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Abstract
It is difficult to observe changes in the internal structure of natural rocks when under certain pressure ranges. However, such 
rocks have specific magnetic properties that are established during their formation process. Through studying changes in 
their magnetic properties while under pressure, which are readily observed and analyzed, as combined and contrasted with 
their associated structural changes, the relationship between the stress–strain and the magnetic field intensity can be estab-
lished. Based on the stress–strain and magnetic field strength data obtained from the relevant literature, the process of rock 
and rock-like mechanical failure can be divided into three stages: elastic, plastic, and rupture. The performances of different 
rocks during these stages were analyzed, and there was an obvious transition point between any two adjacent stages. Thus, 
this study provides theoretical support to establish the relationship between structure and magnetic variations of rocks and 
rock-like bodies.
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Introduction

Many researchers have used different methods to study 
changes in the magnetic properties of rocks under various 
pressures. When a rock or rock-like body is under an exter-
nal pressure, a series of changes occur in its internal struc-
ture, which introduce variations in its physical properties, 
such as their magnetic response, acoustic emission rate, and 
electrical signals (Martin and Wyss 1975; Revol et al. 1977; 
Byerlee 1978; Bolyachkin et al. 2015; Sun et al. 2015; Saltas 
et al. 2019). Some scholars have studied magnetic proper-
ties, such as the initial magnetization of rocks (Kean et al. 
1976), residual magnetization (Ohnaka and Kinoshita 2010; 

Lanham and Fuller 2013), and piezomagnetic curve determi-
nation (Li et al. 1985). In addition, the relationships between 
the strain, stress, and magnetic properties during the entire 
rock failure process while under compression have been the 
research content of many researchers (Cress et al. 1987; 
Borradaile 1988; Hao et al. 1993). Yu (2011), Chen et al. 
(2012), and Sun (2014) measured and discussed the stress 
magnetic induction intensity for different rock types during 
extrusion failure. The Pressure Stimulated Current (PSC) 
is generated during rock stress failure (Anastasiadis et al. 
2007; Triantis et al. 2012), which can be applied to rock 
damage monitoring (Triantis et al. 2015; Xue et al. 2013, 
2014). Erber et al. (1999) and Guralnick et al. (2008) stud-
ied the relationship between magnetic fields and material 
damage. When considering material fatigue limits, Lazreg 
and Hubert (2010) compared the results of magnetomagnetic 
pressure measurements with those of autothermal methods. 
Huang et al. (1990) studied magnetic characteristics and 
their changes in rock samples around the seismic center. He 
et al. (2015) and Sun et al. (2016) monitored microfracture 
events and their associated deformation and failure pro-
cesses. It was shown that during rock failure, changes in the 
acoustic emission rate are similar to those of the magnetic 
field. Lockner (1993) comprehensively discussed the success 
and failure for acoustic emissions in rock failure research 
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and divided acoustic emission for seismic reverse research 
into three categories. Subsequently, Mansurov (1994) fur-
ther studied the acoustic emission phenomenon of rocks 
during failure. Frid (1997) studied changes in the acoustic 
and electrical properties of rocks at the region where the 
stress was concentrated to determine a method that predicts 
rock failure more quickly. Stavrakas et al. (2019) enhanced 
PSC signal strength by applying the integrated grid of sen-
sors and proved with a new method that the relationship of 
PSC, sound emission technology, and monitor rock dam-
age. Lavrov (2001) studied the Kaiser effect of brittle rocks 
under different cyclic times and loading rates. In addition, 
according to the researches of Triantis et al. (2012), the PSC 
of rocks also has a Kaiser effect.

In the field of civil engineering, many studies have con-
sidered changes in the magnetic properties of concrete after 
undergoing compression (Jin et al. 2016). One example is 
to determine concrete damage after a fire has been detected 
using the magnetic method (Miao et al. 2004). Zhang et al. 
(2014) observed changes in the magnetic field of concrete 
with magnetic cores from the beginning of the loading until 
failure.

By collecting and sorting experimental data and research 
results from previous studies, it was discovered that many 
works considered the influence of a single or only a few 
factors that impact the magnetic properties of natural rocks, 
such as the uniaxial pressure, microfractures, and tempera-
ture. Since the existing body of research has had varying 
foci, it is inevitable that some of the more valuable phe-
nomena have been overlooked. In this paper, we compre-
hensively discuss previous research to provide theoretical 
support and guidance for future investigations.

Study of the magnetic change in rock 
after loading

Rocks are composed of a series of mineral particles and 
crystals. When these components include a small amount 
of magnetic minerals, the rock is considered to be magnetic. 
The magnetization of rocks is determined by the type, size, 
and amount of magnetic minerals, as well as the temperature 
and pressure of the external environment. Magnetic rocks 
can be considered as paramagnetic, diamagnetic, and fer-
romagnetic. In general, among the three types of magnetic 
rocks, igneous rocks have the strongest magnetic properties 
followed by metamorphic rocks and sedimentary rocks. The 
corresponding primary magnetic sources for these rock types 
are the thermal, chemical, and sedimentary remanences, 
respectively.

The structure, morphology, porosity, and other physical 
properties of rocks change when under pressure. The best 
feature to measure the magnetic properties of rock is from 

cracks and voids, which are often proportional to the density 
of the magnetic induction line. Therefore, we can monitor 
changes in the magnetic induction line, while the rock is 
under stress to analyze the pore development. This method is 
practical when studying rock and rock-like piezomagnetism. 
The rest of this paper discusses the experimental research 
data from relevant researchers with references to their fig-
ures and tables. The data and methods referenced in this 
paper are given in Table 1. Reinforced concrete requires a 
built-in magnetic core to enhance the effects of experiments.

Analysis

Figure 1a shows changes in the magnetic properties and 
stress of concrete (Zhang et al. 2014) with an increased 
strain after compression. The experimental data can be 
divided into three stages: During the first stage, the concrete 
retained its original shape and, at greater stress, the magnetic 
field strength briefly decreased. During the second stage, the 
magnetic field strength increased steadily and slowly, and the 
elastic deformation occurred primarily at its interior with 
stresses concentrated around the cracks. During the third 
stage, the stress decreased sharply when the concrete broke 
down and the magnetic field around the sample increased 
significantly. Figure 1b shows the position of the sample 
during the experiments.

Fatigue damage will occur when concrete is repeatedly 
pressurized, which is difficult to observe directly. However, 
we can indirectly obtain the degree of fatigue damage by 
considering changes in the magnetic field of concrete dur-
ing repeated compressions. When both loading and unload-
ing pressures occur, the magnetic induction intensity curves 
intersect, and the corresponding loading and unloading 
forces remain within a certain range. The load at the begin-
ning of the sample rupture remains within this range, as 
shown in Fig. 2a. Figure 2b, c shows changes in the mag-
netic properties of reinforced concrete beams under repeated 
compressions (Jin et al. 2016). Figure 2b shows that during 
the initial loading cycle for concrete under compression, the 
magnetic properties were quite different at the beginning 
than at the end of the first cycle. The magnetic curve gradu-
ally increased and then maintained a similar position, and 
the law of variation did not change significantly, as shown in 
Fig. 2c. Figure 2d shows a diagram of the sample placement 
during testing.

After compression, changes in the magnetic properties 
of rocks can be divided into three stages: elastic, plastic, 
and rupture (Chen et al. 2012). Figure 3a, b describes the 
strain and magnetic changes for marble under stress, respec-
tively, and Fig. 3c, d shows the same for limestone. The 
strain curves for both rock types changed at the first transi-
tion point of the magnetic field strength curve when the rock 
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was under pressure, which is the transition from the elastic 
to the plastic stage. Before this point, the elastic formation 
of rock after compression altered the cracks and voids in 
the rock, and as the pressure increased, the rock underwent 
plastic deformation. This varied the structure while the mag-
netic field intensity remained relatively constant, giving a 
nearly flat curve.

When the pressure is gradually increased, the stable struc-
ture inside the rock is finally destroyed, which decimates the 
entire structure, and the relative magnetoresistance of the 
rock mass decreases to its lowest level. Then, the magnetic 
field intensity curve jumps upward again in a more intense 
and obvious way than before, which signifies the transi-
tion from the plastic to the rupture stage. The correspond-
ing pressure and strain at this point is the ultimate bearing 
capacity and maximum deformation of the rock.

Figure 4 shows the relationship between the stress, strain, 
and magnetic properties under the brittle failure mode (Yu 
2011). It can be seen from Fig. 4a that the abrupt change 
in the magnetic field was delayed relative to the maxi-
mum stress point. This is because cracks in the rock devel-
oped during the period from the maximum stress point to 
the abrupt change of the magnetic field until fracturing 
occurred. Granite has a hard texture and the plastic stage is 
not obvious, as shown in Fig. 4b. When the stress reaches 
its maximum value, the magnetic properties also begin to 
mutate and the rock produces macro-cracks before finally 
breaking down.

When studying the brittle fracture of granite, the curves 
based on the data can be divided into two types. The first 
is that as the stress and strain change, sensors placed on 
the front and back sides of the granite collect similar data. 
When the stress increases, the magnetic field intensity grows 
slowly. However, when the stress reaches a maximum and 
begins to decrease, the magnetic field intensity increases 
sharply, and the increasing trend becomes less obvious, 
as illustrated in Fig. 4c. In the other curve type, the data 
on the front side of the rock rupture are the same as for 
the first type, but the magnetic field intensity on the back 
side decreases slowly with increased stress. The field then 
decreases sharply after the maximum stress point before 
decreasing more gradually, as illustrated in Fig. 4d. Fig-
ure 4e shows the position of the sample and sensor during 
data collection.

