and (14) offer a possibility 
to evaluate the determined parametric hydrograph when 

Fig. 6  Quality measures for relative errors of hydrograph width Wp: a p = 50%; b = 75%

Fig. 7  Mean relative errors for the p percent flow: a p = 50%; b p = 75%

Table 4  Quality measures for mean relative errors for the p percent 
flow

Quality W50 W75

Very good < 10% < 10%
Good < 10, 50%) < 19%, 50%)
Weak < 50%, 100%) < 50%, 100%)
Very weak ≥ 100% ≥ 100%
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compared to the input (nonparametric) hydrograph. In addi-
tion, an analysis of the absolute deviation Ss of the values 
of the calculated hydrograph width at 50% (W50) and 75% 
(W75) of peak flow, depending on the skewness coefficient 
s, was carried out.

where a is the duration of the percentage of peak flow 
p = 50% or p = 75%, or higher, for the rising limb of the 
nonparametric hydrograph, a = s W50 or a = s W75 [h], â the 
duration of the percentage of peak flow p = 50% or p = 75%, 
or higher, calculated from one of the formulas (8) and (9) 
for the rising limb [h], b the duration of the percentage of 
peak flow p = 50% or p = 75%, or higher, for the recession 
limb of the nonparametric hydrograph [h], and b̂ the dura-
tion of the percentage of peak flow p = 50% or p = 75%, or 
higher, calculated from one of the formulas (8) and (9) for 
the recession limb [h].

Figures 12 and 13 demonstrate the relationship between 
the absolute deviation Ss and the skewness coefficient s for 

(13)Ss =

√
(a − â)2 +

(
b − b̂

)2

the hydrograph widths W50 and W75, respectively. This 
analysis is used to determine the possibility of using Pear-
son Type IV distribution in both considered water regions. 
The skewness coefficient of the hydrograph characterizes 
the proportion of the rising limb of the hydrograph to the 
recession limb. The smaller the value of the skewness 
coefficient s, the larger the share of the recession limb. 
The analysis shows that for hydrographs with values of 
the coefficient s about 0.2 and above 0.5, the compliance 
of parametric hydrographs above W50 described with the 
Pearson Type IV distribution with one shape parameter m 
with nonparametric hydrographs is smaller (see Fig. 12a). 
In the case of two shape parameters m and n (see Fig. 12b) 
fit differences of hydrographs are already visible for the 
value of the skewness coefficient s > 0.3. For hydrographs 
above W75, both for one and for two shape parameters, 
the fit for values of s < 0.4 is less than for values s > 0.4 
(see Fig. 13). In the whole range of variation the skewness 
coefficient of the hydrograph s for the W75 fitting of the 
both hydrographs is much worse than for the W50.

Fig. 8  Quality measures for mean relative errors for the p percent flow: a p = 50%; b p = 75%

Fig. 9  Sketch for determining 
partial volume of hydrograph 
(trapezoidal area) and the center 
of gravity time coordinate used 
in Eqs. 11 and 12
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Summary and conclusions

The gamma distribution function, i.e., Pearson Type III 
distribution function with one shape parameter, is the most 
often used function for parametric hydrographs descrip-
tion in the relevant literature. Authors of such publications 
(for example, O’Connor et al. 2014) indicate the imprecise 
fit of the recession limb of parametric hydrograph to the 
nonparametric one. One of the proposed solutions is to 
use a spline function consisting of two different functions 
describing independently two parts. The upward part of 
the recession limb to the inflection point, which is located 
between the parameters W75 and W50, is described by the 
gamma function. The recession limb below the inflection 
point is described by the exponential function. In Ireland, 
this spline function is known as UPO gamma (unit-peak-
at-origin gamma) (O’Connor et al. 2014). The research 
conducted for the Ireland area showed that this solution 
is not universal. This prompted the authors of this manu-
script to find one function that would allow us to describe 
both the rising and recession limbs of a nonparametric 
hydrograph in any water gauge.

The Pearson Type IV distribution function proposed by 
Strupczewski concerned the description of a nonparametric 
flow hydrograph obtained as a medium hydrograph from 
unimodal recorded hydrographs. Strupczewski claimed that 
this distribution function is recommended to use only when 
the duration of the recession limb of the hydrograph is six 
times longer than the rising limb duration.

Current trends in hydrology recommend the use of the 
Archer’s method for the nonparametric hydrographs descrip-
tion. This hydrograph represents the median durations of 
a given percent flow independently for rising and falling 
limbs. It is used to determine the value of the hydrograph 
width at 50% (W50) and 75% (W75) of peak flow and the 
skewness coefficient s (Archer et al. 2000). The parameters 
are used to determine the shape of a parametric hydrograph 
from W50 to peak flow. The Archer’s method allows to use 
the Pearson Type IV distribution function under conditions 
other than those considered by Strupczewski.

In this paper, the authors modified the formulas for the 
Pearson Type IV distribution with one and two shape param-
eters proposed by Strupczewski.

The analyses were conducted for the two water regions: 
the upper Vistula River and the middle Oder River. For each 

Fig. 10  Relationships between centers of gravity for parametric hydrographs determined by the Person Type IV (rp) and the centers of gravity 
for Archer’s nonparametric hydrographs (rar)
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of these regions, 30 catchments were selected, for which 
multiannual flow records were available. In these areas, large 
floods occurred. The flood hydrographs were highly varia-
ble, with variable ratio of the rising/recession limb duration.

The REp and MREp measures do not answer unam-
biguously as to whether the functions used should be 

recommended for the Vistula or the Oder water regions, 
or not. That is why the three independent methods were 
used to verify the obtained results: How the absolute error 
changed in relation to the skewness coefficient of the 
hydrograph (Figs. 12, 13); what relationships are between 
the calculated and the input hydrographs related to the 

Fig. 11  Relationships between volumes of parametric flow hydrographs determined by the Person Type IV (Vp) and Archer’s nonparametric 
hydrographs (Var)

Fig. 12  Absolute error values Ss versus values of skewness coefficient s for the Pearson distribution function Type IV: a one shape parameter m; 
b two shape parameters m and n for W50 
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changes in the position of the centers of gravity (Fig. 10) 
and the volume of the hydrographs (Fig. 11). The results 
of relative and average relative error analysis do not allow 
unambiguous application or rejection of the Pearson Type 
IV distribution function to describe the parametric hydro-
graph. The remaining three analyses confirmed that both 
Pearson Type IV distribution functions could be used to 
describe the parametric hydrograph. They confirm a good 
fit for the recession limb of the hydrograph. In the upper 
part of the parametric hydrograph above the 75% percent 
flow (W75), a relatively weak fit is observed, but it does 
not affect either the values of the volume in this part or 
the position of the center of gravity of the hydrograph. 
The applied measures of the volume and the position of 
the center of gravity of the hydrograph are more objec-
tive than the relative error (RE) and mean relative error 
(MRE) recommended in Technical Research Report Vol-
ume III Hydrograph Analysis (O’Connor et  al. 2014). 
When using the Pearson Type IV distribution it is difficult 
to state clearly what effect the skewness coefficient s has 
on the function’s fit for the given input parameters (W50 
and W75) (Figs. 12, 13).

As a result of additional tests performed, it was 
observed that there exist many potential pairs of shape 
parameters m and n for Pearson Type IV distribution func-
tion satisfying the objective function criterion (Eq. 8). 
This is a major inconvenience because the shape param-
eters are to be determined for ungauged cross sections, 
based on the physical catchment descriptors. Thus, the 
development of empirical formulas using the physical 
catchment descriptors to determine the parameters W50, 
W75 and s is impossible. Therefore, the Pearson Type IV 
distribution with a single shape parameter to describe the 
parametric hydrograph well enough is recommended.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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Abstract
Flood is one of the major natural disasters which cause enormous casualties and damages particularly in urban areas. In urban 
areas, studies on flood hazards have been accompanied by tensions for various reasons, including complexity of urban levels, 
different spatial modeling indices, lack of accurate hydrological data, and precise modeling of land surface simulations. This 
paper used a Constrained Delaunay Triangular Irregular Network to model fine urban surfaces (based on the detailed ground 
sampling data), and subsequently discusses five indicators regarding the dangers of flood, namely (1) elevation, (2) slope, (3) 
distance to discharge channels, (4) index of development and persistence of the drainage network (IDPR), and (5) infiltra-
tion rate. In the next step for flood hazard mapping, the combination of geographical information systems and the entropy 
weight method as the multi-criteria decision analysis was used to combine the indicators. The proposed methodology was 
used for Hamadan city that is located in the central part of Hamadan Province in Iran where several floods occur annually. 
The flood hazard mapping indicates that approximately 15.83% of the total study area is classified as very highly hazardous, 
31.72% as hazardous, 20.11% as moderate, 16.02% as minor, and 16.32% as the least hazardous. Finally, superimposition 
and receiver operating characteristic (ROC) curve methods were used to verify the accuracy of the obtained flood hazard 
map. In terms of superimposition and ROC curve, the accuracy of the model was approximately 70% and 73%, respectively.

Keywords Flood · CD-TIN · Hamadan · GIS · Entropy weighting method

Introduction

Flood as a major natural hazard, whose impact is immeasur-
able, affects almost 170 million people annually (Kowalzig 
2008; Kazakis et al. 2015; Wang et al. 2018). Therefore, 
the present study makes the flood risk management a lever 
to eliminate some limitations such as geographic loca-
tion, socio-economic topics, and borders between nations 
(Degiorgis et al. 2012). Given that total elimination of flood 
risk is impossible and inefficient, flood risk management is 
divided into flood risk assessment and flood risk mitigation 
(Schanze 2006; Tehrany et al. 2013). Certainly, on the region 
scale, there are some actions such as flood hazard mapping 

to prepare warning systems, improve quick response and 
reduce the impact of flood events; the use of these actions 
can reduce the flood impacts (Skilodimou et al. 2019).

Several evaluation tools and indices have been developed 
to assess the vulnerability of urban areas from different 
natural disasters such as flood, earthquake, and pollution. 
Although these indices and tools are widely used in aca-
demic and practical environments to evaluate and monitor 
the urbanization process, using them can have some limita-
tions (Tan et al. 2018). Huang et al. (2009) in their study 
concluded that in urban flood hazard, there are several vari-
ables preventing these indices from reflecting the systematic 
interactions between these variables. Therefore, in urban 
flood hazard studies, we cannot define the normative indi-
cations of flood hazard risk. In another study, Uwasu and 
Yabar (2011) asserted that in urban basins, flood indices 
may overlook some of the important flood variables and not 
explicitly identify the behavior of these variables.

Degree of urbanization is one of the most significant 
issues which can enhance the sophistication of environ-
mental studies. Urbanization is a method of urban growth 
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which increase built-up land uses. These land uses in hydrol-
ogy studies are mainly called hard features (the term hard 
features is pertinent to features changing the flow direction 
such as curbs, road camber, walls, and buildings) based on 
the studies by Li et al. (2014), Rodríguez et al. (2017) and 
Sepehri et al. (2018), which are defined as Fine Constrained 
Features (FCFs). Obviously, these built-up areas transform 
the surface features and flood propagation. Therefore, these 
FCFs and their properties must be considered to increase the 
accuracy degree of flood hazard mapping in urban surfaces 
(Li et al. 2014).

After simulating the urban surface feature and extracting 
the flood indicators from simulated surface, weighting the 
indices and combining them should be carried out.

The existence of nonlinear and complex relations between 
these assessment indices and risk levels creates a serious 
challenge in confirming the accuracy of the obtained maps. 
In recent decades, various systematic methods including the 
analytic hierarchy process (AHP) method (Fernández and 
Lutz 2010; Stefanidis and Stathis 2013; Yang et al. 2013), 
set pair analysis (SPA) method (Zou et al. 2013; Guo et al. 
2014), and entropy (Kawachi et al. 2001; Lotfi and Fallah-
nejad 2010; Mishra et al. 2009) and fuzzy method (Lohani 
et al. 2014; Li 2013) have been developed to overcome this 
problem. Although these methods are to analyze flood haz-
ard risk as an efficient tool, they are also associated with 
weaknesses and uncertainties due to their complex and dif-
ficult structures.

Fernández and Lutz (2010) in their study expressed urban 
flood hazard mapping in the Tucuman Province using the 
integration of five factors into AHP method, from which 
they concluded that the distance to discharge channel has a 
substantial role in the determination of susceptibility zones. 
Elkhrachy (2015) investigated flood sensitivity in Najran city 
in Saudi Arabia. In this study, he used the AHP method to 
determine the flood susceptibility map for weighting and 
the relative importance of effective indices in flood haz-
ard risk. He concluded that runoff index and soil type had 
the most important roles in the spatial distribution of flood 
hazard mapping, compared to other indices such as macro-
roughness, slope, land use, and drainage network. These two 
indices alone were involved approximately 35.5% to the final 
flood hazard map.

Bathrellos et al. (2016) delineated flood hazard mapping 
by integrating AHP method and GIS in the basin of Athens 
Metropolitan city, Greece.

Gigović et  al. (2017) reviewed and compared three 
scenarios for flood hazard mapping in Palilula Munici-
pality, Belgrade, Serbia. In the first scenario as the basic 
scenario, authors considered flood hazard mapping using 
AHP method as the common and classic method of multi-
criteria decision making. In the second scenario, the 
authors used a method called “the interval rough numbers 

(IR’AHP)” to reduce the uncertainty of the AHP method. 
In the last scenario, they used the combination of the fuzzy 
and the AHP method to reduce uncertainty of AHP. The 
results of this study indicated that the second scenario had 
the highest accuracy compared to other scenarios.

Xu et  al. (2018) simulated the rainfall runoff using 
SWMM and flood hazard mapping to increase the accuracy 
of the mentioned model and combined the results of flood 
hazard mapping considering two popular multi-criteria 
decisions, i.e., entropy weighting and AHP method. The 
results showed that the combination of these models had 
higher accuracy than their single usage.

Lee et al. (2018) used the ratio frequency and the logis-
tic regression method for mapping the 2011 flood Seoul, 
South Korea. At first, they selected and optimized flood 
indices. Finally, flood hazard mapping showed that both 
methods had the accuracy of 79.6 and 79.05% for the ratio 
frequency and the logistic regression method, respectively.

Mahmoud and Gan (2018) surveyed and zoned flood 
hazard in Riyadh, Saudi Arabia. At first, they provided 
ten effective flood hazard indices. Then, they weighted 
and combined these indices to produce a flood hazard map 
using the AHP method. Finally, to measure the accuracy 
of the obtained map, they used flood data that occurred 
in the past.

There are few studies considering a differentiation aspect 
with natural areas for urban flood hazard mapping.

Li et al. (2014) investigated the depth of flooding at the 
enclosure of Beijing Normal University. To do this, they 
first simulated surface features such as buildings. Then, they 
estimated the depth of flooding in different areas using mass 
conservation law and rainfall data, runoff and drainage net-
work capacity. The comparison between the final map of 
flooding and field observations indicated the high accuracy 
of the method used in simulation of flooding. Hence, they 
suggested that the used method could be used as a powerful 
tool in simulating the drainage network and installing urban 
flood hazard warning systems.

Rodríguez et al. (2017) simulated the hydrological behav-
ior of sub-urban basins based on morphological features. So, 
they applied three methods. The first method known as the 
“traditional method” is based on the digital elevation model 
(DEM). The second method is pertinent to urban database 
analysis; it is based on the vector data. The third and final 
method is CD-TIN which can preciously describe flow direc-
tion from a slope. The results showed that the DEM method 
had the lowest accuracy in simulating the hydrological 
behavior. Two remaining methods have better accuracy to 
simulate the hydrological behavior for their ability in rep-
resenting the areas with high drainage density. Finally, they 
asserted that CD-TIN for its surplus ability in the represen-
tation of topological discontinues (streets, curbs and so on) 
could be a more appropriate method for urban areas.
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Despite the few studies into urban flood hazard mapping 
investigating the effect of urbanization degree, it has recently 
become popular among researchers.