Figure 5 shows the relationship between the stress–strain 
and magnetic field strength of ferromagnetic rocks (Sun 
2014). In the first stage after the rock is stressed, the strain 
is proportional to the stress but inversely proportional to the 
magnetic field strength. When the stress reaches its max-
imum value, the stress does not increase with the strain, 
but remains within a certain range. At this time, the mag-
netic field intensity curve of ferromagnetic rocks changes 
with three distinct behaviors: (1) slow increase; (2) nearly Ta
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unchanged; and (3) rapid decrease. When the strain in the 
rock reaches a certain value, the stress–strain curve begins 
to decrease rapidly. The magnetic field strength curve is 
divided into the following two cases: (1) slow increase and 
(2) nearly unchanged with a slight decrease. Thus, Fig. 5 
shows that the stress–strain curves are nearly the same, and 
the overall trend of the strain–magnetic field intensity curves 
decreases. However, there are some differences in the middle 
region of these changes. The positional relationship between 
the sample and the sensor is shown in Fig. 1b.

The properties of rocks vary along different directions, 
which is called anisotropy. While under stress, rock shapes 
change non-symmetrically due to their anisotropy. He et al. 
(2015) introduced a relative shape factor as a parameter to 
evaluate these deformations. Figure 6a shows the aniso-
tropic change for rocks under compression. As the aniso-
tropic change gradually accelerates, the rock structures, such 
as cracks, develop more rapidly. The rock eventually rup-
tures once the pressure reaches a certain limit. As shown in 
Fig. 6b, changes in the relative shape factor gradually accel-
erate and are nearly consistent with the anisotropy. There-
fore, the relative shape factor can be used as an important 
parameter to study the stress and strain of rocks.

The concept of wall-shift magnetization was introduced 
based on a study of the piezomagnetic properties of magnet-
ite–quartzite and lamprophyre (Li et al. 1985). In theory, the 
magnetization of rocks should be proportional to the pres-
sure, but Fig. 7a, b shows that the magnetization increases 
in part during the initial pressure, which is from the effect of 
wall-shifting magnetization. Comparing Fig. 7 with Fig. 2b, 

c, similar variation rules are caused from fatigue damage of 
the rock or rock-like body. Figure 7c, d shows that when the 
volume of an amphibole rock expands, the magnetic suscep-
tibility does not change abnormally, indicating that the vol-
ume change of the rock structure does not affect its magnetic 
susceptibility. The magnetic properties for this rock type are 
mainly from the ferromagnetic mineral inside. An expanded 
volume maintains the mineral composition, but will increase 
the crack distribution and magnetic induction line. There-
fore, changes in the magnetic field intensity detected after 
rocks are under stress are independent of its magnetic sus-
ceptibility, because the change rule for magnetic susceptibil-
ity remains nearly unchanged during this process.

The responses of the magnetic susceptibilities for differ-
ent rock types to pressure can vary. However, for andesite, 
changes in the magnetic susceptibility under uniaxial pres-
sure are nearly the same (Huang et al. 1990), as shown in 
Fig. 8a. Figure 8b shows the susceptibility of seven rock 
samples at different temperatures after heating. Although the 
magnetic susceptibility of each rock varies widely, the basic 
trend remains the same. At 580 °C, the magnetic susceptibil-
ity of the rocks decreased sharply to zero, and the natural 
remanence disappeared. This temperature is considered as 
the magnetic transition temperature or Curie temperature 
of the rock.

Figure 9 shows the changes in the strain, magnetic prop-
erties, acoustic emission, and other properties for differ-
ent rocks after being loaded (Hao et al. 1993). Figure 9a 
shows the variations in the residual magnetic properties of 
granodiorite under different uniaxial pressures. When the 
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pressure is lower than 25 MPa, the residual magnetic prop-
erties and acoustic emissivity remain nearly unchanged, 
making the curve smooth. When the pressure is higher than 
25 MPa, the acoustic emissivity and residual magnetization 
change abnormally and simultaneously, and this difference 
is present until the pressure reaches 50 MPa. This indicates 
that the residual magnetization and acoustic emissivity are 
directly related. Figure 9b reflects the relationship between 
the remanence and both the volume of the pyroxenite and 
the stress. With increased stress, the volume strain increases 
and the remanence decreases, but after reaching the maxi-
mum strain, the volume strain decreases and the remanence 
increases. In this process, tiny cracks develop inside the 
rock, and a region of concentrated stress appears around the 
cracks and acoustic emission occurs, as shown in Fig. 9a. 
When the stress increases to its limit in the concentrated 

area, it develops into a macroscopic crack, and the curve 
suddenly decreases, as shown in Fig. 9b. The entire change 
process is shown in Fig. 9c. When the rock is about to rup-
ture, its remanence characteristics change unsteadily, as 
shown in Fig. 9d, where the magnetic change is used as a 
precursor of rock rupture.

Discussion

When rocks or rock-like bodies are subjected to a certain 
pressure, changes in their magnetic properties show a certain 
regularity, as illustrated in Figs. 1a and 10a. When the strain 
versus magnetic field curve changes, the stress curve also 
changes, and the change points of the two correspond to each 
other. However, variations in these curves are dependent on 
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the exact situations. Combined with Fig. 11, we summarize 
the changes observed as categorized into three stages below.

1. Elastic stage (A–B): Depending on the rock type, two 
difference versions of this stage exist. (1) In brittle rock, 
tiny cracks are developed that cause the magnetoresist-
ance to decrease, the permeability to increase, and the 
magnetic field strength to increase, as shown in Figs. 3 
and 4. (2) In ferromagnetic rock, the cracks in the rock 
develop into macro-cracks, which cause the magne-
toresistance to increase, permeability to decrease, and 
magnetic field intensity to decrease sharply, as shown 
in Fig. 5. After the brittle rock is stressed, the internal 
voids evolve, the magnetic path shifts, and the magnetic 
field intensity around the rock increases. Ferromagnetic 

rocks are compacted after being stressed, which causes 
the porosity to decrease, the magnetic resistance to 
increase, and the magnetic field intensity to decrease.

2. Plastic stage (B–C): When the rock deformation reaches 
a certain value, the stress no longer increases, but the 
deformation will continue until rupture. The time till 
rupture for rocks differs for different lithologies at this 
stage. However, the plastic deformation of the rocks 
suggests the magnetic field strength remains nearly 
unchanged.

3. Rupture stage (C–D): After the strain reaches its maxi-
mum value, theoretically, the variation rule of the 
magnetic field intensity of ferromagnetic rocks should 
be nearly the same as that of brittle rocks. In fact, the 
curves for this third stage differ significantly. There is no 
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sharp increase in the magnetic field intensity after break-
ing and the curves are nearly vertical. This result is not 
due to a decreased magnetic field intensity or a nearly 

constant magnetic field after fracture, but is primarily 
due to the relative position of the lateral fracture of the 
rock being different from that of the sensor, as shown 

0

20

40

60

80

100

120

10

15

20

25

30

35

40

45

M
ag

ne
tic

 in
te

ns
ity

  (µ
T)

Strain (%)

St
re

ss
 (M

Pa
)

Data from Yu (2011)

Stress

Magnetic intensity

Smaple GF2

0

20

40

60

80

100

120

140

15

30

45

60

75

90

105

M
ag

ne
tic

 in
te

ns
ity

  (µ
T)

Strain (%)

St
re

ss
 (M

Pa
)

Data from Yu (2011)

Stress

Magnetic intensity

Smaple GI3

(a) (b)

0

20

40

60

80

100

120

140

0

30

60

90

120

150

180

M
ag

ne
tic

 in
te

ns
ity

  (µ
T)

Strain (%)

St
re

ss
 (M

Pa
)

Data from Yu (2011)

Stress

Magnetic intensity

Smaple GE3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
0

30

60

90

120

150

180

0

30

60

90

120

150

M
ag

ne
tic

 in
te

ns
ity

  (µ
T)

Strain (%)

St
re

ss
 (M

Pa
)

Data from Yu (2011)

Stress

Magnetic intensity

Smaple GE1

(c) (d)

(e) 

Fig. 4  Relationship between stress–strain and magnetic field intensity of three kinds of granite. a First granite, b first granite, c second granite, d 
third granite, e experimental diagram



297Acta Geophysica (2020) 68:289–302 

1 3

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
 Smalpe 8#
 Smalpe 14#

Strain/Strain(max)

70

80

90

100

110

120

130

M
ag

ne
tic

 in
te

ns
ity

 (μ
T)

Data from Sun et al (2014)

Stress

St
re

ss
 /S

tre
ss

(m
ax

)

Magnetic intensity 

0.8 1.2 1.6 2.0 2.4
0.0

0.2

0.4

0.6

0.8

1.0

 Smalpe 9#
 Smalpe 10#Stress

Strain/Strain(max)

Data from Sun et al (2014)

St
re

ss
 /S

tre
ss

(m
ax

)

Magnetic intensity 

M
ag

ne
tic

 in
te

ns
ity

 (μ
T)

20

24

28

32

36

40

(a) (b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

 Smalpe 11#

Data from Sun et al (2014)

StressSt
re

ss
 /S

tre
ss

(m
ax

)

Strain/Strain(max)

Magnetic intensity M
ag

ne
tic

 in
te

ns
ity

 (μ
T)

-10

0

10

20

30

40

50

60

(c)

Fig. 5  Three relationship curves of strain–stress–magnetic field intensity of ferromagnetic rocks. a First type, b second type, c third type

(a) (b)

0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Data from He et al (2015)

Pe
rc

en
t c

ha
ng

e 
of

 m
ag

ne
tic

 su
sc

ep
tib

ili
ty

 a
ni

so
tro

py
 d

eg
re

e 
(%

)

Pressure (kN) 020 40 60 80 100 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

Data from He et al (2015)

 P
er

ce
nt

 c
ha

ng
e 

of
 e

lli
ps

oi
d 

sh
ap

e 
fa

ct
or

 o
f

 M
ag

ne
tic

 su
sc

ep
tib

ili
ty

(%
)

Pressure (kN) 

Fig. 6  Changes in two properties during rock compression. a Anisotropy of susceptibility, b relative shape factor



298 Acta Geophysica (2020) 68:289–302

1 3

in Fig. 10b. In general, regardless of how the magnetic 
field changes, there is always a point in the curve that 
represents a transition in the magnetic field intensity.

Studies of rocks and rock-like bodies under repeated 
pressurizations have shown an increased number of inter-
nal cracks. When the stress increases gradually, fissures 
develop, and the magnetic field intensity increases. As the 
fissure development is irreversible in this process, when 
the stress is released, the existing fissures remain in their 
new state, while the magnetoresistance remains nearly 
unchanged. Therefore, the magnetic field intensity will 
remain at a higher value and will not return to its initial 
state. During the second compression cycle, under the 
same stress change conditions, there are less new cracks 

that appear in the rock or rock-like body. Thus, changes 
in the magnetic field intensity are smaller, but any new 
cracks will still increase the magnetic field intensity for the 
second cycle. After several compression cycles, changes in 
the magnetic field intensity tend to converge. The magnetic 
properties of rock or rock-like bodies then only change 
appreciably during a compression cycle. The experimental 
data show that the magnetic properties of rocks and rock-
like bodies are nearly the same at the beginning and ending 
of the same compression cycle and that the curves of inter-
mediate compressions and decompressions do not coin-
cide and have opposing associated change trends. When 
the magnetic field intensity remains in a stable range, the 
development of cracks in the rock has reached a maximum, 
as shown in Figs. 2b, c and 7.
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(a) (b)

Fig. 10  Changes in the data image of the rock under compression and one of the fracture conditions. a General relationship of strain–stress–
magnetic field strength of rocks or similar rocks, b unilateral failure of samples

Fig. 11  A comprehensive change in the properties of a rock or rock-like fracture
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Conclusions

By analyzing and summarizing the changes in the mag-
netic properties of various rocks and rock-like bodies while 
under pressure, we found that there was a close relationship 
between the strain and magnetic properties of rocks and rein-
forced concrete after loading.

1. After loading, the three stages of rock or rock-like bod-
ies were observed that there are exhibited and different 
changes. During each transition stage, the magnetic data 
changed significantly, which affected the magnetic curve 
trends.

2. Different rocks have different durations and change 
trends during the three observed stages. Among which, 
differences between brittle rocks and ferromagnetic 
rocks were the most obvious, which provides a method 
to classify rock types.

3. Fatigue reactions occur in rocks or rock-like bod-
ies during cyclic compression. Through comparative 
image analyses, it was concluded that the initial cyclic 
magnetic changes are obvious. However, once internal 
cracks have been fully developed and the material is 
in a balanced damage regime, the magnetic properties 
remain nearly the same for a given region.

While this work focused on the magnetic properties of 
rocks after compression, negative pressures are more com-
mon in nature. In this way, the original load should be 
removed and the resulting changes that occur inside the rock, 
whether these are on the internal structure or stability, can 
be explained by studying the associated magnetic changes.
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Abstract
This work aims at developing a hybrid ground motion prediction equation (GMPE) for spectral acceleration in Western 
Himalayas and North-Eastern India. The GMPE is derived using an efficient nonparametric modelling based on neural 
network algorithm. In this study, owing to sparsity in the recorded ground motions (498 recordings) for the region, the 
available information is combined with 13,294 records from the well-tested NGA-West 2 database. For the methodology 
adopted in the study, regional flags are assigned to the records. Thus, given a magnitude, distance, shear wave velocity, 
fault type and region, the model is able to predict the possible spectral acceleration. The developed GMPE is observed to 
be unbiased with respect to region. Further, the inter- and intra-event standard deviations are also in acceptable ranges. It 
is observed that developed GMPE for Western Himalayas and North-Eastern India is able to capture all the known ground 
motion characteristics. Additionally, the GMPE is compared with the existing GMPE for rock-type soil condition available 
for the Western Himalayas and North-Eastern India. Furthermore, applicability of the developed GMPE model in estimating 
hazard is analysed by obtaining the uniform hazard response spectra for Delhi and Guwahati.

Keywords Western Himalayas · North-Eastern India · GMPE · Hybrid ANN

Introduction

Ground motion prediction equations (GMPEs) are essen-
tial in understanding the regional characteristic of seismic 
wave and resultant hazard. However, it is challenging to 
estimate reliable GMPE especially in regions with sparse 
recorded data. Many researchers utilize the available 
recorded data itself to develop GMPEs (Douglas 2018). 
But reliability and applicability of these GMPEs are 
limited to the data used in the modelling. Additionally, 
most commonly adopted methods for such regions with 
sparse recorded data are by resorting to synthetic data-
base (Iyengar and Raghukanth 2004). In that case also, 
the results will be biased towards the input parameters 

used in the simulations as well as on the other computa-
tional limitations of the methodology used in generating 
database. Furthermore, it is well known that accounting 
for all the inhomogeneities exhibited in the process of 
generation and propagation of seismic wave is computa-
tionally very expensive. Thus, the best representatives of 
the region ground motion characteristics are the recorded 
ground motion databases. Taking this into consideration, 
Campbell (2003) proposed a hybrid empirical technique, 
where modifications factors for Western North Ameri-
can records are estimated, so as to scale the records to 
Eastern North America which is having relatively less 
records. These factors are estimated using the regional 
seismological model parameters reported in the litera-
ture. Similar studies have been reported in Tavakoli and 
Pezeshk (2005), Pezeshk et al. (2011). One can observe 
that the modification factors are obtained using stochastic 
seismological model approach, and hence, the estimates 
are affected by the uncertainty regarding the parameters 
chosen in estimating the ground motion transfer func-
tion. Recently, there are numerous researches pointing 
to the efficiency of artificial neural network in handling 
the complex ground motion characteristics (Derras et al. 
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2014; Dhanya and Raghukanth 2018). It is observed that 
the neural network-based ground motion prediction is able 
to adapt all the features of ground motion with minimum 
number of unknowns and lesser standard deviation. How-
ever, effectiveness of neural network-based approaches in 
handling regions with sparse records is not discussed in 
the literature.

In India, Himalayan mountain ranges which is formed 
from the Indo-Eurasian subduction is seismically very 
active due to the continuous tectonic movements. The vul-
nerability in the region is also high due to the proximity of 
several mega cities including the capital city Delhi to these 
seismically active faults. However, the seismic instrumen-
tation got commissioned for the region only in the recent 
decades, and hence, there is only limited recorded infor-
mation. Owing to the sparsity in recorded data, Sharma 
et al. (2009) combined the available ground motion record 
for Himalayas with Zagros region of Iran having simi-
lar geological regime and utilized the data for prediction 
of spectral acceleration. The results are only based on 6 
Indian and 10 Iranian events. Moreover, as all the ground 
motions records are considered together, one cannot avoid 
the possibility of results getting biased to the data from 
Zagros used in developing the model. In another direction, 
Natural Disaster Management Agency (NDMA 2010), 
Raghukanth and Kavitha (2014) used simulation-based 

approaches to predict GMPE for spectral accelerations for 
India. It should be noted that these GMPEs are valid for 
only at rock-type soil condition. Hence, the application of 
the model to Himalayas and adjoined regions constituting 
a wide range of geological characteristics is limited. To 
address local site condition typically, modification fac-
tor and scaling are proposed in the literature (IBC 2015). 
However, the methodology adopted is based on equivalent 
linear site responses, and hence, the 3D scattering of wave 
is not accounted in models.