From the past century until now, the study area has expe-
rienced various floods. Early studies of archeology in Heg-
mataneh, Hamadan Province, indicated that destruction of 
this historic region is relevant to the floods in the past cen-
turies. Hamadan province has a population of approximately 
554,406 people, which is distributed in an area of 73.5 Km2. 
From the social and geographical point of view, Hamadan is 
one of the most vulnerable cities and the second most popu-
lated city in the western region of Iran (Sepehri et al. 2019).

Therefore, it is necessary to develop flood hazard map-
ping in Hamadan city in order to flood mitigation, land-use 
planning, and urban construction. This study aims at: (1) 
development of a simulation model for displaying urban 
characteristics, (2) definition and elicitation of effective 
indices in urban flood hazard mapping from step one, (3) 
application of the entropy method as the multiple criteria 
decision method for weighting indices and combining them 
for final flood hazard mapping, and (4) investigation and 
evaluation of the accuracy of the obtained flood hazard map.

Finally, it is expected that the knowledge will be useful 
for public policymakers and locals who are unaware of the 
benefits of flood hazard mapping.

Materials and method

The study area

The study area with an area of over 73.5 Km2 is located on 
the northern hill slopes of Mount Alvand, the central part 
of Hamadan Province in central Zagros. According to the 
Hamadan Meteorological Station reports in the Hamadan 
metropolitan area, the average annual temperature is approx-
imately 9.6 °C, varying between + 36.8 °C (summer) and 
− 29.6 °C (winter). Moreover, the average annual rainfall is 
343.11 mm. According to the Ombrothermic chart, the dri-
est months are from May to September. Furthermore, based 
on the Ambreget technique, local climate is cold, semiarid, 
and sub-humid.

Historically, Hamadan’s urban population growth was 
largely limited to the north and northwest of the region. 
However, in recent years, due to various reasons such as 
luxury orientation and urban development, it has also rap-
idly expanded to the southern parts of Hamadan as today 
the city is divided into two parts, the north and the south of 
the city or into the upper part of the city and the lower part 
of the city.

Surface water collection and disposal system of Hama-
dan are generally defined in three sections, including net-
works, main transmission lines, and drainage disposals 

(natural rivers). A network drawing water from the level 
of streets and alleys leads to the main lines. The transmis-
sion lines that usually run on main roads are responsible 
for transferring the water of their basin into disposal areas 
(which they have received through the network). In most 
cases, rivers, streams, lakes, or seas are considered as dis-
posal areas. In this study, the disposal areas are Abbas 
Abad Rivers, Dewin, Moradbeik Valley, and Khezr, which 
are the natural trough line of the city and direct input run-
off from the south to the north. These drainage systems 
worked well in the past; however, due to excessive urban 
development and rainfall intensity increase in recent years, 
there has been an increase in the rate of stronger flows, 
which is a superfluent on the drainage capacity of the 
system.

The results of intra-urban hydrology and network hydrau-
lic studies indicate that a large portion of the Khezr River, a 
part of Dewin, and the end of Moradbeik are devoid of a suf-
ficient capacity for flood safety passing with a return period 
of 50 years. As a result, the superfluous flow on drainage 
capacity moves toward downstream areas or more vulner-
able areas, which can cause economic, psychological, and 
even life-threatening damage. According to the reports, the 
storm that occurred in November 1993 at 53 mm in intensity 
caused high economic damage to downstream areas as well 
as substructures. Considering that in the upper regions of 
the study area, there is a sudden increase in the slope and 
elevation from the southern side of the city to the north of 
the city, the flood characteristics are different in these two 
regions. In the upstream areas, due to the precipitous slope, 
the runoff is formed more quickly and moves rapidly toward 
the downstream areas. However, these areas have become 
susceptible to stagnation after a number of occurrences for 
various reasons such as arrival flows from the upstream 
areas, rising rainfall intensity in recent years, and the lack 
of an appropriate drainage system (Fig 1).

Flood hazard index (FHI)

In this study, the information was collected from different 
sources and ultimately extended to a database in a spatial 
environment. Therefore, an index model was established to 
identify the susceptible flood areas with a local focus in the 
GIS environment. The proposed model performs the flood 
hazard mapping using the multi-criteria analysis. In general, 
the objective of flood hazard mapping is to identify flood-
prone points and perform comparative analyses between dif-
ferent basins. Figure 2 shows the proposed method. Initially, 
information from different databases was imported to the 
GIS environment. Next, the processed data, along with the 
definition of the entropy weighting method, the flood hazard 
mapping, were prepared.
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Fig. 1  a Schematic of the study area. b Photographs of flood taken on the case study (https ://www.mashr eghne ws.ir/photo /83234 7)

https://www.mashreghnews.ir/photo/832347
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Parameters included in the FHI

Modeling urban surface with CD‑TIN

In this study, a Constrained Delaunay Triangle Irregular Net-
work (CD-TIN) representation based on Bernal and Sloan’s 
method is used to model the complexity of urban surface and 
their details. The CD-TIN not only considers the shape or 
boundary of the FCFs but also enters the properties of FCFs. 
These features can significantly affect the flow propagation on 
urban surfaces (Li et al. 2014) (Fig 3). For example, the flow 

direction changes when it encounters a building or other rigid 
walls; reduction in water runoff volume when it moves across 
a grass land is different from the time this flow moves across a 
playground. To simulate urban surface and their details by CD-
TIN, a high-precision DEM is also required in addition to the 
properties of  FCFs. In this study, elevation maps with a scale 
of 1/2000 were used for the metropolitan area. In the 1/2000 
maps of Hamadan, two groups of elevation digital models are 
presented as a group of digits taken from the floor of the road 
and the roof of buildings. Using these digits, a DEM of metro-
politan Hamadan was prepared. On the other hand, The SRTM 

Fig. 2  Flowchart for the preparation of urban flood hazard map
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DEM (90 m) maps were used in sub-urban and upstream areas, 
which are substantially pertinent to agricultural and natural 
tourist lands. Finally, by combining these two elevation maps, 
a DEM was prepared from the city of Hamadan. To prepare 
FCFs, the database of the municipality administration of Ham-
adan province was used (Table 1).

Figure 3b presents the properties of triangle ABC and its 
elements (point A and edge BC) to assess their impacts on 
urban surface runoff. In topology of CD-TIN, the properties of 
neighbor triangles with their elements will be also considered 
for future confluence calculation (Li et al. 2014).

Table 1 shows the types of FCFs in shape file format 
(ARC GIS software prevalent format) added to the CD-TIN 
algorithm.

Definition of indices

To perform flood susceptibility, it is essential to first deter-
mine the flood conditioning indices (Ghiglieri et al. 2014). 
An acceptable flood hazard map is highly dependent on 
the quality of the spatial and temporal data required to 
be taken from the case study. Unfortunately, many case 
studies, particularly in developing countries, are ungauged 
or poorly gauged (Sivapalan 2003). In some cases, the 
number of the existing gauging stations has decreased. 
Furthermore, the existence of multivariate and nonlinear 
relationships between indices and risk levels is a major 
intrinsic challenge for flood hazard risk assessment (Wang 
et al. 2015). Therefore, providing a flood hazard map in 

Fig. 3  a Demonstration of urban surface using CD-TIN topology. B The red lines are related to constrained features such as buildings and street 
curbs. The normal triangle edges are shown with green lines (Li et al. 2014)

Table 1  FCFs in the study 
area and their entry type to the 
CD-TIN algorithm (Li et al. 
2014)

Constrain features Data type Data organization

Road cambers, street curbs, road isolation strip, walls, etc. Constrained polyline Shape file polyline
Buildings (or other man-made structures), grass lands, play-

grounds, lakes (or other water bodies), etc.
Constrained polyline Shape file polygon
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these areas is a serious challenge. The first step in this 
regard is to select appropriate indices.

In most studies on flood hazard mapping using mul-
tiple criteria decision, researchers focus on discrete or 
integrated indices. In discrete indices, only the charac-
teristics of the desired cell (such as the elevation map) 
or adjacent cells (such as slope map) are investigated. In 
integrated indices, only the integrated characteristics of 
the upstream (such as flow accumulation) of the desired 
cell are examined. However, one of the most important 
indices that can be mentioned in flood hazard studies or 
in other hydrological studies is associated with connectiv-
ity indices (Mayor et al. 2008; Gay et al. 2016; Covino 
2017). In these indices, the characteristics of upstream 
and downstream of the desired cell are checked. Heck-
mann et al. (2015) in one study, conducted in 2015 about 
effective indicators of flood and erosion hazard mapping, 
concluded that if we can fully model reality, then there 
is no need for connectivity indices. However, the indices 
used for flood hazard mapping are different in all studies, 
and the choice of these indices is most arbitrary without 
adherence to specific regulations (Shadman Roodposhti 
et al. 2016; Patra et al. 2018).

After modeling urban surface using CD-TIN, a compos-
ite flood hazard index based on five causal indices, such 
as elevation, slope, distance to discharge channels, IDPR 
(connectivity index), and infiltration extracted from surface 
modeled, was used in this study (Fig. 4). These indices were 
selected based on the information of different case studies 
with similar characteristics.

The method of weighting the indicators based 
on the entropy weight method

In the evaluation system, determining the weights for all 
indices is an important process that can measure the impact 
of the indices. When the weight of an index is high, it con-
siderably impacts the ability (of intended target); unless, the 
effect is less. In the information theory, information entropy 
is an important concept that can measure the amount of use-
ful information produced in a system. The main factors for 
the entropy weight method are as follows: When the data 
of evaluated multiple objects on an index show a large dif-
ference, the entropy value of this index should be low in 
accordance with the information theory. This indicates that 
this index can have more useful information; therefore, the 
weight of this index should be set high; otherwise, when 
the entropy value of an index is high, it may limit useful 
information with respect to the information theory, and its 
weight should be very low. The methods of weighting the 
indices are as follows (Singh 1997; Kawachi et al. 2001; Liu 
et al. 2010):

1. The main data of all indices should be normalized, and 
this can eliminate the impact of the dimension. In a prof-
itability index, the higher the value of the index is, the 
higher the amount of flood hazard risk will be. Equa-
tion 1 is used to normalize the indices, and for any index 
whose value and the amount is low, the flood hazard risk 
will be higher. Equation 2 is used to normalize the data.

where Xij corresponds to the values of the i = 1, 2, 3, …, 
m, index, which are used in the flood hazard mapping 
(subscript of j = 1, 2, 3, …, n is considered to be number 
1, due to the objective of the study in this paper that is 
concerned with floods hazard mapping).

2. To evaluate the issue with m index and the n estimated 
target value, the entropy value Pi for the ith index can 
be defined as:

where fij =
pij

∑m

i=1
pij

 (where fij = 0; it is assumed that the value fij 

ln fij = 0).

The estimation of the accuracy of the flood hazard 
map

In this study, superimposition and ROC curve methods were 
used to evaluate the accuracy of the final flood hazard map. 
In the superimposition method which is simple and precise, 
the flooding points of the study area are superimposed on the 
final flood hazard map. Eventually, the accuracy of the final 
flood hazard map is calculated based on the percentage of 
points that are in very high flood classes (Machiwal et al. 2011; 
Thapa et al. 2017). The ROC curve method which is applied 
to evaluate the accuracy of the simulation model is a graphi-
cal representation of the equilibrium between the positive rate 
(plotted on the Y-axis) (Eq. 4) and the negative rate (plotted on 
the X-axis) (Eq. 5) of the error for each of the possible values 
of the cut-point between the cases and controls (Unal 2017).
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(4)rtp ≈
Positive correctly classified

Total positives

(5)rfp ≈
Negative sin correctly classified

Total negatives
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If the value of the ROC curve index, which is the area under 
the ROC curve (AUC), is equal to 1, it indicates the full fit 
of the model. And if this value is equal to 0.5, it indicates 
the inadequacy of the simulation model. The quantitative and 
qualitative correlations of the area under the ROC curve and 
evaluation of estimation are as follows:

1 − 0.9 complete. 0.9 − 0.8 very good. 0.8 − 0.7 good. 
0.7 − 0.6 moderate, and 0.6 − 0.5 low.

Results and discussion

Development of flood susceptibility factors 
database

Assessment and zoning of flood risk is essential for sus-
tainable development of human settlements in the urban 
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environment discussions due to their development on 
the margins of rivers, margins of flood plains, attention 
toward the hydrological and dynamic conditions of riv-
ers, and upper parts of the basin, which increases the risk 
of flood and damage life, financial, and infrastructure. 
Therefore, it is necessary to identify the causes of flood 
and predict the extent of damage by which it is caused 
(Bathrellos et al. 2017; Dysarz et al. 2019; Radwan et al. 
2019). To do this, the surface map of the studied area was 
simulated using the model in Sect. 2.3.1. After preparing 
this map, all the effective flood indices were extracted and 
then the entropy weighting method was used for weight-
ing indices and combining them for final flood hazard 
mapping.

Elevation

The elevation index of a region can be a direct criterion for 
macro-roughness. This index plays a vital role in the hydro-
logical response of different areas in the study. Areas with 
lower elevation (downstream areas) tend to be more likely 
to hold water. However, in areas with higher elevation, large 
amounts of precipitation change into runoff and small quan-
tities penetrated into the earth (Fernández and Lutz 2010; 
Mahmoud and Gan 2018; Lyu et al. 2019).

The elevation values from the southern part to the north-
ern have a decreasing rate of 2204.25–1744.58, since the 
highest degree of flooding occurs in lower elevation and 
vice versa. Therefore, Eq. (3) is used to examine the experi-
mental probability of this index, which ultimately amounts 
to the entropy of this index that also varies from 0.367 
for elevation of 2204.25 to ≈ 0 for elevation of 1744.58 
(Fig. 5).

Slope

Water flow moves from a higher to a lower elevation. 
Therefore, this index plays an important role in the direc-
tion of water flow and the depth of the water table as well 
as the determination of the flooding potential of different 
regions of the study area. The southern and middle parts of 
the study area have the most precipitous slope compared to 
other regions (Fernández and Lutz 2010; Mahmoud and Gan 
2018; Lyu et al. 2019).

Since the areas with a mild slope affect the flood hazard 
drastically, Eq. (2) is used to study the probability of the 
slope values. Hence, this index has entropy values in the 
range of 0.36- ≈ 0, with high entropy values for low slopes 
(Fig. 5).

Distance to drainage network

In addition to areas where the flow of water is directly 
concentrated, river flooding can be considered an impor-
tant issue as it may strike the surrounding lands, as well. 
Therefore, the role of the bed decreases with increasing the 
distance from the evacuation channels. According to local 
reports, most flood-susceptible areas are adjacent to the riv-
ers where excessive water flows to these areas. Investigating 
the relationship between the distance to discharge channel 
and flood sensitivity can be mentally considered. However, 
the ideal solution to investigate this relationship should be 
established on historical records. For example, Samanta 
et al. (2016), in a survey on the relationship between the 
distance from river index and the flood hazard risk, placed 
the areas located in less than 100 m from the drainage net-
work at a very high flood hazard level, and on the opposite 
side, the areas located in more than 2000 m were placed at a 
very low flood hazard level. In one similar study conducted 
by Pradhan (2009), areas located in less than 90 m from the 
drainage network were placed at a very high flood hazard 
level.

For this index, similar to the slope and elevation map, 
Eq. (2) is used to test the probability of this index. The areas 
near the drainage network have the highest entropy (0.36) 
reduced by increasing the distance from the drainage net-
work to 0.001 (Fig. 5).

IDPR

One of the major effects of urbanization is the alteration of 
natural stream channels and installation of sewerages. These 
changes can affect the hydrological connectivity. Hydrologic 
connectivity is a broad term used in various contexts by 
numerous researchers though its meaning is often different 
among different fields of study (Hall and Ellis 1985; Her-
nandes et al. 2018).