Thus, the present study aims at developing reliable GMPE 
for Western Himalayas and North-Eastern India implement-
ing hybrid algorithm utilizing the efficiencies for artificial 
neural network (ANN)-based methodologies. Here, the 
available records for Indian conditions are combined with 
the well-tested NGA West2 database separated by regional 
flags. In the proposed GMPE, the network learns the promi-
nent ground motion features from the NGA West2 database 
and combines that with the regional recorded data features. 
The developed network thus becomes efficient for appli-
cability to a wide range of magnitude and distances. The 
efficiency of the model in capturing the data is tested by esti-
mating region specific inter- and intra-event residuals. The 
model is also compared with the existing relations for the 
region. Further, the region specific GMPE developed form 

Fig. 1  Spatial distribution of the events along with recording stations 
(blue squares) for Western Himalayas and North-Eastern India in the 
period 1986–2017 considered for the analysis performed in this work 

along with the location of some major cities in the region (note: cir-
cles filled with red colour indicate the Western Himalayan events and 
those filled with green colour indicate North-Eastern Indian events)
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the study is applied to estimate uniform hazard response 
spectra for Delhi and Guwahati for varied soil conditions

Ground motion database

The database for Western Himalayas and North-Eastern 
India is obtained from records available in COSMOS 
(Consortium of Organizations for Strong-Motion Obser-
vation Systems, https ://stron gmoti oncen ter.org/) and PES-
MOS (Program for Excellence in Strong-Motion Studies) 
networks. Additionally, ground motions records provided 
by CESMD (Center for Engineering Strong Motion Data) 
for the 2015 Mw 7.8 Nepal earthquake and its aftershocks 
and records from 14 stations in IG-Basin during main-
event recorded by the CIGN (Central Indo-Gangetic 
Plains network) (Chadha et al. 2015; Raghucharan and 
Somala 2017) are included in the database. The recorded 
data are segregated into Western Himalayas and North-
Eastern India owing to the variabilities associated with 
the geological and tectonic conditions in both regimes. 
The distribution of events along with the recording sta-
tions is illustrated in Fig. 1. The distribution consists of 
108 events in the magnitude range Mw 3–7.8 in the West-
ern Himalayan region and 38 events with Mw 4–6.8 in 
North-Eastern India during the period 1986–2017. It is 
clear from the figure that the recording stations are spread 
over a larger domain, which constitute the Indo-Gangetic 

basin. It should be noted that the hypocentral depths of 
Western-Himalayan events range from 2–80 km, whereas 
that of North-Eastern Indian events vary between 5 and 
56 km. It should also be noted here that the events from 
the Indo-Burmese region are not considered in the present 
study owing to the variability associated with the tectonic 
characteristic attributed from deep subduction events. 
Thus, there are a total of 374 records for Western Himala-
yas and 124 records for North-Eastern India. Among the 
events in Western Himalayas, 8 (45 records) are strike-slip 
event, 98 (322 records) are with reverse mechanism and 
1 (1 record) with normal faulting mechanism. For North-
Eastern India, the corresponding tally is 21 (67 records), 
16 (56 records) and 1(1 record), respectively. Note that the 
events are sorted into different faulting mechanisms based 
on the rake angle. The available records for Western Hima-
layas are for the sites with Vs30 between 167 and 828 m/s 
and for North-Eastern India between 150 and 840 m/s. It 
should be noted that the processing of the recorded data is 
performed as per the study of Gupta (2018). Furthermore, 
5% damped rotd50 horizontal spectra, which correspond to 
the median values for response spectra of a ground motion 
when rotated over all horizontal orientations between 0° 
and 180°, are taken for analysis in this work. The distribu-
tion of the database with respect to magnitude and distance 
is illustrated in Fig. 3. It is clear from the figure that the 
available data for the region are not comprehensive having 
considerable gap between the records. A suitable way to 

Fig. 2  Spatial distribution of the events considered for developing artificial neural network-based ground motion prediction equations (note: col-
our is given to differentiate the events in different regions)

https://strongmotioncenter.org/
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address this issue is to combine the available data with a 
more comprehensive database. In this study, we chose to 
combine the available data for the region with well-tested 
NGA West2 database. The choice is judicial as NGA-
West2 also comprises of data from active regions similar 
to the region under consideration. We sorted out 13,294 

records from the reported 21,540 records in the database 
based on data quality analysis as reported in Dhanya and 
Raghukanth (2018). Thus, the database considered in the 
model is from 286 events; the distribution of these events 
along with that for Western Himalayas and North-Eastern 
India is shown in Fig. 2. Among the events considered, 

Table 1  Weights and bias 
between the input and the 
hidden layer

Weights Input parameter (i) Number of hidden neurons (k)

1 2 3 4 5 6

Wik,1 Mw 0.022 0.685 0.111 1.942 – 1.190 – 1.119
log10(Vs30) 0.282 – 0.139 0.077 – 0.082 – 0.110 – 0.016
Repi 0.376 0.058 0.267 0.736 – 0.923 – 0.112
log10(Repi) 1.152 – 0.381 – 0.232 – 0.789 0.497 0.906
Fmech 0.064 – 0.005 – 0.013 – 0.096 0.115 0.025
Floc – 0.391 0.814 – 1.383 – 0.351 – 1.029 – 1.135

Biask,1 – 1.768 1.131 – 1.697 1.293 – 1.919 – 1.736

Table 2  Weights and bias 
values between the hidden and 
output layer

Weights Output parameter 
(j), log10(.)

Number of hidden neurons (k) Biasj,2

1 2 3 4 5 6

Wjk,2 PGA – 0.468 0.599 0.679 0.117 0.328 – 0.297 0.083
Sa0.01s – 0.475 0.572 0.670 0.116 0.319 – 0.308 0.075
Sa0.02s – 0.464 0.589 0.675 0.114 0.329 – 0.307 0.085
Sa0.03s – 0.477 0.494 0.658 0.102 0.303 – 0.354 0.065
Sa0.04s – 0.468 0.459 0.658 0.086 0.305 – 0.389 0.076
Sa0.05s – 0.477 0.405 0.651 0.076 0.297 – 0.425 0.077
Sa0.06s – 0.489 0.346 0.634 0.071 0.285 – 0.454 0.067
Sa0.075s – 0.502 0.328 0.634 0.066 0.282 – 0.464 0.072
Sa0.09s – 0.500 0.349 0.620 0.072 0.287 – 0.443 0.067
Sa0.10s – 0.490 0.376 0.601 0.080 0.291 – 0.410 0.045
Sa0.15s – 0.507 0.504 0.580 0.123 0.310 – 0.307 0.037
Sa0.20s – 0.542 0.637 0.614 0.159 0.308 – 0.193 – 0.018
Sa0.30s – 0.521 0.891 0.680 0.212 0.337 – 0.016 – 0.026
Sa0.40s – 0.531 1.086 0.782 0.249 0.351 0.110 – 0.003
Sa0.50s – 0.521 1.158 0.830 0.269 0.342 0.179 0.009
Sa0.60s – 0.514 1.229 0.886 0.283 0.339 0.226 0.000
Sa0.70s – 0.505 1.257 0.919 0.288 0.325 0.260 – 0.019
Sa0.75s – 0.500 1.348 0.967 0.300 0.346 0.297 0.005
Sa0.80s – 0.526 1.324 0.970 0.310 0.326 0.297 0.000
Sa0.90s – 0.516 1.394 1.008 0.320 0.334 0.338 0.002
Sa1.00s – 0.525 1.409 1.031 0.328 0.323 0.355 0.007
Sa1.20s – 0.502 1.428 1.063 0.325 0.305 0.379 0.026
Sa1.50s – 0.490 1.508 1.148 0.332 0.299 0.416 0.089
Sa2.00s – 0.462 1.508 1.206 0.310 0.267 0.423 0.123
Sa2.50s – 0.475 1.466 1.234 0.294 0.230 0.413 0.102
Sa3.00s – 0.472 1.451 1.270 0.268 0.204 0.410 0.134
Sa4.00s – 0.488 1.482 1.398 0.232 0.164 0.411 0.214
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Fig. 3  Distribution of ground motion records with respect to magnitude ( M
w
 ) and epicentre distance ( Repi ) corresponding data available form 

NGA West2 database and that form PESMOS and COSMOS for Western Himalayas and North-Eastern India

Fig. 4  Artificial neural network (ANN) architecture considered for developing the ground motion prediction equations (GMPEs) for the region
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179 (7851 records) are from strike-slip, 69 (3100 records) 
are from reverse and 38 (318 records) are from normal 
faulting mechanisms. From the distribution shown in 
Fig. 3, it is evident that the NGA West2 database covers a 
broader and comprehensive range of records in compari-
son with that available for regions under study. Thus, it can 
be seen that NGA-West 2 is a suitable candidate especially 
in models based on data-driven methods for ascertain the 
ground motion features. These information can be suit-
ably combined with regions with sparse records to arrive 
a more efficient GMPE as discussed further. 

Development of hybrid ground motion 
prediction equation

The hybrid ground motion prediction equation idea postulated 
from this study is to combine the records from regions with 
sparse data along with that from the more comprehensive data-
base and segregate with regional flags. The formulation chosen 
for the ground motion prediction can be represented as follows:

where PGA represents peak ground acceleration, Sa denotes 
spectral acceleration, Mw the moment magnitude, Vs30 the 
shear wave velocity from top 30 m of the soil, Repi the epi-
central distance, Fmech represents the flag for faulting mecha-
nism (1 for strike-slip, 2-normal and 3-reverse mechanisms) 
and Floc represents the regional flag. It should be noted that 
Floc = 1 is given for records from NGA-West2 database, 
2 for those from Western Himalayas and 3 for those from 
North-Eastern India. The network architecture considered 
for the modelling is shown in Fig. 4. The number of hid-
den nodes is taken after proper trial and error between the 
size of input and output layers and less than twice the size 
of input nodes as suggested by Berry and Linoff (1997). A 
minimum of six hidden nodes is found ideal for the data 
under consideration. Here, tanh function is used between 
the input and hidden nodes and linear function between the 

(1)

⎡⎢⎢⎢⎢⎢⎣

log10(PGA)

log10(Sa0.01s)

log10(Sa0.02s)

⋮

log10(Sa4.00s)

⎤
⎥⎥⎥⎥⎥⎦

= f (Mw, log10(Vs30),Repi, log10(Repi),Fmech,Floc)