Hydrology connectivity as one of the key characteris-
tics in runoff distribution in the region means the location 
connection of the site of runoff production in the upstream 
region to the receipted region of the downstream part. In this 
study, the hydrological connectivity coefficient, called IDPR, 
was used by Gay et al. 2016 Indeed, the IDPR index, which 
suffers from range of 0 to + ∞, states that runoffs passing 
through the hill slopes reach theoretical drainage network 
before reaching the actual drainage networks (Eq. 6). Obvi-
ously, the larger IDPR is, the more dominant is the runoff 
phenomenon to infiltration, and naturally has a high hydro-
logical connectivity (Fig. 5).

(6)IDPR =
The least cumulative cost distance for each cell to the nearest theoretical water cource over the slope surface

The least cumulative cost distance for each cell to the nearest real water cource over the slope surface
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Fig. 5  The entropy value of 
the used indices. a Elevation. 
b Slope. c Distance to drainage 
network. d IDPR. e Infiltration
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Infiltration

Infiltration is one of the most important characteristics of 
land use which considerably affects flooding, because land 
use absorbs water with its high infiltration rate, thereby 
producing fewer runoffs. In urban areas with increas-
ing land-use varieties, the variety of infiltration rate also 
increases (Table 2). In this regard, some methods exist 
such as Horton, Green_Ampt and Soil Conservation Ser-
vice (SCS) methods, among which the SCS method was 
applied because it was a popular method that is simple, 
flexible, and in need of merely one parameter called Curve 
Number (CN) (USDA 1986) (Eq. 7). CN has a range from 
30 to 100 (Table 3); lower numbers indicate low runoff 
potential, while larger numbers are for increasing runoff 
potential. The lower the curve number, the more infiltrated 
the soil.

The relative weighting for this index varies from 0.36 
to ≈ 0 for infiltration rate of 13.36 to 162.39mm (Eq. 2) 
(Fig. 5).

S = Infiltration

Advantages and disadvantages of the approach

Generally, multiple criteria decisions prioritize options (Cox 
2009; Malczewski 1999). Therefore, other multiple criteria 
decision capabilities determine the best and most effective 
options compared to other suitable options, determining the 
acceptable options or rejecting them. In this research, the 
entropy weighting method, known as an objective multiple 
criteria decision method, was used for flood risk mapping. 
This technique has been widely used to solve multiple crite-
ria decision problems and is widely used in stability analy-
sis and natural hazards. Two samples of the most important 
advantages and one of the most important disadvantages of 
using the above method are as follows:

Advantages

1. One of the most important constraints in multiple cri-
teria decision is the uncertainty debate so that after the 
flood map is prepared, the uncertainty of the map could 
be examined. This uncertainty causes errors in the accu-
racy of the intended map due to the classification made 
by Smithson (1989). Unlike other methods introduced 
in the introduction, entropy method (such as AHP and 
SPA) employs the natural distribution of the values of 
these indices in the initial weighting for the indices. 
However, in other methods such as AHP classified in 
the category of subjective methods, experts’ opinions 
should be deemed in initial weighting of the indices; 
these opinions, in addition to the impact of the scientific 
level of individuals, are affected by other conditions, 
such as the experts’ mental conditions. This issue cre-
ates a high degree of uncertainty and thus reduces the 
accuracy of the final map.

2. In this method, each point of the study area (pixels) can 
have a primary weight. However, in the other methods 
mentioned in the introduction, there is a limitation in 
the initial weighting, so that in the AHP it takes place 
using a limited 9-point table. Therefore, in these meth-
ods, each of the indices should be out of the pixel mode 
and classified. Then, a specific weight according to their 
role and importance in the target should be given to each 
class. The question arising here is how this classifica-
tion is conducted and how many classes should be cho-
sen; this topic causes uncertainty in the index and the 
intended target. Furthermore, this classification method 
also creates unusual and unconventional flood hazard 
zones (e.g., the flood hazard zone with a very high 

(7)S =

(

25400

CN

)

− 254

Table 2  Land use and their percentage of area in the study area (Sep-
ehri et al. 2018).

Land use Area 
covered 
(%)

Residential buildings 32
Roads and side walks 33
Parks and gardens 14
Higher education, culture 6
Industry and workshop 3
Storehouse 2
Commercial 2
Urban Facilities 1
Health and treatment 1
Sports 1
Other land uses 5

Table 3  CN values for different land uses in the study area (Sepehri 
et al. 2018)

Land use CN

Garden, park, forest park 61
Higher education, culture, sports, military, cemetery 69
Health, primary, secondary, high school, technical–profes-

sional, other educational, office, hotel, residential low 
density, medium-density residential, high-density residential, 
religious, show home

85

Parking, industry and workshop, utility, commercial, municipal 
terminal, domestic terminal, passenger terminal, streets, side 
walk

92

95
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degree of risk has an over-real area), resulting in higher 
false precision in flood hazard zoning map. Therefore, 
this case becomes more important, particularly in urban 
basins where any management decisions are costly due 
to the high cost of urban use.

Disadvantages

In the entropy method, the basic assumption is that all indi-
ces have the same importance in the intended target. How-
ever, in other methods such as the AHP, the significance of 
the indices is also measured in relation to each other and 
due to the intended target. According to Huang et al. (2009), 
Uwasu and Yabar (2011) and Tan et al. (2018), urban basins 
have a complex mechanism reducing the relative importance 
of the indices in relation to each other.

The areas with low and very low flood hazard risks, 
with an area of 23.77 km2, account for approximately 
33.34% of the total area under study. The major part of this 
class is located in the margin and upstream of the study 
area. In the marginal areas, the main land use is relevant 

to agricultural lands and the upstream area is pertinent to 
natural and touristic areas. Inside the studied area, this 
degree of flood hazard risk is sporadic, as seen with small 
areas that are mainly pertinent to agricultural lands, parks 
and natural spaces. The areas with moderate flood hazard 
risk account for approximately 14.78 km2, or 20.11% of 
the study area. This class of flood hazard risk is located in 
the middle of the upstream region of the studied area. In 
this section, we see a sharp increase in the slope degree 
and elevation from the downstream side of the study area 
to the upstream (dotted line A in Fig. 6). As noted in Sects. 
3.1.1 and 3.1.2, with increasing the slope and elevation, 
the risk of flood hazard decreases. However, these areas 
with this degree of flood hazard risk have a high ratio of 
impermeable surfaces to permeable surfaces, indicating 
the high importance of these two indices in flood hazard 
risk. The fourth class of the studied area is relevant to 
areas with high flood hazard risk. These regions with an 
area of 23.31 km2 (31.72 % of the total studied area) have 
dedicated the highest proportion of flood hazard risk than 
other areas. Also, Sepehri et al. (2018) in their paper using 

Fig. 6  Reclassification of flood hazard map
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the HEC-HMS model investigated the impact of rainwater 
extract structures on the flood hazard risk of Hamadan. It 
was also pointed out that the largest proportion of the stud-
ied area was in the high-risk class, being related to indices 
such as low slope, high drainage density and a high ratio 
of impermeable to permeable surfaces.

The last and most important class of flood hazard risk 
having 15.83 % of the studied area (11.63 km2) is related to 
the class with high flood risk.

To better characterize this degree of flood hazard risk, the 
three regions B, C, D in this class are discussed. According 
to Fig. 1, in B located almost in the middle of the study 
area, it has a high hydrological connectivity (IDPR index) 
in addition to its passing on the Moradbeik River; this is 
due to high density of residential areas. In C located in the 
downstream of B, residential houses have a moderate den-
sity. Furthermore, considering this area as the outlet of the 
communication passages of the study area, roads and routes 
of communication have a high density leading to an increase 
in the IDPR index in the area. D is related to a region called 
Madani town. According to the statistics provided by the 
Statistical Center of Iran, the region has a population of 
approximately 36 thousand people. According to Fig. 1, the 
residential home in this area has a low density; however, due 
to the fact that the area is the eastern, western and northern 
arterial highway of the capital of Hamadan Province, it has 
caused roads and high-density communication routes in the 
region. Furthermore, the IDPR index is also high in the area.

Therefore, according to the above-mentioned cases, it can 
be seen that the IDPR index as a criterion of hydrological 
connectivity plays a significant role in distribution of flood 
hazard risk.

One of the most important points distinguishing this 
study from others in the literature review is the study of 

the importance of the indices in flood hazard risk. In all 
previous studies conducted in urban basins, the distance 
to the discharge channels has been considered as the most 
important index in flood hazard risk. This study, how-
ever, indicates that the distance to discharge channel can 
be deemed as one of the most important parameters in 
flood hazard risk. Thus, this is consistent with the results 
obtained by Huang et al. (2009), Uwasu and Yabar (2011) 
and Tan et al. (2018), studies, stating that in urban basins, 
according to the increasing degree of urban complexity, 
the importance of indices decreases in relation to each 
other.

To check the accuracy of flood hazard mapping, there are 
different types of methods, among which two methods of 
superimposition and incorrect and correct percentage rate 
were used.

In the superimposition method, the most important flood 
areas in Hamadan, registered by the Municipality of Hama-
dan, are superimposed on flood hazard zoning map, and the 
percentage of points in different classes of flood hazard risk 
is computed. Thus, from the 20 important areas with flood 
hazard risk in the study area, 14 items were in a class with 
very high risk, 3 items were in a class with high risk, 2 items 
were in a class with moderate risk, and 1 was in a class 
with low risk. If the accuracy of the final map is based on 
the presence of flooding points in the class with very high 
risk, then the accuracy of the final map is approximately 
70%, indicating the high accuracy of this study in selecting 
and preparing effective indices in flood hazard risk. Here, it 
should be noted that the percentage of areas with very high 
flood hazard risk was low.

Regarding the accuracy check of the flood hazard zoning 
map, using the ROC curve, the flooding points were superim-
posed onto a flood hazard zoning map, and to the points that 

Fig. 7  The ROC curve for 
a flood hazard based on an 
entropy model in Hamadan city

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

rtp

rfp



1448 Acta Geophysica (2019) 67:1435–1449

1 3

were located in high flood risk areas, 1 was allocated, and to the 
points that were in other flood risk levels, 0 was allocated. After 
randomly placing the set of numbers, 1 and 0 together with the 
displacement of the location of cut-points from 1 to 19, the 
Cartesian chart with right rate and the negative rate was plotted.

According to the results of ROC curve, the AUC value of 
the study area was 73 %, representing a good evaluation of 
Shannon’s entropy model (Fig. 7).

Conclusion

The main objective of this research was to develop a method 
identifying areas with flood hazard risk and can be used in 
other urban areas. This is important for decision making since 
it creates a roadmap to reduce the consequences of floods. One 
of the most important points not considered in most studies 
is the difference in the production of flood hazard risk maps 
in urban and natural areas. In urban areas, with progress of 
urbanization, FCFs also expand, causing changes in the land 
surface, and consequently disturbing the flow paths of runoff.

Therefore, this study comprises four parts to investigate 
flood hazard mapping in the studied area:

1. Simulation of the surface of the study area:
  The CD-TIN is one of the most important and pow-

erful algorithms that can examine the effect of several 
features and elements on a surface map. What was intro-
duced in this study was a digital elevation model with 
the scale of 1/2000, FCFs as an input to the CD-TIN 
algorithm, and the simulated surface of the study area.

2. Extraction of effective indices in flood hazard risk from 
the simulated ground surface

  After simulating the surface of the area, five effective 
indices of flood hazard risks such as slope, elevation, 
permeability, distance to discharge channel, and IDPR 
were extracted from the simulated surface.

3. Weighting of indices and preparation of flood hazard 
risk map

  The last but not least important step is the weighting 
of the indices. Following the entropy weighing method 
and considering the important role of the indices in 
the flood hazard risk, we evaluated and combined, and 
finally prepared the hazard zoning map.

4. Verification of the accuracy of flood hazard risk map
  In this study, the accuracy of the flood hazard risk map 

was obtained from using two methods of superimposition 
and ROC curve. In the superimposition method, by using 
20 flood hazard risk observation points, the results indicate 
that 14 observation points or 70% of the points are located 
in the area with very high flood risk. Furthermore, in the 
ROC curve whose basis of accuracy is the surface below 

the curve, the results show that the surface under the rock 
curve is approximately 73%, indicating the ability of the 
model to simulate the flood hazard risk in the study area.

In future researches, other than flood hazard mapping as 
the first element of flood risk studies, economic aspects and 
social vulnerability must be also considered. Hence, this 
approach will be highly important for insurance companies 
and governments to plan and reduce their financial budget. 
Moreover, owing to environmental impacts of these inci-
dents, urban decision makers and planners require further 
data to manage the risks of floods.
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Abstract
Accuracy of reservoir capacity loss estimation on daily timescale is dependent on the certainty of sediment load prediction, 
density estimate and capacity observed by consecutive hydrographic surveys. Data-scarce and uncertain data conditions 
restrict the development of a relationship between hydrographic surveys and hydrometric observations. The present study 
has been carried for Ukai Reservoir, India. A novel sediment rating curve fitting approach by optimization technique has 
been proposed in order to accurately predict sediment load from low-frequency sampled discharge and sediment concentra-
tion observations. The study demonstrates the validation of the bulk density estimate using statistical hypothesis testing and 
identifies the correctness of the hydrographic survey results. Application of the developed hydrometric and hydrographic 
relationship indicated that about 50% of the capacity loss of a year might occur during a single extreme event. The proposed 
approach can serve as a decision support system to monitor and manage sedimentation for the reservoir having uncertain 
data conditions.

Keywords Hydrometric observations · Hydrographic survey · Sediment rating curve · Representative sediment density · 
Reservoir capacity loss

Introduction

Rivers are the carrier channels for both water and sediment 
transported by the flow. Impoundment of water in the res-
ervoir is a prime objective, but in doing so silting of sedi-
ments carried with the flow needs to be checked. Under-
standing that reservoirs are non-renewable resources drives 
the research on their capacity loss (Kondolf et al. 2014). 
Initially, defining the rate of storage loss over a period of 
the dam’s operation was the sole interest. However, of late, 
attention is also being paid to augment the life of the res-
ervoirs despite the sediment inflow experienced by them 
(Chaudhuri 2006; Kondolf et al. 2014; Palmieri et al. 2001; 
Sumi and Hirose 2009). For achieving this goal, the inflow-
ing sediment load has to be associated with reservoir capac-
ity loss (RCL). Marineau and Wright (2017) quoted that a 
model that can relate the hydrological history to the reservoir 

sedimentation rates, at shorter timescales, can give precise 
estimates of the economic life of the reservoir.

The transportation and deposition of sediments in the 
reservoir can be studied by hydrometric observations and 
hydrographic surveys. Capacity loss noticed between two 
hydrographic surveys can be related to the suspended sedi-
ment concentration (SSC) observed at the hydrometric gaug-
ing station (Marineau and Wright 2017; Tebbi et al. 2012; 
Verstraeten and Poesen 2002); however, there are multiple 
practical limitations to it (Salas and Shin 1999).

If the bed load is unmeasured, then the use of empirical 
formulations and approximations may bring uncertainty to 
the predicted total sediment load (Swamee and Ojha 1991; 
Vanoni 1979). A low-frequency sampling (once a day) of 
the discharge and the SSC may generate an inaccurate sed-
iment load estimate (Arabkhedri et al. 2010; Bussi et al. 
2017; Harrington and Harrington 2013; Walling 1977a, 
b). In other words, hydrological sampling plan based on 
rising and falling limb of the hydrograph requires a couple 
of samples per day, while sampling once a day (time-based 
sampling) will bring inaccuracy in sediment load estima-
tion. Statistically, a fixed time-based sampling plan to 
measure SSC will limit the sensitivity of RCL analysis, as 
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the variation in the hydrograph and sediment graph is not 
captured adequately. In such instances, a sediment rating 
curve (SRC) can predict the continuous record of concen-
tration to estimate the sediment load. Yet, a stable SRC 
relationship can only be developed from high-frequency 
sampled data, (Bussi et al. 2017; Crawford 1991; Horowitz 
2003) and in its absence, different grouping and fitting 
procedures can be tested to identify a profound rating rela-
tionship. SRC can be obtained by grouping the data based 
on either time or the stage of the river (Walling 1977a, b). 
Seasonal variations in the SSC can be detected by time-
based grouping, while grouping based on the stage of the 
river (rising and falling limb of the hydrograph) incorpo-
rates the fluctuations resulting from the hysteresis effect 
(De Girolamo et al. 2015).