Fig. 5  Mean and standard deviation of residue with respect to period for complete dataset used in the modelling along with that obtained sepa-
rately for records from Western-Himalayas and North-Eastern India
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hidden and output nodes. The resultant functional form for 
ground motion prediction can be represented as

where Yj represents the values for output parameter, Xi rep-
resents the input parameters, Wik,1 and biask,1 represents the 
weights and biases between the input and hidden nodes 
and Wjk,2 and biasj,2 are the connection weight and biases 
between hidden and output nodes, n is the number of input 
nodes, and m is the number of hidden nodes, respectively. 
In the network architecture chosen for the study, n=m=6. 
It should be noted that the choice of tanh function for the 
model is because the problem belongs to regression analysis. 
Further, the input and output parameters are scaled between 
−1 and +1 such that

(2)

Yj = biasj,2

+

m�
k=1

Wjk,2

�
1 − exp

�
−2

�
biask,1 +

∑n

i=1
Wik,1Xi

��

1 + exp
�
−2

�
biask,1 +

∑n

i=1
Wik,1Xi

��
� where xmin = −1 and xmax = +1 , and ymin and ymax corre-

spond to the minimum and maximum value of the parameter 
that needs to be mapped. In total, there are 231 unknowns 
to predict spectral accelerations at 27 periods for 3 regions 
taken for the study. The network is trained using Ga-ANN 
methodology as proposed by Dhanya and Raghukanth 
(2018). Thus, Ga algorithm is used for initializing the 
weights and further training is performed based on Leven-
berg–Marquardt (LM) technique. To ensure the predictive 
capacity of the model, the data are divided as 70% for train-
ing 15% for validation 15% for testing. The corresponding 
random distribution is done such as representative sample 
of each region is equally distributed in all sets without over-
lap. Further, the residual analysis is performed following the 
mixed effect regression procedure as proposed by Abraham-
son and Youngs (1992). The resultant weights and biased 

(3)Y = a
(
Y − ymin

)
+ xmin where a =

xmax − xmin

ymax − ymin

Table 3  Performance of the 
developed ANN model with 
respect to correlation coefficient 
(R) and mean squared error 
(MSE) for complete dataset 
and that obtained separately 
for records from Western 
Himalayas and North-Eastern 
India

Parameter Complete data Western Himalayas North-Eastern India

R MSE R MSE R MSE

PGA 0.945 0.122 0.675 0.144 0.564 0.110
Sa0.01s 0.944 0.123 0.665 0.146 0.567 0.110
Sa0.02s 0.944 0.124 0.664 0.146 0.561 0.110
Sa0.03s 0.942 0.129 0.646 0.154 0.554 0.110
Sa0.04s 0.938 0.136 0.632 0.161 0.549 0.111
Sa0.05s 0.935 0.143 0.631 0.162 0.538 0.119
Sa0.06s 0.932 0.149 0.636 0.161 0.544 0.122
Sa0.075s 0.931 0.152 0.637 0.155 0.566 0.131
Sa0.09s 0.931 0.152 0.632 0.156 0.552 0.135
Sa0.10s 0.931 0.151 0.633 0.157 0.566 0.129
Sa0.15s 0.935 0.141 0.627 0.176 0.543 0.131
Sa0.20s 0.938 0.134 0.669 0.186 0.526 0.159
Sa0.30s 0.947 0.123 0.735 0.201 0.622 0.146
Sa0.40s 0.952 0.117 0.772 0.204 0.684 0.134
Sa0.50s 0.956 0.115 0.804 0.197 0.716 0.129
Sa0.60s 0.958 0.115 0.811 0.215 0.745 0.133
Sa0.70s 0.960 0.116 0.815 0.226 0.757 0.129
Sa0.75s 0.960 0.116 0.823 0.222 0.759 0.135
Sa0.80s 0.961 0.116 0.827 0.224 0.774 0.132
Sa0.90s 0.962 0.117 0.838 0.221 0.783 0.135
Sa1.00s 0.963 0.118 0.846 0.219 0.788 0.141
Sa1.20s 0.964 0.121 0.853 0.223 0.799 0.151
Sa1.50s 0.966 0.120 0.862 0.225 0.791 0.174
Sa2.00s 0.968 0.123 0.864 0.237 0.771 0.217
Sa2.50s 0.969 0.127 0.866 0.248 0.754 0.253
Sa3.00s 0.970 0.128 0.866 0.263 0.731 0.303
Sa4.00s 0.971 0.133 0.864 0.292 0.706 0.396
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obtained after the training process for the database under 
consideration is summarized in Table 1 for that between 
input and hidden nodes and that between hidden and output 
nodes are summarized in Table 2. The next step in modelling 
is to ascertain how good is the prediction. The details of per-
formance analysis are summarized in the following section.

Performance analysis

The first step in performance analysis is the estimation of 
correlation coefficient and mean squared error between the 
predicted and actual data. Here, the correlation coefficient 
(R) can be obtained as

and mean squared error (MSE) is estimated using

(4)R =

∑N

i=1
(Ti − Ti)(Yi − Yi)�∑N

i=1
(Yi − Yi)

2
∑N

i=1
(Ti − Ti)

2

where Y represents the predicted data, T represents the tar-
get or recorded data and N represents the total number of 
data points. The corresponding values obtained for the com-
plete dataset and that for the Western Himalayas and North-
Eastern India separately are summarized in Table 3. It can 
be inferred from the table that there is significant correla-
tion between the observed and predicted data as R ≥ 2∕

√
N 

for the region considered for all 27 periods. Furthermore, 
the MSE < 0.4 which is within the acceptable limits. It 
should also be noted that, the correlation coefficient R value 
obtained for the model is < 1 and MSE > 0 which signifies 
that the model is not over-fitted with respect to data.

Furthermore, it is important to estimate the standard devia-
tion of the residues. The corresponding values are important in 
quantifying the uncertainties in hazard estimations. Figure 5 
illustrates the variation of standard deviation of residues with 
period. It is observed that the data are not showing any bias or 
trend with the data. However, it is known that the earthquake 
records show variability between events and within events. 

(5)MSE =
1

N

N∑
i=1

(Ti − Yi)
2)

Fig. 6  Inter-event residual with respect to moment magnitude ( M
w
 ) corresponding to PGA (T = 0 s), Sa at T = 0.20 s, 1.00 s and 4.00 s consid-

ering all events together
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Fig. 7  Intra-event residual with respect to epicentral distance ( Repi ) and shear wave velocity ( V
s30 ) corresponding to PGA (T = 0 s), Sa at T = 0.20 s, 1.00 s and 

4.00 s considering all events together
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Hence, it is more acceptable to split the obtained residues into 
inter ( �i ) and intra ( �ij ) event residuals. The corresponding 
functional form can be expressed as:

where i indicate the event and j represent the recording at 
jth station for the ith event, and f(.) is the mean prediction. 
As the proposed GMPE has interconnected nodes, the best 
way to estimate residuals is through mixed effect algorithm 
proposed by Abrahamson and Youngs (1992). The algo-
rithm is applied similar to that explained in Dhanya and 
Raghukanth (2018). The corresponding procedure is briefed 
for better clarity. Here, first estimate the initial weights and 
biases using the fixed effect regression technique for the data 
and functional form under consideration. Then, estimate �2 
and �2 using the weights and biases employing maximiz-
ing the likelihood using equation (7) of Abrahamson and 
Youngs (1992). Further, estimate the random inter-event 
term �i using equation (10) in Abrahamson and Youngs 

(6)
log10�̂ = f (Mw, Vs30, Repi, Fmech, Floc, W, b)

+ 𝜂i + 𝜀ij

(1992). Estimate new weights and biases for (log10(�̂ − 𝜂i)) . 
Repeat the procedure till the likelihood in the second step 
is maximized. Following this procedure, inter- and intra-
event residuals are extracted for the developed model and the 
corresponding values are summarized in Table 4 for com-
plete database and in Table 5 for Western Himalayas and 
North-Eastern India separately. It can be observed that the 
regional level standard deviations is in range of 0.302–0.498, 
which are less or almost of same order in comparison with 
that available in the literature (Sharma et al. 2009; Raghu-
kanth and Kavitha 2014). Furthermore, to check for any 
bias with the input variables, the variation of inter-event 
residue with magnitude and intra-event residue with epicen-
tral distance and shear wave velocity is illustrated in Figs. 6 
and 7, respectively. Furthermore, the corresponding plots 
for Western Himalayan region are shown in Figs. 8 and 9 
and that corresponding to records from North-Eastern India 
is Illustrated in Figs. 10 and 11. It is evident from the all 
these illustrations that the residual distribution patten that 
the developed ANN model is not only unbiased for the com-
plete dataset, but also for the regional records.    

Fig. 8  Inter-event residual with respect to moment magnitude ( M
w
 ) corresponding to PGA (T = 0 s), Sa at T = 0.20 s, 1.00 s and 4.00 s consid-

ering events at Western Himalayas
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Now, it will be interesting to check the sensitivity of 
input parameters towards output. Here, the estimation pro-
cedure based on weights in the network, proposed by Garson 
(1991), is utilized to understand sensitivity. According to 
this method, relative importance ( �� ) of each input variable 
i for a particular output variable j is obtained as

The corresponding estimates for the developed model are 
shown in Fig. 12. From the figure, it can be noted that the 
outputs are more sensitive towards moment magnitude, epi-
central distance and fault location. Furthermore, it would 
be interesting to check whether the regional level ground 
motion prediction equation is able to capture all known 
attenuation features of seismic wave. Hence, spectral accel-
eration is estimated for varying magnitude, distance, shear 
wave velocity and fault mechanisms as shown in Fig. 13 for 
Western-Himalayas and in Fig. 14 for North-Eastern India. 
It can be noted by comparing the figures that the amplitudes 

(7)��i% =

∑m

k=1

�Wik×Wjk�∑n

i=1
�Wik×Wjk�

∑n

i=1

∑m

k=1

�Wik×Wjk�∑n

i=1
�Wik×Wjk�

× 100

are different for both the regions. However, both regions are 
able to exhibit the general ground motion patterns. Whereby, 
with distance the amplitudes are reducing and the peak 
period is shifting towards longer periods. Additionally, as 
shear wave velocity reduces, the amplitudes are increasing 
and the peak period is shifting towards long period. Thus, 
from the illustrations, it is can be seen that the developed 
ANN model is unbiased and capable of capturing the known 
ground motion patterns. It will be interesting now to check 
how is the prediction compared with the existing relations 
as discussed in the following section.