The power form of relationship, as an SRC model, relates 
SSC and discharge by means of nonlinear curve fitting. A 
nonlinear (power) form of relationship can be converted to 
a linear form by logarithmic data transfer (Heidarnejad et al. 
2006). Thus, ordinary least square (OLS) regression tech-
nique can be used to fit the linearized relationship of SSC 
and discharge. However, regression faces a limitation since 
the fitted model will possess the least square of residuals 
only for the concentration. Besides, regression between the 
suspended sediment load and discharge as an alternative to 
SSC and discharge is also considered to be a wrong practice. 
The suspended sediment load includes discharge in its com-
putation and generates a nonexistent superficial correlation 
(Annandale et al. 2016). Hence, to achieve the minimum dif-
ference of load estimates and to fit the suspended SRC such 
that the value of the coefficient of determination for SRC 
remains high, an optimization model approach is developed 
which further calibrates the SRC.

In the absence of the observed trap efficiency (TE), its 
estimation using empirical equations and curves (Brune 
1953) may cause uncertainty in the computation of reser-
voir-deposited sediments. The bulk density of the complete 
reservoir is hard to identify as no theoretical base has been 
established to obtain the reservoir density from the sample-
point densities. Bussi et al. (2013) found the predictability 
of the Lane and Koelzer (1943) empirical formulation to be 
satisfactory. For a small check dam, the authors validated the 
predicted dry bulk density using five sampled measurements. 
Yet, the complex distribution of sediments over the reservoir 
and neglecting the organic matter content compromised its 
validity (Verstraeten and Poesen 2001). Small et al. (2003) 
collected over 30 sediment samples from the Crombie Reser-
voir to determine the wet and dry densities. The researchers 
documented that the basal region had high density values 
(up to 2200 kg/m3) while the surface region had low density 
(500 kg/m3). Thus, the bulk density sampling might not give 
a representative value for the whole deposit and is usually 
estimated and not sampled. Tebbi et al. (2012) estimated a 

typical value of dry bulk density (1400 kg/m3) by consider-
ing the composition of the sediments.

The objective of this paper is to predict RCL (on a daily 
time step) from the hydrometric observations using low-
frequency (once a day) suspended sediment sampled data. 
The impact of the grouping and fitting procedures on the 
SRC for estimating the sediment load has been assessed, 
and a novel SRC model fitting approach by optimization 
technique has been proposed. A matrix of RCL is computed, 
using the SRC models and bulk density estimates, to assess 
the uncertainty of the predictions.

Study area and data collection

Ukai Reservoir, India, is chosen for the study, as it is 
equipped with an upstream gauging station having a long 
period of SSC record, reservoir sediment sampling data are 
available (for density estimate) and multiple hydrographic 
surveys are carried out on the reservoir. Ukai Dam reservoir 
lies in the middle of the Tapi basin (Fig. 1). Tapi River origi-
nates near Multai, Betul district, Madhya Pradesh, India, at 
an elevation of 752 m and drains in the Arabian Sea. The 
length of the Tapi River is 724 km; Purna (length of 274 km) 
and Girna (length of 260 km) are two major tributaries of 
the river. Tapi basin lies between 72°33′ and 78°17′ east 
longitudes and 20°9′ to 21°50′ north latitudes. The basin is 
surrounded by the Satpura Range (from the north), Mahadev 
Hills (from the east) and Ajanta Range (from the south). 
Tapi basin is covered with agriculture, forest and water bod-
ies by 66.19%, 25% and 2.99%, respectively, of the total 
area. The basin majorly consists of black cotton soil. The 
annual rainfall in the Tapi basin is 830 mm.

The first impoundment of the reservoir occurred in 1972. 
The gross reservoir capacity at the time of the first impound-
ment was 8510 × 106 m3. The full reservoir level (FRL) is 
at 105.15 m from the mean sea level, and its water spread 
area is 520 km2. The catchment area up to the dam wall 
is 62,225 km2. As per the last hydrographic survey report 
(2003), the total loss observed in reservoir capacity is 
1095.71 × 106 m3, the existing storage capacity is reduced 
to 7414.29 × 106 m3 and the distribution of loss is 51% in 
dead live and 49% in live storage.

Sarangkheda gauging station (21º25′55″N, 74º31′37″E) 
is the nearest upstream suspended sediment and discharge 
gauging station of the Central Water Commission (CWC). 
The discharge and sediment concentration data are avail-
able from 1984 at the gauging station. Discharge is meas-
ured at the station gauge line by the velocity-area method. 
The depth of flow in the cross section is measured at ver-
ticals of the segmented station gauge line, and observa-
tions of velocity are obtained with a current meter at 0.6 m 
depth point. The widths, depths and velocities observed 
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are used to compute discharge for each segment of the 
cross sections. Summation of these segmental discharges 
is the total discharge observed at the station gauge line. 
The Punjab-type bottle sampler is used to collect sus-
pended sediment at 0.6 m depth. The frequency of dis-
charge and sediment measurement at station gauge is once 

per day, whereas the water surface elevation is measured 
every hour (CWC 2014).

Sedimentation surveys (hydrographic surveys) of the 
Ukai Reservoir were conducted in 1979, 1983, 1992, 2001 
and 2003. A schematic representation of the Tapi basin up 
to the Ukai Dam is given in Fig. 2. Region A (58,400 m2) 

Fig. 1  Location of Ukai Reservoir in Tapi basin

Fig. 2  Schematic representation 
of the reservoir its upstream 
gauging station and ungauged 
catchment
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is the Tapi basin area up to the Sarangkheda gauging sta-
tion. The ungauged region B (3825 m2) is the area of the 
Tapi basin between the Ukai Dam and the gauging station. 
The distance between the reservoir’s tail and Sarangkheda 
is 113 km. The reservoir area at its full level (105.15 m) 
is 520 m2, as depicted in region C (Fig. 2). The mean of 
daily discharge and sediment concentration observed at the 
gauging station (period 1984–1992) is 276 m3 and 0.45 kg/
m3, respectively, while the maximum value of discharge 
and sediment concentration observed at the gauging station 
(period 1984–1992) is 13,750 m3 and 17.09 kg/m3, respec-
tively. Grain size analysis of the deposited sediment in the 
Ukai Reservoir at varying distances from the dam wall is 
provided in Table 1.

Methodology

Quantitative RCL is computed by converting the reservoir-
inflowing sediment load to the deposited sediment volume. 
Sediment load inflowing the reservoir can be predicted using 
a stable SRC, which can be then converted to deposition 
volume using the estimated reservoir sediment density. The 
predictability of the capacity loss from different SRC models 
and density estimates is checked in three phases (Fig. 3). In 
the first phase, emphasis has been made for the precise pre-
diction of the reservoir-inflowing sediment load. The second 
phase of the work deals with the estimation of sediment bulk 
density for the conversion of the inflowing sediment load to 
deposition volume. Four data grouping approaches and two 
fitting procedures are used to develop eight types of rating 
curve relationships. The predictions of these rating curves 
are subjected to three density estimates.

It is to be noted from phase three that if the RCL pre-
dicted is not equivalent to observed RCL, the best sediment 
load-estimating model (Phase 1) is to be used to fill the data 
gaps and inconsistencies. Then, an assessment of the esti-
mated bulk density should be done to correct the predicted 
RCL. From the above process, the established temporal-
lumped relationship is utilized to disintegrate the capacity 
loss on daily time step.

Computation of daily RCL is done from the daily trapped 
inflowing load (predicted using the SRC model) and esti-
mated sediment densities. Gross reservoir capacity at the 
end of the period is obtained by deducting the inflowing 
sediment volume from the gross capacity at the beginning 
of the period (Eq. 1):

where GRCt−1 = gross reservoir capacity at the beginning of 
period  (106 × m3), GRCt = gross reservoir capacity at the end 
of period  (106 × m3), Lt = predicted sediment load inflowing 
the reservoir during period t (Kg), TE = trap efficiency of 
the reservoir, BD = bulk reservoir density of the reservoir 
(kg/m3).

SRC model development

The gauged data were observed to be inconsistent with data 
gaps in the SSC measurements. In such a situation, the miss-
ing data were filled using suspended SRC (Walling 1977a, 
b). The available instantaneous daily time-stepped data may 
not reveal the hysteresis effect. Thus, in the present study, 
the SRCs are developed using time-based grouping, that is, 
daily, monthly average and yearly average data. Data group-
ing was carried out to reconnoiter a relationship between dis-
charge and concentration, while the application of the devel-
oped relationship was utilized to predict the concentration 
on a daily time step. Fitting of the rating curve to the data 
was achieved by two methods, namely ordinary least square 
(OLS) linear regression and fitting using optimization.

Data grouping

For developing the daily SRC model, directly available data 
were utilized. The monthly model was developed by group-
ing the data for the months in different years and calculating 
the average value of discharge and concentration for each 
month’s group in a year. A yearly average model was devel-
oped by categorizing the data according to the calendar year 
and then establishing the average value of discharge and con-
centration. Month-wise models were obtained by clustering 
the daily data of all the similar months.

(1)GRCt = GRCt−1 −

[

Lt ∗ TE

BD ∗ 106

]

Table 1  Grain size analysis of Ukai Dam Reservoir

The data were abstracted from the publication of the CWC (2015)
a PC, Percentage of clay/100 (particle size less than 0.002 × 10−3 m), 
bPM, Percentage of silt/100 (particle size 0.002 to 0.075 × 10−3  m), 
cPS, percentage of sand/100 (particle size 0.075 to 4.75 × 10−3 m)

Sample no. PC
a PM

b Ps
c

1 0.36 0.56 0.08
2 0.35 0.59 0.06
3 0.37 0.56 0.07
4 0.34 0.57 0.09
5 0.39 0.56 0.05
6 0.36 0.56 0.08
7 0.00 0.02 0.98
8 0.35 0.58 0.07
9 0.35 0.55 0.08
10 0.34 0.56 0.10
Average 0.32 0.51 0.17
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Fig. 3  Methodology adopted for identification of reservoir capacity loss
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Curve fitting by OLS regression and proposed 
optimization

After grouping, the conversion of the values to logarithms 
of base ten was performed for transforming the model from 
the power form (Eq. 2) to the linear form (Eq. 3). The scal-
ing coefficient, a, is transferred to the intercept (log a), and 
the exponent, b, becomes the slope of the transferred linear 
relationship:

Fitting a curve to the data is done by two methods, viz. 
ordinary least square (OLS) regression (linear fitting) and 
optimization technique. Both the fitting procedures are opti-
mization techniques that minimize a particular statistical 
error function (objective) with respect to certain constraints. 
OLS linear regression is derived from calculus while opti-
mization obtains solution numerically. The OLS regression 
would give a good relationship between discharge and con-
centration but may not necessarily produce a good sediment 
load estimate. On the other hand, the correlation between 
suspended sediment load and discharge is of interest; how-
ever, sediment load includes discharge in its computation 
and regression between them may generate a nonexistent 
superficial correlation (Annandale et al. 2016). The novel 
approach proposed in the present research is to calibrate the 
SRC coefficients in such a way that no significant change is 
observed in the coefficient of determination (obtained from 
OLS regression fitting procedure) between discharge and 
SSC relationship. Yet, the predictive accuracy of the accu-
mulated suspended sediment load is increased. That is, the 
SRC models developed using OLS regression are further 
calibrated to have a minimum difference in load estimates. 
In order to fit the SRC models by optimization, the coeffi-
cient of determination (obtained using the OLS regression) 
between discharge and SSC relationship is considered as a 
benchmark. The lower bound of the coefficient of determina-
tion (for the SRC model fitted by optimization technique) is 
selected as 5% lower than the benchmark value, while the 
upper bound for the coefficient of determination is given 
as one. Similarly, the upper and lower bounds of the scal-
ing coefficient, a, and the exponent, b were selected such 
that the range of bound was maintained between ± 5% of the 
SRC coefficients obtained using the OLS regression (Eq. 3). 
The objective of the daily, monthly average and yearly aver-
age SRC models fitted by optimization was to minimize the 
absolute percentage error in the suspended sediment load 
accumulated over a period (1984–1992) and is expressed 
mathematically in Eq. 4. On the other hand, the objective of 
the month-wise SRC was the minimization of the absolute 

(2)c = aQb

(3)Log c = b ∗ (logQ) + (log a)

percentage error in the load accumulated over the period of 
analysis for the respective month only:

The observed ( Lo ) and predicted ( Lp ) sediment loads 
(ton/day) were obtained using Eqs. 5 and 6, respectively, 
by summing the product of the SSC, ci , with the daily mean 
discharge, Qi , for the study period ( n days):

where average observed discharge Qi  (m3/s) of a particu-
lar day is obtained from the gauge-discharge curve and the 
water surface elevation (observed every hour). The predicted 
concentration ci predicted (kg/m3) is obtained as per Eq. 2, and 
observed concentration ci observed (kg/m3) is the observed 
SSC for a given day. It is to be noted that observed sedi-
ment concentration does not represent the average sediment 
load of the day but is a single temporal-point measurement. 
Sediment transport rate throughout a day is majorly depend-
ent on the variation in precipitation. Hence, the measured 
concentration value is not aligned with the hydraulic and 
hydrological factors. Using such measurement brings intrin-
sic uncertainty in the load prediction (Singh et al. 2013).

Optimization of the objective function for the constraints 
is done utilizing Excel Solver optimization tool. The solver 
is a spreadsheet-based optimization tool that provides non-
linear generalized reduced gradient (GRG) and evolutionary 
method to optimize nonlinear problems. The GRG method 
starts with an initial solution. It looks at the gradient of the 
absolute percentage error (Eq. 4) as the SRC coefficients 
are changed and stops as the first derivatives equal zero. 
The evolutionary method starts with random values of the 
coefficients (parent population) and evaluates them by a fit-
ness function (Eq. 4). The population is mutated, a new set 
of SRC coefficients are created as offspring, the individual 
fitness of each SRC coefficient is evaluated and the least fit 
is replaced with new values.

Using both methods one after another, it is assured that a 
global optimal solution of the SRC coefficients is reached. 
In GRG method and evolutionary method, the convergence 
is given as 0.0001. In the evolutionary method, the popula-
tion size is given as 100 and the mutation rate is given as 
0.075. The limiting time bound in the evolutionary method 
is selected as 30 s; i.e., the optimization process is to be 

(4)Percentage error =
Lp − Lo

Lo
∗ 100

(5)Lo =

n
∑

i=1

(

ci observed ∗ Qi ∗
24 ∗ 60 ∗ 60

1000

)

(6)Lp =

n
∑

i=1

(

ci predicted ∗ Qi ∗
24 ∗ 60 ∗ 60

1000

)
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stopped if maximum time without improvement of the solu-
tion is more than 30 s.

The statistical function of the Nash–Sutcliffe model effi-
ciency factor NSMEF (Nash and Sutcliffe 1970) and the 
index of agreement d (Willmott 1981) signify the model 
efficiency and are used for comparing the observed and 
predicted suspended sediment loads. The NSMEF scores 
range from negative infinity to one. A value equal to or less 
than zero denotes that the developed model should be disre-
garded, while the value of unity indicates a perfect predic-
tion. The index of agreement d is a non-dimensional and 
bounded measure. It is bounded from zero to one, with one 
suggesting a perfect match and zero connoting a lack of 
match between the observed and predicted values.