Comparison with the existing relations

As first step, the spectral acceleration predictions for NGA 
West 2 ( Floc = 1 ) from the developed model are compared 
with the GMPEs from same database. Here, the predic-
tions are compared with that reported by Abrahamson 
et al. (2014), Boore et al. (2014), Campbell and Bozor-
gnia (2014), Chiou and Youngs (2014) and Dhanya and 
Raghukanth (2018). The corresponding comparison is 

Table 4  Standard deviations 
of the residuals (aleatory 
uncertainty) in the developed 
ANN model

Parameter Inter-event � (log10 units) Intra-event � (log10 units) Total � (log10 units)

PGA 0.107 0.301 0.319
Sa0.01s 0.107 0.301 0.320
Sa0.02s 0.188 0.299 0.353
Sa0.03s 0.115 0.306 0.327
Sa0.04s 0.124 0.312 0.335
Sa0.05s 0.131 0.316 0.342
Sa0.06s 0.136 0.321 0.349
Sa0.075s 0.137 0.323 0.351
Sa0.09s 0.135 0.323 0.350
Sa0.10s 0.133 0.323 0.350
Sa0.15s 0.116 0.322 0.342
Sa0.20s 0.105 0.320 0.337
Sa0.30s 0.095 0.310 0.324
Sa0.40s 0.093 0.303 0.317
Sa0.50s 0.098 0.300 0.315
Sa0.60s 0.105 0.296 0.314
Sa0.70s 0.114 0.296 0.317
Sa0.75s 0.117 0.293 0.316
Sa0.80s 0.119 0.294 0.317
Sa0.90s 0.125 0.294 0.319
Sa1.00s 0.130 0.294 0.321
Sa1.20s 0.141 0.293 0.325
Sa1.50s 0.150 0.289 0.325
Sa2.00s 0.162 0.288 0.331
Sa2.50s 0.171 0.291 0.337
Sa3.00s 0.177 0.290 0.339
Sa4.00s 0.194 0.292 0.351
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shown in Fig. 15. From the figure, it can be observed that 
the predicted spectral acceleration from the present model 
is comparing well with the pattern exhibited by the already 
existing relations. Now, it will be interesting to compare the 
spectral acceleration predictions from the developed model 
for Western-Himalayas and North-Eastern India with the 
existing relations. Sharma et al. (2009) developed ground 
motion prediction equation for spectral acceleration at 13 
periods between 0.04 and 2.5 s. The results are arrived from 
combining together 58 records from Himalayas with 143 
records From Zagros. Later, NDMA (2010) and Raghu-
kanth and Kavitha (2014) developed GMPE for the geo-
logical regions in India using synthetic database generated 
using regional seismological model. However, the results 
are valid for only rock-type soil condition. Recently, Singh 
et al. (2017) developed GMPE for response spectra in Indo-
Gangetic plain region based on only the records from 2015 
Nepal earthquakes and its four aftershocks. The spectral 
acceleration predictions from these studies are compared 

with the respective predictions from the present study; 
the patterns are illustrated in Fig. 16. It should be noted 
that the comparison is done for rock level ground motion 
with Vs30 760 m/s considering the validity of the existing 
GMPEs. From the figure, it can be noted that the variable 
with magnitude for the GMPE by Sharma et al. (2009) is 
less and the pattern is also different from that exhibited by 
other GMPE. The limited information used in developing 
the model might have attributed to this observation. Further, 
the existing GMPEs from synthetic database are observed 
to over predict when compared to the prediction from the 
present model. The choice of the parameters in developing 
the synthetic database and the corresponding limitations 
in the prediction might have attributed to these differences 
observed for the regional ground motion predictions. It is 
also observed that the predictions from Singh et al. (2017) 
are also on the upper bound. The limited amount of data 
and the difference attributed from site conditions could be a 
possible reason for such a variation. In North-Eastern India, 

Table 5  Standard deviations 
of the residuals (aleatory 
uncertainty) in the developed 
ANN model considering 
separately the records at 
Western Himalayas and North-
Eastern India

Western Himalaya North-Eastern India

Parameter Inter-event � 
( log10 units)

Intra-event � 
( log10 units)

Total � 
( log10 units)

Inter-event � 
( log10 units)

Intra-event � 
( log10 units)

Total � 
( log10 
units)

PGA 0.049 0.363 0.367 0.055 0.297 0.302
Sa0.01s 0.050 0.369 0.373 0.055 0.300 0.305
Sa0.02s 0.105 0.332 0.348 0.116 0.249 0.274
Sa0.03s 0.054 0.380 0.384 0.056 0.289 0.294
Sa0.04s 0.060 0.389 0.393 0.059 0.282 0.288
Sa0.05s 0.063 0.364 0.370 0.064 0.295 0.302
Sa0.06s 0.064 0.383 0.388 0.067 0.280 0.288
Sa0.075s 0.061 0.358 0.363 0.069 0.308 0.316
Sa0.09s 0.061 0.371 0.376 0.068 0.306 0.314
Sa0.10s 0.062 0.367 0.372 0.066 0.304 0.311
Sa0.15s 0.064 0.375 0.380 0.060 0.334 0.339
Sa0.20s 0.064 0.383 0.388 0.061 0.381 0.386
Sa0.30s 0.067 0.396 0.402 0.052 0.394 0.397
Sa0.40s 0.070 0.400 0.406 0.047 0.401 0.404
Sa0.50s 0.073 0.397 0.404 0.056 0.386 0.390
Sa0.60s 0.082 0.403 0.411 0.058 0.333 0.338
Sa0.70s 0.092 0.414 0.424 0.066 0.383 0.389
Sa0.75s 0.094 0.404 0.415 0.071 0.322 0.330
Sa0.80s 0.097 0.410 0.421 0.073 0.380 0.387
Sa0.90s 0.100 0.409 0.421 0.078 0.385 0.393
Sa1.00s 0.103 0.408 0.421 0.084 0.392 0.401
Sa1.20s 0.112 0.408 0.423 0.097 0.394 0.406
Sa1.50s 0.120 0.412 0.430 0.113 0.397 0.413
Sa2.00s 0.135 0.417 0.438 0.141 0.356 0.382
Sa2.50s 0.145 0.423 0.447 0.160 0.385 0.417
Sa3.00s 0.154 0.430 0.457 0.178 0.363 0.404
Sa4.00s 0.176 0.466 0.498 0.211 0.410 0.461
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Fig. 9  Intra-event residual with respect to epicentral distance ( Repi ) and shear wave velocity ( V
s30 ) corresponding to PGA (T  =  0  s), Sa at 

T = 0.20 s, 1.00 s and 4.00 s considering events at Western Himalayas
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predictions from Raghukanth and Kavitha (2014) are lower 
when compared to other relations because the particular 
GMPE considered deeper events from Indo-burmese arc 
region. It should however be noted that most of the GMPE 
for available for the region is based on synthetic database 
or by just using the available limited number of records. 
Whereas the model developed from this study understands 
the possible ground motion pattern from a comprehensive 
dataset and scales the same based on the recorded data 
information available for the region. Thus, the variance of 
error is nominal and the predictions are exhibiting all the 
known ground motion patterns. Now it will interesting to 
explore the application of the developed GMPE in hazard 
estimations as discussed further.  

Application to hazard estimations

To demonstrate one of the widely used applications of GMPE, 
uniform hazard response spectra (UHRS) are obtained for two 
major cities. Here, first NGA West2 expressions are used in 

estimation of UHRS at Delhi ( 77.1025◦ E , 28.7041◦ N ) and 
Guwahati ( 91.736◦ E , 26.145◦ N ). Then, The Western Hima-
layas GMPE is used to estimate hazard for Delhi ( 77.1025◦ E , 
28.7041◦ N ) and North-Eastern India GMPE is used in the 
estimation of hazard for Guwahati ( 91.736◦ E , 26.145◦ N ). 
The tectonic setting of Delhi, Guwahati and adjoining areas is 
illustrated in Fig. 17. The faults lines shown in the figure are 
identified from the seismotectonic atlas of India GSI (2000). 
The region is seismically very active with numerous thrust 
faults like Main Frontal Thrust (MFT), Main Central Thrust 
(MCT), Main Boundary Thrust (MBT), etc. passing through 
the region. It can be seen that the selected cities belong to the 
category of mega-cities, and hence, there are numerous con-
structional activities happening in the region. The proximity 
to the seismically active faults has attributed to the risk in the 
region. Hence, it is essential to determine the probable seismic 
hazard values for the region. The seismic hazard estimation 
procedure adopted in the study is that proposed by Cornell 
(1968) and modified by Kiureghian and Ang (1977) which is 
explained in detail by Kramer (1996). Accordingly, assuming 
that the earthquake follows a Poisson process, the probability 

Fig. 10  Inter-event residual with respect to moment magnitude ( M
w
 ) corresponding to PGA (T = 0 s), Sa at T = 0.20 s, 1.00 s and 4.00 s consid-

ering events at North-Eastern India
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Fig. 11  Intra-event residual with respect to epicentral distance ( Repi ) and shear wave velocity ( V
s30 ) corresponding to PGA (T  =  0  s), Sa at 

T = 0.20 s, 1.00 s and 4.00 s considering events at North-Eastern India
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that the control variable Y exceeds level y∗ , in a time window 
of T years is given by

The rate of exceedance, �y∗ is computed from the expression

Here, K is indicates the in the region, PM(m) and PR|m(r|m)) 
are the probability density functions (pdf) of magnitude and 
distance, respectively, P(Y > y∗|m, r) is the conditional prob-
ability of exceedance of the ground motion parameter Y. 
P(Y > y∗|m, r) is taken as a log-normal random variable, 
conditioned on particular values of m and r, with mean value 
provided by the GMPE. The reciprocal of the annual prob-
ability of exceedance gives the return period for the corre-
sponding variable. The mean annual rate of exceedance of 
y∗ is obtained by summing over the individual probabilities 
from each fault line. The procedure is repeated for various 
ground motion values y∗ to obtain the seismic hazard curves. 
These hazard curves are first obtained individually for all 
the faults located in the region and then combined to esti-
mate the aggregated hazard at the site. The uniform hazard 
response spectra (UHRS) are the spectra having the same 
mean recurrence interval (return period) at all frequencies.

In the present study, this method is adopted to deter-
mine the UHRS for Delhi and Guwahati. The recurrence 

(8)P(Y > y∗ inT years) = 1 − exp(−𝜇y∗T).

(9)

𝜇y∗ =

K∑
i=1

Ni(m0)∫
m

∫
r

P(Y > y∗|m, r)PR|m(r|m)PM(m) 𝜕r 𝜕m

parameter of each fault line is taken as per that reported by 
Muthuganeisan (2017). GMPEs for the respective regions 
are used in hazard estimations. Further, from Satyam and 
Rao (2010) and Kumar et al. (2018), the site conditions in 
Delhi and Guwahati are heterogeneous with varied soil con-
ditions ranging from B to D type soil classes. Moreover, to 
have an understanding on how the hazard values from ANN-
based methodology compare with the existing relations, first 
UHRS are obtained for both the sites using the NGA West2 
relations available in the literature (Abrahamson et al. 2014; 
Boore et al. 2014; Campbell and Bozorgnia 2014; Chiou and 
Youngs 2014; Dhanya and Raghukanth 2018) and that from 
the present study with regional flag Floc = 1 corresponding 
to C Type soil class(Vs30 = 560m/s ). Figure 18 (top layer) 
illustrates the corresponding UHRS for 2500 years return 
period (2% probability in 50 years). It can be seen that the 
UHRS from the present model is well in range with that 
obtained using the existing relations. Furthermore, hazard 
values for Guwahati are observed to be slightly higher than 
that obtained for delhi owing to the corresponding recur-
rence characteristics. Now, it will be intering to see how 
the hazard values look when regional GMPEs are used for 
the respective sites. Here, hazard estimations are obtained 
corresponding to B ( Vs30 = 1130m/s ) , C ( Vs30 = 560m/s ) 
and D ( Vs30 = 270m/s ) type soil class for the cities consid-
ering the material property variations reported in the litera-
ture. It should be noted that the other GMPEs available at 
the regional level are not considered here as they are mostly 
valid for rock-type soil class and were also showing con-
siderable variabilities (Fig. 16). The UHRS corresponding 
to 2500 years return period, obtained for Delhi and Guwa-
hati using respective regional level GMPEs developed from 
present work and performing hazard analysis are shown in 
Fig. 18 (bottom layer). It can be noted that the regional level 
estimates are different from that obtained by using NGA-
West2 relations. Furthermore, the hazard values of Delhi are 
observed to be less than that for Guwahati. Additionally, the 
UHRS showed visible variations and period shift with soil 
type at each location. This exercise thus demonstrated the 
applicability of the developed GMPE in hazard estimations 
for sites in the region.

Summary and conclusion

The present works develop a hybrid ANN model for region 
with sparse recorded data like Western-Himalayas and North-
Eastern India. The methodology adopted is to develop a net-
work combining the dataset of a region with comprehensive 
database with those having sparse data segregated by flags. 

Fig. 12  Sensitivity of the input parameters of the developed ANN 
model towards output based on Garson’s algorithm
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Fig. 13  Variation of spectral acceleration (top) with respect to epicentral distance ( Repi ) (bottom) with respect to shear wave velocity ( V
s30 ) cor-

responding to GMPE developed for Western Himalayas
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Fig. 14  Variation of spectral acceleration (top) with respect to epicentral distance ( Repi ) (bottom) with respect to Shear wave velocity ( V
s30 ) cor-

responding to GMPE developed for North-Eastern India
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The ANN model developed for the study is shown in Fig. 4, 
and the corresponding weights are summarized in Tables 1 
and 2. The inter-event and intra-event variability is estimated 
for the model for complete database as well as for the regional 
level records (Figs. 6, 7, 8, 9, 10, 11). The developed model 
is observed to be unbiased, and the variance is also less com-
pared to the existing relations. Furthermore, performance anal-
ysis of the developed GMPE showed that the model is able to 
capture all known ground motion features (Figs. 13, 14). Fur-
thermore, the model is also compared with the existing GMPE 
for the region (Fig. 16) and noted that the GMPEs developed 
from synthetic database show variable pattern compared to 
the present model. The application of the developed regional 

GMPE is demonstrated by estimating uniform hazard response 
spectra for Delhi and Guwahati (Fig. 18). The study thus shows 
that the GMPE for regions with sparse data can be suitably 
developed by combining the data with a more comprehensive 
database and implementing them in an efficient machine learn-
ing algorithm. It should however be noted that even though the 
network learns the predominant pattern from the whole data, 
the regional level scaling is performed based on the charac-
teristics of the available records. Thus, the developed model 
utilizes the amplitudes of the recorded data in estimating the 
regional GMPE. Similar studies can be done for other regions 
lacking a comprehensive database.

Fig. 15  Comparison of the spectral acceleration from developed ANN model for NGA West2 ( Floc = 1 ) with the other GMPEs developed from 
NGA-West2 database at Repi = 150km
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Fig. 16  Comparison of the spectral acceleration from developed ANN model for Western Himalayas ( Floc = 2 ) and North-Eastern India 
( Floc = 3 ) with the other GMPEs developed for the region (rock site, reverse mechanism, V

s30 = 760m/s)

Fig. 17  Tectonic and Seismicity characteristics in (left) Delhi and adjoined regions (right) Guwahati and adjoined regions
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Fig. 18  Uniform hazard response spectra corresponding to 2500 years 
return period: [top left] Delhi using developed NGA-West2 relation 
along with other relations existing in the literature corresponding to 
C-Type soil class [top left] Guwahati using developed NGA-West2 
relation along with other relations existing in the literature corre-

sponding to C-Type soil class [bottom left] Delhi using GMPE model 
developed for Western Himalayas corresponding to varied soil condi-
tions and [bottom right] Guwahati using GMPE model developed for 
North-Eastern India corresponding to varied soil conditions
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Abstract
This study aims to take into account the feasibility of three ensemble machine learning algorithms for predicting blast-induced 
air over-pressure (AOp) in open-pit mine, including gradient boosting machine (GBM), random forest (RF), and Cubist. 
An empirical technique was also applied to predict AOp and compared with those of the ensemble models. To employ this 
study, 146 events of blast were investigated with 80% of the total database (approximately 118 blasting events) being used 
for developing the models, whereas the rest (20% ~ 28 blasts) were used to validate the models’ accuracy. RMSE, MAE, and 
R2 were used as performance indices for evaluating the reliability of the models. The findings revealed that the ensemble 
models yielded more precise accuracy than those of the empirical model. Of the ensemble models, the Cubist model provided 
better performance than those of RF and GBM models with RMSE, MAE, and R2 of 2.483, 0.976, and 0.956, respectively, 
whereas the RF and GBM models provided poorer accuracy with an RMSE of 2.579, 2.721; R2 of 0.953, 0.950, and MAE of 
1.103, 1.498, respectively. In contrast, the empirical model was interpreted as the poorest model with an RMSE of 4.448, R2 
of 0.872, and MAE of 3.719. In addition, other findings indicated that explosive charge capacity, spacing, stemming, moni-
toring distance, and air humidity were the most important inputs for the AOp predictive models using artificial intelligence.

Keywords Air over-pressure · Open-pit mine · Ensemble algorithm · Random forest · Gradient boosting machine · Cubist
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Introduction

One of the most effective techniques for fragmenting rock 
in open-pit mines is blasting because of its advantages from 
technical and economical points of view. It can generate a 
large amount of rock for the subsequent operations (e.g., 
loading, transporting) with low cost (Jhanwar et al. 1999). 

However, its ill side influences are not negligible, includ-
ing air over-pressure (AOp), flyrock, ground vibration, dust, 
and fumes (Nguyen et al. 2018; Zhang et al. 2019; Shang 
et al. 2019) (Fig. 1). Of those, AOp is considered as a dan-
gerous phenomenon, which is needed to control (Alel et al. 
2018; Armaghani et al. 2015; Khandelwal and Kankar 2011; 
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Khandelwal and Singh 2005; Nguyen and Bui 2018; Nguyen 
et al. 2017, 2018).