Computation of the sediment volume

Analyzing the observed SSC and discharge data obtained 
on daily time step (period 1983–1992), it has been found 
that about 33% of SSC data were not measured but can be 
predicted by SRC. By applying the SRC, the spatial and 
temporal data gaps were filled and the time series of daily 
suspended sediment load was obtained. The daily sus-
pended sediment load records were summed up for the 
period between the two consecutive hydrographic surveys. 
The total load cannot be estimated if the bed load is not 
included in the predicted suspended load. The bed load was 
not measured during the study period; therefore, considering 
the grain size distribution of the sediment, it was assumed to 
be 20% of the measured load (BIS-12182 1987; Waikhom 
and Yadav 2017). Besides, the calculated sediment load was 
adjusted as per the reservoir TE, which was estimated from 
the Brune (1953) median curve. The mathematical relation-
ship of Brune (1953) median curve (Eq. 7) proposed by Garg 
and Jothiprakash (2008) was employed:

where TE = trap efficiency (%), Co = storage capacity of 
the reservoir  (106 m3), I = inflow of water in the reservoir 
 (106 m3).

The total load (kg) can be converted to volume  (m3) based 
on the deposited sediment bulk density (hereafter merely 
referred to as density), which can be acquired by sampling 
the deposited sediment or by using empirical formulae. In 
the present analysis, sediment sampling was not a feasible 
approach due to the depth of the reservoir. Furthermore, 
point densities recorded in different locations need to be con-
verted into representative density (Annandale et al. 2016). 

(7)TE =

Co

I

0.00013 + 0.01
(

Co

I

)

+ 0.0000166

√

Co

I

The sediment volume was computed from the density based 
on the Lara and Pemberton (1963) and Miller (1953) (i.e., 
empirical approach), the observed mean density of Indian 
reservoirs and the typical value of density as per Tebbi et al. 
(2012).

Reservoir‑submerged sediment density

Lara and Pemberton (1963) and Miller (1953) empirical 
approach is used for the estimation of the submerged sedi-
ment bulk density. The initial density was calculated using 
the Lara–Pemberton method (Strand and Pemberton 1982) 
as shown in Eq. 8:

Wi = density in kg/m3, Pc,Pm and Ps = clay, silt and sand per-
centages of the incoming sediment, respectively. Wc,Wm and 
WS = clay, silt and sand coefficients of the incoming sedi-
ment, respectively.

Miller’s (1953) approach was applied to determine the 
average sediment density deposited in T years of the reser-
voir’s operation, as provided in Eq. 9:

WT = average density in kg/m3, after T years of reservoir 
operation, Wi = initial density in kg/m3, as derived from 
Eq. 8, K = constant, based on compacting characteristics of 
sediment and reservoir operation.

The value of K relates the compacting characteristics of 
the sediment based on the sediment size analysis. The bulk 
densities obtained from the Lara and Pemberton (1963) 
and Miller (1953) (cited in Strand and Pemberton 1982) 
approach depend on the grain size analysis.

In addition to the density computed by Lara and Pem-
berton (1963) and Miller (1953) approach, the typical value 
of density (1400 kg/m3; Tebbi et al. 2012) and the mean of 
observed sediment densities (i.e., 1191 kg/m3; CWC 2015) 
were utilized for the computation of sediment volume. 
Natural variability of the arithmetic mean sediment densi-
ties observed from 21 Indian reservoirs ranged from 780 to 
1555 kg/m3.

Results and discussion

SRC models

An SRC can represent flow and sediment transport rela-
tionship for a location under a certain range of environ-
mental, climatic and land use conditions. In other words, 
the relationship of sediment load and discharge together 
should be consistent during the period of analysis 

(8)Wi = WcPc +Wm Pm +WsPs

(9)WT = Wi + 0.4343K
[

T

T − 1

(

loge T
)

− 1
]
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(Asselman 2000; Warrick 2015). Before the development 
of SRCs, trend analysis was performed by nonparamet-
ric tests, which showed that discharges and suspended 
sediments have trend during the study period. However, 
the obtained trend between observed discharges is simi-
lar to the trend in observed concentrations; i.e., both the 
discharge and SSC are found consistent with each other. 
Hence, SRCs by different data grouping and curve fitting 
procedures were developed at Sarangkheda gauging sta-
tion for the period 1984–1992.

SRC developed by OLS regression

Figure 4 illustrates the SRC fitted with daily, monthly and 
yearly groups of data utilizing the OLS regression fitting 
procedure. The month-wise data-grouped SRC models fit-
ted by OLS regression are illustrated in Figs. 5 and 6. It is 
inferred from Figs. 5 and 6 that only the monsoon months’ 
discharge and SSC are correlated, while the non-monsoon 
months’ data exhibit no connection whatsoever. Statistical 
significance of the log of discharge and concentration data 
used in the regression model was checked by hypothesis 
testing (P values). It was found that all the SRCs produced 
in Figs. 4, 5 and 6 are statistically significant except the 
month-wise SRCs of the months February, April, May and 

Fig. 4  SRC fitted using OLS 
regression
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Fig. 5  SRC fitted using OLS 
regression for monsoon months 
(month-wise SRC)
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November. It is to be noted that during these months, very 
lean flow is observed and the sediment load contribution 
is less than 0.2%. Scaling (intercept) and exponent (slope) 
coefficients along with the coefficient of determination for 
the SRCs which are shown in Figs. 4, 5 and 6 are presented 
in Table 2. By conversion of the intercept [Log(a)] (pre-
sented in Table 2) to scaling coefficient (a), it is understood 
that for one unit of discharge, the concentration (kg/m3) will 
be its thousandth part.

SRC developed by optimization

The information of the relationship obtained between 
discharge and SSC was utilized to fit SRC models by 

optimization. Selected bounds for the SRC models to be 
fitted by optimization technique are listed in Table 3. The 
coefficient of determination (r2) between SSC and dis-
charge was considered as one of the constraining condi-
tions, and the lower limit of r2 was provided. The curves 
obtained for daily, monthly and yearly data by optimi-
zation are presented in Fig. 7. For the month-wise SRC 
model fitting by optimization, only the monsoon months 
were considered, as they exhibited a good correlation 
between the discharge and concentration. Fitted month-
wise SRCs are portrayed in Fig. 8. By considering the 
objective function as per Eq. 4 along with the constraints 
as mentioned in Table 3, SRC fitted by the optimization 
technique is presented in Table 4.

Fig. 6  SRC fitted using OLS 
regression for non-monsoon 
months (month-wise SRC)
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Table 2  SRC models developed 
using OLS regression

Here, a, scaling coefficient of the sediment rating curve [(kg/m3)/(m3/s)]; b, exponent coefficient of rating 
curve (unitless)

SRC model Log (a) b Coefficient of 
determination, 
R2Group of data No. of data 

points

Daily data-based SRC model 1889 − 2.9349 0.8628 0.6476
Monthly averaged data-based SRC model 76 − 2.9542 0.9701 0.7801
Yearly averaged data-based SRC model 9 − 2.1072 0.7076 0.6122
Month-wise data-based month-wise SRC models
 June 217 − 2.9349 0.8628 0.6476
 July 260 − 2.9862 1.0757 0.7900
 August 279 − 3.4197 1.0514 0.5947
 September 268 − 3.3142 0.8962 0.6430
 October 240 − 3.3467 0.8688 0.5916
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Table 3  Range of upper and lower bounds

Group of data Coefficient log (a) Coefficient b Coefficient of determina-
tion, R2

Upper bound Lower bound Upper bound Lower bound Upper bound Lower bound

Daily data-based SRC model − 2.79 − 3.08 0.91 0.82 1 0.62
Monthly averaged data-based SRC model − 2.81 − 3.10 1.02 0.92 1 0.74
Yearly averaged data-based SRC model − 2.00 − 2.81 0.74 0.67 1 0.58
Month-wise data-based month-wise SRC models
 June − 2.79 − 3.08 0.91 0.82 1 0.62
 July − 2.84 − 3.14 1.13 1.02 1 0.75
 August − 3.25 − 3.59 1.10 1.00 1 0.56
 September − 3.15 − 3.48 0.94 0.85 1 0.61
 October − 3.18 − 3.51 0.91 0.83 1 0.56

Fig. 7  SRC fitted by optimiza-
tion and OLS regression
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Fig. 8  Month-wise SRC fit-
ted by optimization and OLS 
regression
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Comparison of SRC developed by OLS regression 
and optimization

SRC models were obtained from different groups of data, 
i.e., daily, monthly, yearly and month-wise though they were 
applied to daily time step data (discharge) to predict daily 
concentration and sediment load. Comparison of observed 
and predicted sediment load passing Sarangkheda gauging 
station for the period 1984–1992 disclosed that SRC fitted 
by optimization gave better prediction than OLS regression-
fitted SRCs (Fig. 9). Table 5 shows the percentage error, 
NSMEF and d computed between observed and predicted 
load. The NSMEF scores of the yearly, monthly and daily 
models fitted by optimization are 0.4603, 0.4813 and 0.6240, 
respectively. The coefficient of determination obtained for 
the monthly SRC model fitted by optimization is 0.7796 and 
is the highest of all.  

Despite this close agreement of the optimization-fitted 
SRCs with predicted sediment load for the entire 9-year 
period, yearly sediment load predictability was investi-
gated. Not surprisingly, the accuracy of the yearly predic-
tions decreased. The percentage error ranged from − 79.87 
to 82.65% for optimization-fitted models while for OLS 
regression-fitted model the error ranged from − 88.24 to 
98.64%. The dissimilarity of the percentage error between 

the entire 9-year period and yearly sediment load prediction 
demonstrates the competence of the SRCs fitted by optimiza-
tion to round the error associated with longer periods.

The variability of predictions for yearly accumulated sedi-
ment loads with respect to data grouping was observed less 
for models fitted by optimization (Fig. 10), as compared to 
the models fitted by OLS regression (Fig. 11). This shows 
that the SRC models fitted by OLS regression are highly 
susceptible to data grouping and resolution, while those 
designed by the optimization technique are less influenced by 
the resolution of the data. This is due to the fact that the OLS 
regression models were further calibrated using the optimi-
zation technique by considering an objective function for 
minimizing the error between the observed and the predicted 
loads. From the results of the SRC models devised using the 
diversified approaches, it could be legitimated that the ones 
that were developed using optimization were the best.

The composition of the SRC fitting data significantly 
impacts the SRC produced (Horowitz 2003). Though results 
of the study have revealed that sediment load predictions 
obtained from SRCs fitted by optimization is independent 
of the composition of the dataset and hence, the coefficients 
of the obtained SRCs were analyzed. A negative correlation 
between the regression coefficients of the fitted SRCs is evi-
dent if the sediment flow regime is consistent (e.g., Asselman 

Table 4  SRC models developed 
using optimization technique

SRC model Log (a) b Coefficient of 
determination, 
R2Group of data No. of data 

points

Daily data-based SRC model 1889 − 3.0131 0.9016 0.6268
Monthly averaged data-based SRC model 76 − 2.9571 0.9593 0.7796
Yearly averaged data-based SRC model 9 − 2.1733 0.6751 0.6048
Month-wise data-based month-wise SRC models
 June month 217 − 2.9862 0.9031 0.6340
 July month 260 − 2.8546 1.0642 0.7751
 August month 279 − 3.5000 1.0980 0.5851
 September month 268 − 3.4000 0.9078 0.6114
 October month 240 − 3.5000 0.8785 0.5615

Fig. 9  Differences between 
actual and sediment rating 
curve-derived sediment load 
passing Sarangkheda gaug-
ing station during 1984–1992 
period
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Table 5  Statistical summary of developed SRC models

Italic values show the best performing model
The observed load is computed from the observed discharge and sediment concentration while the predicted load is computed using observed 
discharge and predicted sediment concentration

SRC model Percentage Error Nash–Sutcliffe model 
efficiency factor

Index of 
agreement, 
dGroup of data Fitting procedure used for 

fitting an SRC

Daily data-based SRC model OLS regression − 53.42 0.5892 0.9964
Optimization technique − 3.52E–07 0.4603 0.9953

Monthly averaged data-based SRC model OLS regression 13.32 0.3478 0.8699
Optimization technique − 1.33E–07 0.4813 0.8834

Yearly averaged data-based SRC model OLS regression − 14.29 0.6872 0.9018
Optimization technique − 2.01E–08 0.624 0.9031

Month-wise data-based month-wise SRC models
 June OLS regression − 84.24 0.1988 0.3991

Optimization technique 3.78E–07 0.6438 0.9148
 July OLS regression 17.24 0.0653 0.8324

Optimization technique − 3.48E–05 0.4406 0.8713
 August OLS regression − 4.08 0.5757 0.9106

Optimization technique 1.60E–11 0.579 0.9124
 September OLS regression − 49.98 0.6557 0.8387

Optimization technique − 1.54E–07 0.9143 0.9779
 October OLS regression − 71.19 0.3879 0.5945

Optimization technique − 7.90E–08 0.9371 0.9821

Fig. 10  Comparison of 
observed and predicted sedi-
ment load for the sediment rat-
ing curve fitted by optimization
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Fig. 11  Comparison of 
observed and predicted 
sediment load for the sediment 
rating curve fitted by OLS 
regression

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00

1984 1985 1986 1987 1988 1989 1990 1991 1992

Y
ea

rly
 su

m
 o

f s
us

pe
nd

ed
 

se
di

m
en

t l
oa

d
(1

06
x 

To
nn

e/
da

y)

Time (year)

Observed Daily Monthly Yearly Mothwise



1463Acta Geophysica (2019) 67:1451–1469 

1 3

2000; Syvitski et al. 2000). Sediment flow regime in the river 
reach of Sarangkheda gauging station is consistent during the 
1984–1992 period, as no major activity has occurred in the 
upstream catchment area. Furthermore, the SRCs are obtained 
by grouping the observed data at a fixed location and period. 
Therefore, it is likely that the SRC coefficients should exhibit 
a good relationship. SRC coefficients obtained from daily, 
monthly, yearly and month-wise groups of data were plotted 
and are presented in Fig. 12. July and August month fitted 
SRCs from the month-wise models were only used to assess 
the relationship of the coefficients because they contribute 
79% of the sediment load from a hydrological year. The coef-
ficient of determination was found to be 0.7651 between SRC 
coefficients fitted by OLS regression, while for the coefficients 
of the SRCs fitted by optimization approach, it increased to be 
0.8197. The upturn of the relationship between SRC coeffi-
cients indicates that the SRC fitted by optimization represents 
the flow and sediment transport regime in a better way, as 
compared to OLS regression-fitted SRCs.

Application of the SRC model to predict 
reservoir‑inflowing sediment load by filling spatial 
and temporal data gaps

The availability of temporal and spatial data from the 
hydrometric observations pertaining to two consecutive 

hydrographic surveys is presented in Table 6. The surveys 
were undertaken in 1983 and 1992. Since the Sarangkheda 
gauging station was established only in 1984, hydrometric 
observations of the entire catchment area for the preceding 
year were missing. Moreover, the gauging station’s observed 
data (1984–1992) do not account for the suspended sediment 
from region B (Fig. 2). Hence, the model was applied to 
bridge the spatiotemporal data gap. The SRC models devel-
oped at the Sarangkheda gauging station were transferred to 
the Ukai Reservoir head. Discharge inflow to the reservoir 
was identified from a water budget model in the form of a 
spreadsheet program. Elevation storage curve was utilized 
to obtain the storage volume. Daily inflow ( It=1 day ) was 
computed from the change in storage volume in accordance 
with the downstream release by the spillway, as well as the 
hydropower plant and reservoir water loss by evaporation 
(Eq. 10). Volume of evaporation was estimated using the 
observations of pan evaporimeter:

It = inflow at the end of the period, St−1 = storage at the 
beginning of the period, St = storage at the end of the period, 
VRph = volume of release through powerhouse during period 
t, VRULBMC = volume of release through Ukai left bank 
main canal during period t, VRSPILLWAY = volume of release 

(10)
It = St − St−1 +

(

VRph + VRULBMC + VRSPILLWAY + VREV

)

Table 6  Spatial and temporal suspended sediment concentration and discharge data gaps and inconsistency

Regions A and B are as shown in Figs. 1 and 2, region B is ungauged region and data are missing for the period 1983–1992. The Sarangkheda 
gauging station was established in 1984, and so data of 1983 are missing

Year 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

Hydrometric 
observa-
tion data for 
regions A and 
B (Fig. 2)

A Missing 
data

Present but inconsistent
B Missing data (ungauged catchment area)

Hydrographic survey Survey 
done

– – – – – – – – Survey 
done

Fig. 12  Correlation between the 
coefficients of the SRC obtained 
from OLS regression and opti-
mization fitting
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through radial gates (spillway) during period t, VREV = vol-
ume of water lost by evaporation during period t. 

For the year 1983, discharge inflow was directly used as 
input in the SRC models to estimate the suspended sediment 
load contributed by the complete reservoir upstream catch-
ment. As per the monthly SRC fitted by optimization, sedi-
ment inflowing the reservoir in the year 1983 was computed 
to be 23.56 × 106 tonnes. For the period 1984–1992, the daily 
water volume contributed by region B was discerned and it 
was converted into the daily discharge contribution of the 
region. The discharge contributed by region B was thus used 
as input in the SRC models to ascertain the suspended sedi-
ment load contribution of the region. Region B (ungauged 
catchment area, 3825 km2) which includes the reservoir 
rim catchment contributes about 5% (8.36 × 106  tonnes) 
of sediment load of the region A (gauged catchment area) 
(Table 7). The suspended sediment load received by the res-
ervoir during the study period is furnished in Table 7.

Ukai Reservoir‑trapped sediments

Reservoir-trapped sediment is derived from the product of 
trap efficiency (TE) and total sediment load (suspended load 
and bed load). TE was predicted by Brune median curve, 
which ranged from 96.9 to 99.4% (period 1983–1992).

Reservoir‑deposited sediment density 
and deposition volume

Three approaches of sediment bulk density were used to 
compute deposition volume. First, density was computed 
using empirical approach (Lara and Pemberton 1963; Miller 

1953), second, based on the mean observed densities of 
Indian reservoirs having similar operational characteristics, 
density was computed (i.e., 1191 kg/m3) and third, typical 
value of density (i.e., 1400 kg/m3) was considered (Tebbi 
et al. 2012).

Estimation of the density by empirical approach was 
carried out in two steps. The initial sediment density was 
computed (Lara and Pemberton 1963), which was further 
processed for the effect of consolidation (Miller 1953). 
Sediment sampling of the submerged deposited sediments 
showed that the clay, silt and sand content of the sediment is 
32%, 51% and 17%, respectively (Table 1). According to the 
reservoir operation, the sediment always remains submerged 
in the reservoir and is never exposed to sunlight or air. The 
mean initial density obtained through Eq. 8 was 963.82 kg/
m3. The average density after 9 years of compaction (final 
density) as inferred from Miller (1953) was 966.07 kg/m3.

The three densities (viz. empirical approach based, mean 
observed density and typical density value) and sediment 
load trapped by the reservoir (obtained from different SRC 
models) were used to convert the sediment mass inflow to 
volumetric terms. RCL observed by two consecutive hydro-
graphic surveys performed in the years 1983 and 1992 is 
466.200 × 106 m3. Table 8 demonstrates the difference in 
the observed and predicted volumes. The percentage error 
noticed in Table 8 urged further investigation on the cer-
tainty of the estimated density.

Empirical density estimate

The RCL predicted from the density estimated by empiri-
cal formulation resulted in an underprediction ranging from 

Table 7  Total suspended load contributed by catchment

a Total suspended load contributed by region A in million tonnes for the period 1984–1992
b Total suspended load contributed by entire catchment in million tonnes for the year 1983
c Total suspended load contributed by region B in million tonnes for the period 1984–1992
d Total suspended load contributed by entire catchment in million tonnes for the period 1983–1992

SRC model
(1)

SSLA
a

(2)
SSLb

A+B
(3)

SSLB
c

(4)
SSLA

d 
(5)
(2) + (3) + (4) = (5)

Group of data used for SRC model development Fitting procedure used for 
fitting an SRC

Observed data 171.595 – – –
Daily data-based SRC model OLS regression 80.788 11.546 4.349 96.682

Optimization technique 173.379 23.021 7.771 204.171
Monthly averaged data-based SRC model OLS regression 191.286 25.840 8.936 226.062

Optimization technique 173.383 23.559 8.215 205.157
Yearly averaged data-based SRC model OLS regression 148.701 22.888 9.844 181.433

Optimization technique 173.409 25.911 10.531 209.850
Summation of month-wise SRC model OLS regression 157.993 12.551 6.238 176.782

Optimization technique 174.970 16.497 10.991 202.457
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39.77 to 74.24%. Such obtained underprediction cannot 
be considered for the estimation of daily RCL (Table 8), 
and uncertainty of the density estimate is assessed. The 
density estimated by the Lara and Pemberton (1963) and 
Miller (1953) approach using the sampled sand, silt and clay 
content depends on the particular specimens in the sample. 
Since these values can vary from sample to sample, par-
ticular samples can produce misleading values resulting in 
incorrect density estimates. The possibility of estimating a 
wrong density, on the basis of the collected sand silt and clay 
content, cannot be absolutely rejected except complete res-
ervoir area is accurately sampled. This is, of course, physi-
cally and economically challenging as the dam rises to a 
maximum height of 70 m above the river bed level (Ukai 
Dam authority). Generally, in reservoir sediment sampling, 
the depth of water becomes one of the major hindrances 
for sample collection. Hence, due to limited samples in the 
spatial domain, the density representing the complete reser-
voir area has to be inferred from the sample-obtained mean 
density. In order to obtain an objective or subjective bias 
correction factor, which can be multiplied to the sample-esti-
mated density, to infer reservoir representative density, the 
major sediment density influencing factors and the sampling 
program-related biases have to be evaluated. The inadequacy 
of such data limits us while deriving the bias correction fac-
tor. Nevertheless, in order to derive the corrected density 
estimate, the SRC that stood best for load prediction during 
SRC development stage (month-wise data-grouped SRC fit-
ted by optimization, Table 4) is considered as the best SRC 
and a submerged sediment density of the reservoir is derived 
as a ratio of accumulated sediment load to the observed 
RCL (observed from hydrographic surveys conducted dur-
ing 1983 and 1992). The computed representative density 
is found to be 528.075 kg/m3; such low value of computed 
density questions the validity of the derived sediment load 
or the 1992 hydrographic surveyed reservoir capacity.

Statistical evaluation of the density estimated by the 
empirical approach (Lara and Pemberton 1963; Miller 1953) 
and density obtained by equating sediment load (gravimet-
ric) with hydrographic surveyed RCL (volumetric) is per-
formed. Assuming that the statistical population of density 
follows a normal distribution and considering the empirical-
derived density estimate as mean of statistical sample and 
the density obtained by equating gravimetric sediment load 
with volumetric RCL as statistical-population mean, two-
tailed t test is performed to compare the mean of statistical 
sample and population for the known standard deviation of 
the sample (for ten sampled specimens).

T test statistic ( t ) is a standardized value calculated from 
the mean of sample and population, which incorporates both 
the sample size and its variability. The null hypothesis is 
exactly sufficed if t is found to be zero; as the absolute t is 
increased, the significance of accepting the null hypothesis 
is decreased (Johnson 2017). For the present study, the null 
hypothesis ( H0 ) proposes that the statistical-sample mean 
is not significantly different than the statistical-population 
mean, and on the other hand, the alternative hypothesis ( Ha ) 
states that the statistical-sample mean is significantly differ-
ent than the population mean. The critical T value ( t

�∕2, df ) 
for significance level (α) as 95% with nine degrees of free-
dom ( df ) is found to be 2.262, and t is calculated as 6.784. 
As t is higher than t0.975,9 , it is determined from hypothesis 
testing that H0 is rejected in favor of Ha . This does not nec-
essarily mean that Ha is true; it only suggests that there is 
not sufficient evidence to accept the null hypothesis suggest-
ing alternative hypothesis may become true. However, the 
statistical test clearly rejected the statistical significance of 
the two densities to be equal. Hence, the correctness of the 
reservoir capacity (observed during the hydrographic sur-
vey of 1992), the derived sediment load and the density esti-
mate remains a question. Therefore, four scenarios of RCL 
between the period 1983 and 2003 are generated using the 

Table 8  Percentage error 
between observed and computed 
sediment volume

PE, percentage error computed between observed and predicted reservoir-deposited sediment volume. Suf-
fix a, b and c stands for the density estimate used to derive the volume prediction, a implies volume com-
puted using the empirical formula of bulk density, b implies volume computed using density of Indian 
reservoirs having similar operational characteristics and c implies volume computed using typical value of 
density (1400 kg/m3)

SRC models PEa (%) PEb (%) PEc (%)

Data group Fitting technique

Daily data-based SRC model OLS regression − 74.24 − 79.1 − 82.22
Optimization technique − 45.6 − 55.87 − 62.46

Monthly averaged data-based SRC model OLS regression − 39.77 − 51.14 − 58.44
Optimization technique − 45.34 − 55.66 − 62.28

Yearly averaged data-based SRC model OLS regression − 51.66 − 60.79 − 66.64
Optimization technique − 44.09 − 54.65 − 61.42

Summation of month-wise SRC model OLS regression − 52.9 − 61.79 − 67.50
Optimization technique − 46.06 − 56.24 − 62.78
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month-wise data-grouped SRC fitted by optimization and 
different density estimates. It was expected that if the sedi-
ment load predictions are accurate, then the capacity loss 
predicted from one scenario will be in good agreement with 
the difference between the reservoir capacity observed dur-
ing the hydrographic surveys of 1983 and 2003, resulting in 
one true reservoir sediment density. Densities of 528.075 kg/
m3, 966.07 kg/m3, 1191 kg/m3 and 1400 kg/m3 are used to 
generate scenarios 1, 2, 3 and 4, respectively. Comparing the 
observed and predicted RCL, an overprediction of 82.10% is 
reported from scenario 1 while an underprediction of 0.46% 
is reported from scenario 2. However, scenarios 3 and 4 have 
produced an underprediction of 19.26% and 31.31%, respec-
tively. The discrepancy ratio of these estimates is presented in 
Table 9. The density estimated from the empirical approach 
(966.07 kg/m3) showed least deviation between observed and 
predicted capacity loss. A lower value of the error from sce-
nario 2 validates the SRC model to produce sediment load 
and the density obtained by empirical approach.

In order to relate hydrometric and hydrographic observa-
tions for the prediction of reservoir capacity loss on daily 
timescale, correct prediction of sediment load has to be done, 
density estimate has to be accurate and the uncertainty from 
the hydrographic survey should be narrowed. The present 
research has highlighted major problems, which can hinder 
the linking of the hydrometric observations with the RCL. 
Uncertainties of the predicted sediment load, density esti-
mate and hydrographic survey are interlinked. The proposed 
approach is beneficial as it assesses the correctness of the 
observed data by statistical evaluation of density estimates 
and generation of the capacity loss scenarios. The result of 
the study demonstrates the prediction of daily RCL in uncer-
tain data conditions. It is necessary to discuss here that, in 
the future, more consideration should be given to ensure the 
correctness of the hydrographic surveys. RCL obtained from 
hydrographic surveys should be cross-verified with the RCL 
derived from the hydrometric observation, using the present 
approach. In addition to it, from the ongoing research, few 

essential points identified for quality control, minimization 
of the surveying error and the uncertainty are listed here: (1) 
Hydrographic surveys should be carried out on standardized 
operating procedures providing a uniform method of plan-
ning, collecting, processing and analyzing data. (2) Before 
the execution of the hydrographic survey, by examining the 
reservoir bathymetry obtained from previous surveys, criti-
cal locations should be identified, so that a comparison over-
lay for those particular locations can be prepared. (3) The 
main survey lines directions (perpendicular to the general 
direction of contours) and their spacing should be identified 
from the previous surveys experience. (4) Crossline direc-
tion, i.e., at right angles to mainline direction, should be 
selected as a vital quality regulation measure. So when any 
interpolation algorithm is used, the results can be verified 
with such control lines. (5) Surveying vessel speed has to be 
assessed for the expected range of depths in the survey area 
and the type of echo sounder in use to reduce the measure-
ment and observation uncertainty. (6) A consistent datum 
must be used throughout all hydrographic survey projects, 
or the data has to be adjusted if comparison has to be made.

Gross reservoir capacity loss prediction

The temporal lumped relationship established between the 
hydrometric observations of the reservoir upstream gauging 
station and the reservoir capacity derived from hydrographic 
surveys were utilized to disintegrate the observed phenom-
ena on a daily time step.

Employing the SRC model, daily depositing sediment vol-
ume and continuous timeline of gross reservoir capacity are 
obtained (Fig. 13). Though the model is based on a simple 
approach, the validity of the developed relationship to predict 
the RCL was found considerable. The relationship was thus 
utilized to estimate the action of the extreme hydrological 
events to RCL (Table 10). During a flood event on August 08, 
2006, about 1991 × 106 m3 of water flowed into the reservoir 
in a single day, which brought about 42.16 × 106 tonnes (esti-
mated) of sediment load causing 43.64 × 106 m3 (estimated) of 
RCL (Fig. 14). This model estimate is 0.59% of 2003 surveyed 
reservoir capacity. The average RCL from its first impound-
ment in 1972 to the last bathymetry survey carried out in the 
year 2003 was 35.35 × 106 m3/year. The results have shown 
that about 50% of the capacity loss of a year may occur during 
a single extreme event. The design siltation rate of the Ukai 
Dam is 0.149 × 103 m3/km2/year, whereas the observed rate in 
the reservoir is 0.568 × 103 m3/km2/year (CWC 2015), which 
shows that the rate of siltation was underestimated by 73.77%.

Ten extreme flood events observed in the history of the 
Ukai Reservoir were analyzed for the inflowing sediment load 
and RCL (Table 10). With respect to initial reservoir capacity, 
RCL of 0.512% to 0.081% was observed. Through all these 

Table 9  Reservoir capacity loss with respect to estimated densities 
for the period 1983–2003

a RCLo , reservoir capacity loss derived from the gross reservoir capac-
ity observed in 1983 and 2003 hydrographic surveys
b RCLp , reservoir capacity loss computed from the sediment load 
trapped by the reservoir and different density estimates
c DR , discrepancy ratio between RCLo and RCLp

Scenario Sediment 
density

RCLa

o
 

 (106 m3)
RCLb

p
 

 (106 m3)
DRc (%)

Scenario 1 528.05 548.71 999.22 1.82
Scenario 2 966.07 546.20 1.00
Scenario 3 1191.00 443.05 0.81
Scenario 4 1400.00 376.91 0.69
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ten events, about 173.96 × 106 m3 of sediment volume settled 
in the reservoir, which reduced the capacity of the reservoir 
by 2.04%. It is to be noted that the estimated RCL by such 
hydrometric and hydrographic relationship may only provide a 
first-order capacity loss estimate. Yet, in data-scarce condition, 
it may stand as a very useful tool to understand the response 
of hydrological events directly on the RCL.

Conclusions

The certainty of the predicted sediment load trapped by the 
reservoir, estimated bulk density of the deposited sediment 
and the hydrographic survey observed reservoir capacity 

limits the accuracy of the reservoir capacity loss (RCL) 
prediction. Accurate prediction of sediment load using 
sediment rating curve (SRC) has been emphasized in the 
present study. A novel SRC fitting approach by means of 
optimization technique is proposed to predict sediment 
load using low-frequency (once a day) suspended sedi-
ment sampled data. Use of SRCs to produce sediment load 
predictions by different grouping and fitting procedures 
has produced the following learnings.

• Data grouping (composition of data) and curve fitting 
procedures adopted for the SRC model development will 
change the exponent and scaling coefficient of the SRC 
models.

Fig. 13  Time series of predicted 
reservoir capacity loss
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Table 10  Extreme events in 
reservoir catchment and its 
impact on capacity loss

S. no. Date Amount of water received by 
reservoir  (106 × m3)

Estimated sediment 
inflow  (103 × ton)

Estimated capac-
ity loss  (106 × m3)

1 08-08-2006 1991.00 42.16 43.64
2 16-09-1998 1839.63 36.11 37.38
3 07-09-1994 1350.09 19.69 20.39
4 20-08-1984 1188.00 15.33 15.87
5 17-08-1990 1022.80 11.43 11.83
6 09-07-2007 1021.88 11.41 11.81
7 04-10-1988 909.02 9.07 9.39
8 07-09-2012 905.56 9.01 9.32
9 20-08-1989 803.52 7.12 7.37
10 02-08-2013 779.93 6.72 6.96
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• Degree of accuracy of the predicted load from low-
frequency observations varies with the composition of 
the data in case of SRCs fitted by ordinary least square 
regression, whereas the effect of data composition to pre-
dict sediment load was observed to be low in the case of 
SRCs fitted by the proposed optimization approach.

• The percentage error observed between the entire period 
and yearly sediment load prediction demonstrated that 
the competence of the SRCs fitted by optimization to 
round the error associated with longer periods is high.

• Assessment of the relationship between the SRC coeffi-
cients has suggested that the SRCs fitted by optimization 
represent the flow and sediment transport regime in a 
better way.

Hence, if the sampling frequency is low and observations 
are made independent of the hydrograph (as instantaneous 
temporal point measurement), then the observed data can be 
utilized effectively by employing the fitting procedure based 
on optimization.

The approach developed in this paper provides a means to 
validate the estimate of reservoir-submerged sediment den-
sity obtained from the sampled sediment sand, silt and clay 
content and the empirical density predicting models. Statisti-
cal hypothesis testing (P value or T value) is required to be 
performed between the mean density estimated from sedi-
ment samples and the density obtained by equating sediment 
load prediction to the observed capacity loss. The result of 
the hypothesis tested should prove that both of these densi-
ties do not differ. If they differ, further investigation of the 
estimated density, as well as the hydrographic surveys, is 
required, before utilizing it to derive RCL.

Application of the developed relationship between the 
hydrographic and hydrometric observations to disintegrate 
the RCL on a daily scale will enhance the understanding 

of event-based capacity loss, which may stand as a useful 
approximation to devise a sediment management strategy.
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Abstract
This article explores the suitability of a long short-term memory recurrent neural network (LSTM-RNN) and artificial intel-
ligence (AI) method for low-flow time series forecasting. The long short-term memory works on the sequential framework 
which considers all of the predecessor data. This forecasting method used daily discharged data collected from the Basantapur 
gauging station located on the Mahanadi River basin, India. Different metrics [root-mean-square error (RMSE), Nash–Sut-
cliffe efficiency (ENS), correlation coefficient (R) and mean absolute error] were selected to assess the performance of the 
model. Additionally, recurrent neural network (RNN) model is also used to compare the adaptability of LSTM-RNN over 
RNN and naïve method. The results conclude that the LSTM-RNN model (R = 0.943, ENS = 0.878, RMSE = 0.487) outper-
formed RNN model (R = 0.935, ENS = 0.843, RMSE = 0.516) and naïve method (R = 0.866, ENS = 0.704, RMSE = 0.793). 
The finding of this research concludes that LSTM-RNN can be used as new reliable AI technique for low-flow forecasting.

Keywords Artificial intelligence · Long short-term memory recurrent neural network · Low flow · Hydrological time series 
forecasting, naïve method

Introduction

Forecasting hydrologic time series (HTS) is a vital research 
topic for researchers, and undoubtedly forecasting has always 
been prime concern in hydrological practices. The forecast-
ing of rainfall and water level in a river is very important 
task for water resources engineers for planning and monitor-
ing water resources activities like providing irrigation water, 
maintaining environmental flow, providing drinking water, 
recreational purpose and many more other activities. Hydro-
logical processes like stream flow generation processes are 
not only controlled by external climatic conditions, but also 
by physical properties (Beven 2012). Developing appro-
priate models for forecasting hydrological time series is a 
challenging task due to the influences of many factors and 
complicated hydrologic processes (Gárfias-Soliz et al. 2010; 
Nayak et al. 2004; Sang 2013; Sang et al. 2009).

While dealing with time series forecasting in hydrol-
ogy, there are two approaches generally witnessed in the 

literature: the first one is stochastic models and the other one 
is artificial intelligence (AI) techniques. The AI techniques 
are generally referred as black box models in the literature 
due to its complex and unknown underlying process. It is 
very difficult to say which approach is the best for hydro-
logical time series forecasting. However, a recent study on 
hydrological time series forecasting by (Papacharalampous 
et al. 2019) and its companion studies was algorithmically 
proved by using large datasets (135–2537 real-world time 
series and 16,000–48,000 simulated time series) that at the 
annual and monthly time scales traditional and AI tech-
niques can perform equally well. The gaining popularity 
of AI techniques for HTS forecasting is clearly witnessed 
in the studies. (Papacharalampous et al. 2018a) assess the 
one-step ahead forecasting performance of 20 univari-
ate time series forecasting methods to a large number of 
geophysical and simulated time series of 91 values. “The 
simulation experiments reveal the most and least accurate 
methods for long-term forecasting applications, also sug-
gesting that the simple methods may be competitive in spe-
cific cases.” Some of those AI models used in HTS includes 
neural network (NN)(Atiya et al. 1999; Kişi 2007), support 
vector machines (SVM) (Kisi and Cimen 2011; Sahoo et al. 
2018; Sivapragasam et al. 2001), extreme learning machines 

 * Bibhuti Bhusan Sahoo 
 bibhuti5000@gmail.com

1 Department of Civil Engineering, National Institute 
of Technology, Patna, India

http://orcid.org/0000-0003-1848-2311
http://crossmark.crossref.org/dialog/?doi=10.1007/s11600-019-00330-1&domain=pdf


1472 Acta Geophysica (2019) 67:1471–1481

1 3

(ELM) (Yaseen et al. 2016), adaptive neuro-fuzzy inference 
system (ANFIS) (Firat and Güngör 2007), random forest 
(Tyralis and Papacharalampous 2017) and many more such 
AI techniques can be seen in the literature. Tyralis and 
Papacharalampous (2018) used Prophet for multi-step ahead 
forecasting of monthly streamflow. The Prophet algorithm is 
developed by Facebook for time series forecasting. These AI 
techniques are the viable alternative tool to study hydrologi-
cal phenomena, when hydrological attributes are limited and 
forecasting is essential.

HTS forecasting has received the remarkable considera-
tion by the researchers in the last few decades, and many 
models for HTS forecasting have showed significant perfor-
mance in terms of forecasting accuracy. HTS forecasting is 
still one of the difficult problems and is an active research 
area of interest in operational hydrology. We have applied 
sequential LSTM-RNN model for low-flow forecasting at 
Mahanadi River basin, using low-flow data from the Bas-
antapur station. Additionally, to check its adaptivity for this 
process, a benchmark model (naïve method) and sequential 
model (RNN) were used for HTS forecasting.

The main purpose of this study is to inspect the suitabil-
ity of LSTM-RNN for low-flow forecasting in the selected 
station of Mahanadi River basin India and compare it with 
RNN and naïve method. The naïve forecasting method is one 
of the most commonly used benchmarks for time series fore-
casting (Hyndman and Athanasopoulos2013; Pappenberger 
et al. 2015). This method simply sets all forecasts equal to 
the last value. This naïve method is appropriate when we 
are interested in multi-step ahead forecasting of time series 
without seasonality. However, in this study, we are interested 
in one-step ahead forecasting of monthly values; therefore, 
an appropriate naïve method is the one based on all monthly 
values of the last year.

Reviews on modeling approaches for HTS

HTS modeling can be categorized into two groups such as 
parametric and nonparametric methods. The most widely 
used parametric time series method is autoregressive inte-
grated moving average (ARIMA) model (Box and Jenkins 
1970), that is, ARIMA (p, d, q), where p, d, q, respectively, 
represent the autoregressive, integrated and moving average 
polynomial orders. Extensive application and assessments of 
the various classes of such models reported for the modeling 
of hydrologic time series were suggested in the past (Arena 
et al. 2006; Chen and Rao 2002; Hipel and McLeod 1994; 
Komorník et al. 2006; Srikanthan and McMahon 2001; Toth 
et al. 2000). Traditional time series forecasting involves 
decomposing the data into its components such as trend 
component, seasonal component and noise. In contrast to 
parametric approaches, nonparametric methods do not have 

a fixed model structure and parameter. Some of the previous 
studies also includes the chaotic behavior, hurst phenomena, 
stochastic and deterministic models and their performance 
in HTS forecasting (Dimitriadis and Koutsoyiannis 2015; 
Dimitriadis et al. 2016; Koutsoyiannis and Langousis 2011; 
Koutsoyiannis et al. 2008).

According to Wang et al. (2009), the HTS models can be 
broadly divided into three groups: regression-based meth-
ods, time series models and artificial intelligence (AI)-based 
methods. In recent years, HTS forecasting methods have 
been gradually shifting from traditional statistical models 
to AI approaches technique. AI techniques being capable of 
analyzing long series, handling large-scale data, recognizing 
patterns hidden in historical data and then applying those 
patterns to predict future scenarios have become increas-
ingly popular in HTS modeling among researchers for devel-
oping a variety of models for time series prediction (Sahoo 
et al. 2017). Papacharalampous et al. (2018b) used random 
walk (with drift), autoregressive fractionally integrated 
moving average (ARFIMA), exponential smoothing state-
space model with Box–Cox transformation, ARMA errors, 
trend and seasonal components (BATS), simple exponential 
smoothing, Theta and Prophet methods for univariate time 
series forecasting along with a naïve method based on the 
monthly values of the last year, used for benchmarking pur-
poses. Some of the models used by Papacharalampous et al. 
(2018b) are quite new or rare in HTS forecasting and beyond 
the scope of this study.

The artificial neural network (ANN) is one of the com-
mon AI procedures established on the conceptualization of 
the brain and nervous systems (Abiodun et al. 2018) and 
was successfully applied for HTS forecasting. A broad 
review of the use of ANN in the hydrological field is given 
by ASCE Task Committee on “Application of Artificial 
Neural Networks in Hydrology” (ASCE 2000a, b). A wide 
number of research have published to report the forecasting 
performance of several time series models HTS (Carlson 
et al. 1970; Chang et al. 2002; Chen and Rao 2002; Cheng 
et al. 2005; Firat and Güngör 2008; Hu et al. 2001; Jain and 
Kumar 2007; Keskin et al. 2006; Komorník et al. 2006; Lin 
et al. 2006; Nayak et al. 2004; Salas 1993; Sivapragasam 
et  al. 2007; Zounemat-Kermani and Teshnehlab 2008). 
Yaseen et al. (2018) have applied Elman recurrent neu-
ral network coupled with the rolling mechanism and gray 
models for streamflow forecasting over various lead times. 
Wunsch et al. (2018) advocated the suitability of nonlin-
ear autoregressive networks with exogenous input (NARX) 
model for forecasting groundwater levels in several wells 
in southwest Germany with a lead time of 6 months ahead. 
Recently, Zhang et al. (2018a) successfully implemented 
long short-term memory network for sewer overflow moni-
toring. A comprehensive review of the state-of-the-art for 
the application of different AI techniques in streamflow 
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forecasting from 2000 to 2015 was presented by Yaseen 
et al. (2015). The LSTM-RNN has been found very useful 
in continuous time series processing such as word recogni-
tion and speech recognition. Some studies have investigated 
the feasibility of LSTM in soil moisture modeling and agri-
cultural applications (Fang et al. 2017), water table depth 
predicting (Zhang et al. 2018b) drought forecast (Xu et al. 
2018). Here, the performance of LSTM-RNN in low-flow 
forecasts was examined.

Case study and catchment description

In this paper, the monthly low-flow HTS at gauging station 
namely Basantapur (82◦78�E, 21◦72�N) of Mahanadi River 
basin, India, was analyzed. The Mahanadi River basin was 
situated between 80°28′E–86°43′E and 19°8′N–23°32′N 
(Fig. 1). It travels a distance of 851 km from the source of 
origin before falling into the Bay of Bengal. The major part 
of the basin is covered with agricultural land accounting for 
54.27% of the total area, and 4.45% of the basin is covered 
by water bodies. The Mahanadi River basin has an average 
annual rainfall of 1572 mm, over 70% is precipitated during 
the southwest monsoon between June and October. The daily 
discharge data from June 1971 to May 2010 of the stations 
Basantapur were obtained from central water commission 
(CWC) Bhubaneswar and were used to calculate the monthly 
low-flow at Basantapur station.

Defining low flow and its importance

An appropriate definition of low flow differs from person 
to person according to the need of the study (Pyrce 2004). 
Low-flow situation is determined by a certain percentile of 
discharge (Ahn and Palmer 2016) or a truncation level in a 
stream. A significant amount of past studies has reported a 
number of low-flow indices such as Q95 (Laaha and Blöschl 
2005), Q85 (Giuntoli et al. 2013), Q75 (Demirel et al. 2013; 
Jha and Smakhtin 2008; Pyrce 2004), used for low-flow 
study, where Q95, Q85,Q75 are the discharge equaled or sur-
passed for the duration of 95%, 85%, and 75% of the obser-
vation period, respectively. In the study, ‘low-flow’ threshold 
is taken as the Q75 discharge, i.e., the flow is equal to or 
surpassed for the duration of 75% of the observation period 
which was obtained from the daily discharge data. It is to 
be noted that the hydrological, topographical and climatic 
conditions of rivers in India, in general, are quite different, 
and the approach suggested by Q75 (Jha et al. 2008; Pyrce 
2004) may be applicable for Mahanadi River based on actual 
field conditions.

The reliable prediction of future low flow has many 
important applications in water resources planning and 
management. It is also important for the environmental/
ecological discharge (Tegos et al. 2018). The importance of 
low flow encouraged researchers to apply different types of 
forecasting approaches to evaluate and forecast low flows in 
rivers. Low flows can be critical in determining how much 

Fig. 1  Study area and selected station
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water must by pass a run-of-river hydro-plant to maintain 
downstream river ecology and how much is available for 
power generation in the dry season. “Thermal power sta-
tions are dependent on cooling water and information on 
low flows when the availability of water for abstraction and 
dilution of cooling water is at a minimum is essential for 
design purposes” (WMO 2008). For all these applications, 
there may be a need to forecast flows in order to implement 
restriction on water use to minimize the risk of very severe 
restriction in the future. In some instances, licenses to extract 
water in excess of the available supplies have been issued 
and thus low-flow forecasts are essential forecast tool. The 
ultimate goal of the understanding of low-flow processes is 
to facilitate the development of early warning systems for 
low-flow adaptation and mitigation which is very crucial in 
managing water resources in the study river basin. Thus, 
low-flow assessment plays a crucial role in low-flow man-
aging (Dracup et al. 1980) along with many environmental 
purposes related to the better management and sustainable 
development of water resources. Further, detailed informa-
tion about the various aspect of the low flow can be found 
in manual on low-flow estimation—prediction by Gustard 
and Demuth (2009), and a review on low-flow hydrology by 
Smakhtin (2001).

Theoretical overview

Recurrent neural networks (RNNs)

In recent times, due to successful application of deep learn-
ing especially in the field of sequential prediction like sta-
tistical language modeling, chaotic time series, ecological 
modeling for dynamic systems control and finance and 
marketing motivated researchers to use deep learning for 
time series forecasting for hydrology events (Assaad et al. 
2008; Cinar et al. 2017; Mikolov et al. 2010). The concept 
behind RNNs is to make use of arbitrarily input data over 
long sequences, such that it repeats the same task to every 
element in the sequence and output dependence on the previ-
ous computation. In more technicality, it consists of memory 

cell which captures information till sequence of training data 
completed. The architecture of RNN’s varies according to 
its application, many-to-one model (useful when we want to 
predict at the current time step given all the previous inputs), 
many-to-many model (useful when we want to predict mul-
tiple future time steps at once given all the previous inputs) 
and several other variations. The final structure selection 
depends upon the problem statement which depends on 
phenomena. In our study, many-to-one for one-step ahead 
forecasting model is used, i.e., to predict the current month’s 
low-flow value given all the previous month’s low-flow val-
ues as input to the model.

RNN is a connectionist model described by interconnec-
tions and suitable for modeling temporal dependencies of 
unspecified duration inputs and the output using internal 
memory. The feature of RNN is that there is no instanta-
neous flow of information taking place among the neurons 
rather than the loops. Thus, it makes possible to keep the 
influence of the information for a variable at a particular 
period till the sequential time series complete. The memory 
of RNN is coded by the recurrent connections, and the out-
put comes from each neuron itself (Assaad et al. 2008). Fig-
ure 2 shows a typical RNN structure in unrolled (network of 
complete sequence) form of full connected network.

where xt is the input at a time t. The black square in Fig. 2 
gets inputs from other neurons at a previous time step xt−1, 
stis the hidden state at time step t. It is the “memory” of 
the network. st is calculated based on the previous hidden 
state and the input at the current step. st captures informa-
tion about what happened in all the previous time steps and 
is given by Eq. (1)

yt is the output at step t. For example, if we wanted to pre-
dict the next sequence in a time series, it would be a vector 
of probabilities across the time series. The function f usually 
is a nonlinear activation function as tanh. RNN shares the 
same parameters (A, B, W) Fig. 2 across all steps performing 
the same task at each step, just with different inputs.

(1)st = f (Axt +Wst−1)

Fig. 2  Unfolding of Recurrent 
Neural Network (RNN) (LeCun 
et al. 2015)
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Long short‑term memory recurrent neural 
network (LSTM‑RNN)

Although the RNNs have the higher competency to deal with 
nonlinear time series in an effective manner, but there are 
still some gradient issues to train long time lags, which spe-
cially needed for time series forecasting, more specifically 
for hydrology time series. Also, it has issue with predeter-
mined time lags to learn temporal sequence processing and 
finding optimal time window size automatically (Gers 2001; 
Gers et al. 1999). Therefore, to overcome such limitations 
over RNN, an LSTM-RNN model is adopted in this paper 
to forecast low flow.

This state-of-the-art approach LSTM-RNN is proposed 
by Hochreiter and Schmidhuber (1997). The objective of 
this work is to develop a robust many-to-one LSTM model 
for hydrological time series. Similar to RNN, LSTM also 
consists a memory cell (Abidogun 2005) consisting four 
basic elements: an input gate, a neuron with a self-recur-
rent connection (a connection to itself), a forget gate and an 
output gate. The three nonlinear gates present in the block 
are the summation unit, which controls the inside-outside 
movement of information via activations cell through mul-
tiplications. This multiplication takes place at each input 
and output cell by their respective gates, while forget gate 
multiplies previous state (memory cell’s self-recurrent con-
nection) and allowing the cell to forget or remember its pre-
vious state using sigmoid activation function. In general, 
gate activation function (‘ft’) is taken as logistic sigmoid, 
so that gate activation is between 0 (gate close) and 1 (gate 
open), whereas tanh or logistic sigmoid is for output acti-
vation function (‘Ot’) to overcome the vanishing gradient 
problem, whose second derivative can sustain for a long 

range before going to zero. Further, augmentation is possible 
which depends upon the different problem statement. The 
weights (‘peephole’ connection) join the cell to the gates, 
which is presented in Fig. 3, and the rest of the connection 
is unweighted (or equivalently, a fixed weight). The memory 
block output connects the rest of the network through output 
gate multiplication.

The model input is denoted as x = (x1, …, xj, …, xt), and 
the output sequence is denoted as y =

(
xt+1,… , xt+i,… , xt+t�

)
 

where t is prediction period and t′ is the next time step pre-
diction. In the case of low-flow prediction, x can be consid-
ered as historical input data, and y is the single lag period 
series. The goal of LSTM-RNN is to predict low-flow dis-
charge in the next time step based on previous data and is 
calculated by the following equation:

where σ denotes the sigmoid function
The memory block is outlined in a box and consists of 

an input gate, an output gate and a forget gate, where the 
outputs of three gates are, respectively, represented as fol-
lows: it, ot, ft . The activation vectors for each cell and mem-
ory block are, respectively, denoted as ct and ht. The weight 

(2)it = �
(
Wix ⋅ xt +Wih ⋅ ht−1 +Wicct−1 + bi

)

(3)ft = �
(
Wfx ⋅ xt +Wfh ⋅ ht−1 +Wfc ⋅ ct−1 + bf

)

(4)ct = fj ⋅ ct−1 + it ⋅ g
(
Wcx ⋅ xt +Wch ⋅ ht−1 + bc

)

(5)ot = �
(
Wox ⋅ xt +Woh ⋅ ht−1 +Woc ⋅ ct + bo

)

(6)ht = ot ⋅ h
(
ct
)

(7)yt = Wyh ⋅ ht + by

Fig. 3  LSTM memory block 
with one cell with three gated 
layers: forget gate ft, input gate 
it and output gate ot, controlling 
the activation of cells ct−1 and ct
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matrices W and bias vectors b are utilized to build connec-
tions between the input layer, output layer and the memory 
block.

Naïve method

Naïve forecast is the simple and very effective forecasting 
model and considered as benchmark against most of sophis-
ticated models (Hyndman and Athanasopoulos 2018). Using 
the naïve approach, forecasts are produced that are equal 
to the last observed value. Naïve method is also useful for 
highly seasonal data. The low flows are highly seasonal as in 
this case, we set each forecast to be equal to the last observed 
value from the same season of the year (e.g., the same month 
of the previous year). Suppose the historical data be denoted 
by, y1, … yT, then forecasting can be denoted by Eq. (8),

where ŷT+ h|T is a short-hand for the estimate of ŷT+h based 
on the data y1,… yT and h is the forecast horizon, m is the 
seasonal period and k is the integer part of (h − 1)/m (i.e., 
the number of complete years in the forecast period prior to 
time T + h). This looks more complicated than it really is. 
For example, with monthly data, the forecast for all future 
February values is equal to the last observed February value. 
The interested reader can find more detail about the method 
in (Hyndman and Athanasopoulos 2018).

Model development and performance 
evaluation

The objective of study is to implement many-to-one LSTM-
RNN model. The assembly of time delay model is developed 
using “Keras: The Python Deep learning library” (Chollet 
2016). The low-flow dataset is divided into training and 
testing to build the models. The partitioning of the dataset 
(training and testing) generally varies with the problem of 
interest. Hence, there is no data division and depend upon 
problem. We used 70% data for training model and remain-
ing 15% for validation and 15% for testing. Considering the 
view point of simple model, the RNN has a single-layered 
topology, i.e., one input layer, one hidden layer and one out-
put layer. LSTM-RNN is constructed using one input layer, 
one LSTM layer with memory blocks and one output layer. 
Both the models were tested with 1, 2,3,4 and 5 neurons in 
the hidden layer with a lag of 1, 3, 6, 9 and 12, and the best 
configuration was selected based on the RMSE.

A simple data pre-processing step was tested to check 
model sensitivity, by adopting time series transformation to 
a logarithmic scale prior training the model (Bandara et al. 
2017). Finally, in the post-processing stage, the forecasted 
value was back-transformed into their actual scale, by taking 

(8)ŷT+ h|T = yT+h−m(k+1)

the exponent of each generated output value. This process 
is adopted to stabilize the variance of a time series. Firstly, 
we calculated the Q75 value from the original discharge data. 
Then, we transformed the Q75, i.e., the low-flow time series 
in this study using natural logarithm. All the Q75 low-flow 
time series discharge data are greater than one so while we 
do log transform of the Q75 time series, there is no chance of 
getting any value negative. The selection of model architecture 
includes a selection of model input. Therefore, various time 
steps were tested in between 1 and 12, and finally 12 time 
steps were fixed for building the model (Ouyang and Lu 2018). 
Hence, as input, vector 3D array (number of sample = 468, 
number of time steps = 12, output = 1) was used to train (70% 
of the sample data) the model in both cases; in addition, the 
loss function mean square error and optimizer Adam were 
used to compile the model as the final step in building the 
model with 2000 epochs.

Some techniques are recommended for HTS forecasting 
model performance evaluation according to the published 
literature related to calibration, validation and application of 
hydrological models (Schoups et al. 2008). Four performance 
evaluation criteria used in this study are computed in the fol-
lowing section.

The coefficient of correlation (R)

Root‑mean‑squared error (RMSE)

Nash–Sutcliffe efficiency coefficient (ENS)

Mean absolute error (MAE)

where Q75,obs = observed Q75; Q75,for = forecasted Q75; 
Q̄75,obs = average observed; Q̄75,for = average forecasted Q75; 
N = number of data points.

(9)

R =

∑N

i=1

�
Q75,obs − Q̄75,obs

��
Q75,for − Q̄75,for

�
�∑N

i=1

�
Q75,obs − Q̄75,obs

�2�∑N

i=1

�
Q75,for − Q̄75,for

�2

(10)RMSE =

�∑N

i=1

�
Q75,obs − Q75,for

�2
N

(11)

ENS = 1 −

⎡⎢⎢⎢⎣

∑N

i=1

�
Q75,obs − Q75,for

�2
�∑N

i=1

�
Q75,obs − Q̄75,obs

�2

⎤⎥⎥⎥⎦
, −∞ ≤ ENS ≤ 1

(12)MAE =
1

N

N∑
i=1

||Q75,obs − Q75,for
||
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We used 70% data for training model and remaining 15% 
for validation and 15% for testing, i.e., from June 1971 to 
September 1998 for training, from October 1998 to July 
2004 for testing and from August 2004 to May 2010 for 
validation in case of LSTM-RNN and RNN, while for naïve 
method, we used June 1971 to July 2004 for training and 
August 2004 to May 2010 for validation.

Result and discussion

As earlier stated, the main purpose of this study is to inspect 
the suitability of LSTM-RNN for low-flow HTS forecasting 
and compare with RNN and naïve method.

The outcomes accomplished in this study suggest that the 
LSTM-RNN method is an effective technique to model the 
monthly low-flow discharge time series and can give signifi-
cant prediction performance than the traditional RNN and 
benchmark naïve method for time series approaches. The 
results indicate that the best performance can be obtained by 
LSTM-RNN with a lag of 12 considering RMSE evaluation 
criteria during the validation phases (Table 1). For RNN, the 
best performance is also obtained at lag 12.

Overall, the RNN and LSTM-RNN models can give good 
prediction performance and could be successfully applied to 
establish the forecasting models that could provide accurate 
and reliable monthly low-flow prediction. But long-range 
dependence (also known as the Hurst phenomenon) can-
not be modeled by AI learning regression models. This 
modeling can be made within stochastic frameworks and is 
mostly important for probabilistic forecasting (long-range 
dependence leads to wider prediction intervals)(Tyralis and 
Koutsoyiannis 2014). The results suggest that the LSTM-
RNN model was superior to the RNN for monthly low-
flow time series forecasting at Basantapur station in the 
Mahanadi River basin. From Table 1, it is observed that the 
LSTM–RNN has outperformed in forecasting low flow for 
the representative station in the Mahanadi River basin com-
pared to RNN and naïve method. The Nash–Sutcliffe model 
efficiency coefficient (ENS) is 0.889 for LSTM-RNN, 0.825 
for RNN and 0.704 for naïve method indicating LSTM-RNN 
has better predictive power than other two methods. When 
comparing forecast methods applied to a single time series 
or to several time series with the same units, the MAE is 
popular as it is easy to both understand and compute. A fore-
cast method that minimizes the MAE will lead to forecasts 

Table 1  Forecasting models are implemented using R, RMSE, ENS 
and MAE values during validation period

LSTM- RNN RNN Naïve

RMSE 0.487 0.561 0.793
ENS 0.878 0.843 0.704
R 0.943 0.935 0.866
MAE 0.361 0.391 0.617

Fig. 4  Training (from June 1971 to September 1998), testing (from 
October 1998 to July 2004) and validation (from August 2004 to May 
2010) for LSTM-RNN

Fig. 5  Training (from June 1971 to September 1998), testing (from 
October 1998 to July 2004) and validation (from August 2004 to May 
2010) for RNN

Fig. 6  Training (from June 1971 to July 2004) and validation (from 
August 2004 to May 2010) for naïve method
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of the median, while minimizing the RMSE will lead to 
forecasts of the mean. It is clearly seen from Table 1 that 
LSTM–RNN has MAE 0.361 which is better than RNN’s 
MAE 0.391. For this case study of forecasting low flow 
for the station Basantapur in the Mahanadi River basin, 
the LSTM-RNN LSTM-RNN’s performance is increased 
by 7.67% than the performance of RNN. However, a large 
comparison study can be used to provide generalized results 
about the forecasting performance of black box models (e.g., 
LSTM-RNN, RNN, ANN) (Papacharalampous et al. 2018a, 
c, 2019; Tyralis and Papacharalampous 2018). Figures 4 and 
5 show the LSTM-RNN plots of data during training, testing 
and validation period, and Fig. 6 showing the training and 
validation results for naïve method. The scatterplot of the 
forecasted versus observed Q75 during the validation period 
is shown in Figs. 7, 8 and 9, respectively, for LSTM-RNN, 
RNN and naïve method.

Fig. 7  Scatterplot of the fore-
casted versus their correspond-
ing observed Q75 values for 
LSTM-RNN in the validation 
period

Fig. 8  Scatterplot of the forecasted versus their corresponding 
observed Q75 values for RNN in the validation period

Fig. 9  Scatterplot of the fore-
casted versus their correspond-
ing observed Q75 values for 
naïve method in the validation 
period
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Conclusions

An effort was made in this paper to explore the suitability 
of LSTM-RNN over RNN for hydrological time series. As 
a case study, monthly low-flow discharge data are used to 
implement the forecasting models. The standard statistical 
performance evaluation measures are adopted to evaluate the 
performances of various models applied.

LSTM-RNN’s ability to forget, remember and update the 
information pushes it one-step ahead of RNN. The results 
obtained in this study indicate that the LSTM-RNN method 
can be used to model low-flow HTS at Basantapur station 
in the Mahanadi River basin, India, and can give satisfac-
tory performance over RNN and naïve method. LSTM-RNN 
is well-suited to learn from experience to classify, process 
and predict time series given time lags of unknown size and 
bound between important events. Time series prediction 
involves processing of patterns that evolve the appropriate 
response at a particular point in time and depends not only 
on the current value of the observable but also in the past.

Therefore, the results of the study are encouraging, and 
the authors advocate that LSTM-RNN approaches can be 
used in modeling the low-flow hydrological time series 
for the selected station, and this may provide some ideas 
for researchers and engineers who apply data-driven AI 
approaches for modeling low-flow hydrological time series 
forecasting. This work recommends the performance of such 
model can be improved for low-flow hydrological time series 
forecasting by adopting several stacked layers (multiple hid-
den LSTM layers) and a GRU (Gated Recurrent Unit) LSTM 
that would be scope of this work.
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