For predicting blast-induced AOp, several scholars pro-
posed empirical equations, as listed in Table 1. Accordingly, 
the relationship between monitoring distance (D) and explo-
sive charge per delay/maximum explosive charge capacity 
(W) was established through empirical equations.

Of the empirical equations in Table 1, the equation No.1 
(USBM empirical equation) has been widely used to pre-
dict blast-induced AOp (Siskind et al. 1980; Hustrulid 1999; 
Walter 1990; Kuzu et al. 2009; Hasanipanah et al. 2016; 
Mahdiyar et al. 2018). However, the accuracy of empiri-
cal models was often not high due to some drawbacks of 
them, as discussed by Hasanipanah et al. (Hasanipanah et al. 
2016), Mahdiyar et al. (Mahdiyar et al. 2018).

Recently, artificial intelligence (AI) became more appro-
priate and highly used in different fields, especially min-
ing technology (Pierini et al. 2013; Rahmani and Farnood 
Ahmadi 2018; Montahaei and Oskooi 2014; Wiszniowski 
2016; Naganna and Deka 2019; Piasecki et al. 2018; Nguyen 
et al. 2019a, b, c, d; Zhou et al. 2019; Asteris et al. 2016; 
Asteris and Nikoo 2019). In order to estimate blast-induced 
AOp, Hajihassani et al. (Hajihassani et al. 2014) trained 
an artificial neural network (ANN) by an evolutionary 
algorithm (Particle Swarm Optimization—PSO), namely 

ANN-based PSO model, using 62 AOp datasets. Their 
results showed that the ANN-based PSO model performed 
properly in forecasting blast-caused AOp with the correla-
tion coefficient (CC) of 0.94. In another study, Mohamad 
et al. (Mohamad et al. 2016) predicted blast-induced AOp 
by an ANN-based genetic algorithm (GA), abbreviated as 
GA-ANN, using 76 blasting events. Empirical and ANN 
models were also provided to predict AOp and compared 
them to those of the GA-ANN model. Their results inter-
preted that the GA-ANN model performed better than those 
of empirical and ANN models. Hasanipanah et al. (2016) 
used ANFIS, ANN, fuzzy system (FS) techniques, and an 
empirical equation for estimating blast-induced AOp. For 
developing these models, a group of 77 blasting events was 
used in their study. Their findings revealed that the ANFIS 
system was the most superior approach in forecasting AOp. 
Amiri et al. (2016) also introduced a new combination of 
k-nearest neighbors (KNN) and ANN models to predict AOp 
using 75 blasting events. Their results indicated that the 
KNN-ANN model predicted better than those of ANN and 
empirical models. Mahdiyar et al. (2018) also proposed three 
AI models to estimate AOp based on PSO algorithm and 80 
blasting events. The results indicated that the PSO model 
estimated AOp very well with a promising result. Nguyen 
et al. (2019) also discovered a hybrid model based on clus-
tering technique and backpropagation neural networks. In 
another study, Nguyen et al. (2018) performed a comparative 
study of MLP neural nets, BRNN, and HYFIS in estimating 
AOp. Their results showed that the MLP neural nets were 
the most superior model than those of the other models. 
They also developed another AI model based on ensemble 
of ANN and RF (i.e., ANNs-RF) for predicting AOp with 
an excellent result (Nguyen and Bui 2018). By the use of 
optimization algorithm, AminShokravi et al. (2018) dem-
onstrated the potential of the PSO algorithm in predicting 
AOp with high accuracy. Bui et al. (2019) also evaluated the 

Fig. 1  Illustration of the 
undesirable effects of blasting 
operations

Table 1  Several empirical equations for predicting blast-induced AOp

k and β are the coefficients of the study site; SD denotes the scaled 
distance (m kg0.33)

No. References Empirical model

1 Siskind et al. (1980) AOp = k(SD)−�

2 Loder (1985)
AOp =

140 3
√

W

200

D

3 McKenzie (1990) AOp = 165 − 24 log (R∕D1∕3)
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performance of different AI techniques for estimating AOp 
in an open-pit coal mine, including RF, boosted regression 
trees, KNN, SVR, GP (Gaussian process), BART (Bayes-
ian additive regression trees), and ANN. They claimed the 
feasibility of the mentioned AI techniques. ANN model was 
recommended as the best model in their study for estimating 
AOp. Zhou et al. (2019) also developed a novel AI model 
for forecasting AOp based on FS and firefly algorithm (FA), 
namely FS-FA model. A high prediction level was confirmed 
in their study for the proposed FS-FA model. Gao et al. 
(2019) also took into account the performance of the GA 
and group method of data handling (GMDH) for forecasting 
AOp. Eventually, their GA-GMDH model was proposed as 
a robust technique with an excellent agreement.

A review of the literature shows that blast-induced AOp 
predictive models were developed and proposed quite well. 
Nevertheless, they cannot apply and represent other loca-
tions/regions, whereas the effects of blast-induced AOp 
are different from country to country. In this study, blast-
induced AOp was assessed and predicted by three ensemble 
machine learning algorithms, including RF, GBM (gradient 
boosting machine), and Cubist. An empirical model was also 
developed to predict and compare with those of ensemble 
models herein.

The rest of the present work is arranged as follows: 
“Study area and data used” section presents the study site 
and characteristics of the dataset; “Methods” section pro-
vides the principle of the approaches used; the preparation of 
the dataset is introduced in “Preparing the dataset” section; 
the development of the models is shown in “Establishing the 
AOp predictive models” section; some performance indices 
are presented in “Performance indices” section; and “Results 
and discussion” section reports the results and discussion. 

Finally, “Conclusions and remarks” section presents our 
conclusions of this work.

Study area and data used

Study area

Herein, the Deo Nai open-pit coal mine, which is located 
in Quang Ninh Province, Vietnam, was selected as a spe-
cial study area. It lies within latitudes 21°001′00″N and 
21°020′00″N and between longitudes 107°018′15″E and 
107°019′20″E (Fig. 2). The coal store is 42.5 Mt, and pro-
duction capacity is 2.5 Mt/year; overburden is 20–30 Mt/
year. (Vinacomin 2015). With a large amount of overburden 
per year and the hardness of rock being high (from 10 to 
14 according to Protodiakonov’s classification (Bach et al. 
2012)), blasting was selected as a proper technique for frag-
menting rock in the mine. ANFO is the main explosive used 
in this mine, with the amount being up to 20 tons. The non-
electric delay blasting method was applied to fragment rock 
with the diameter of borehole of 105 mm. The nearest dis-
tance from blasts to the residential area is about 400–500 m. 
Hence, the ill side effects of blasts are substantial.

Data collection and its characteristics

In this study, 146 events of blasting were investigated, 
with ten parameters being measured. Of the ten parame-
ters, nine first variables were used as the inputs to predict 
the outcome of AOp, including powder factor (q), maxi-
mum explosive charge capacity (W), burden (B), length of 
stemming (T), spacing (S), number of rows per blast (N), 

Fig. 2  Location of the study site
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monitoring distance (D), bench height (H), and air humidity 
(RH) (Fig. 3). For monitoring blast-induced AOp, an instru-
ment of Instantel (Canada) was utilized with a microphone. 
According to the guideline of the producer, the microphone 
should be placed at the sensitive locations and straightfor-
ward with the direction of blasts (Fig. 4). Also, a handheld 
GPS was used to define D. RH was measured by Kanomax 
2212 air quality meter (Japan). It is one of the most influ-
ential parameters for estimating AOp, which was recom-
mended by Nguyen et al. (2018). The remaining inputs were 
extracted from the design of blasts. Table 2 shows the char-
acteristics of inputs and output in this work.

Methods

Empirical

Empirical is one of the methods which is utilized to predict 
blast-produced AOp in open-cast mine. Of the empirical 
methods (as shown in Table 1), USBM empirical formula 
was widely applied to predict AOp in open-pit mines (Haji-
hassani et al. 2014; Armaghani et al. 2016). For example, 
Kuzu et al. (2009) used the empirical equation of the USBM 
to forecast AOp with a promising result. In the USBM 

equation, the scaled distance was illustrated through W and 
D as follows:

Subsequently, the USBM empirical equation can be com-
puted according to Eq. 2:

where � and � are the site factors.

Random forest

Decision tree (DT) is one of the branches of AI, and RF 
belongs to the DT branch, which was developed by Brei-
man (2001). As a robust DT model, RF can solve both 
classification and regression cases. Based on the differ-
ent results of the trees, this method has been suggested 
as a suitable method for achieving predictive precision 
(Vigneau et al. 2018). In addition, this method used the 
results of the exclusive tree in the forest to present the best 
outcome. As a voter, each tree contributes its predictions 
for the final decision of RF (Gao et al. 2018). On the other 
hand, RF ensembles the predictions of the tree and making 
a final decision based on the obtained results. The key of 

(1)SD = DW
−0.33

(2)AOp = �(SD)−�

Fig. 3  Structure of the borehole 
and its parameters. a Parameters 
of blast design and b a combi-
nation plan of blasting
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the RF for regression is presented in three steps: (i) pro-
ducing bootstrap instances as the tree number in the for-
est (ntree) according to the database, (ii) expand a suitable 
regression tree for any bootstrap instance using random 
sampling of the estimators (mtry) (Dou et al. 2019). Of 
those variables, choose the most appropriate split and (iii) 
estimate recent perception using ensemble the estimated 
amounts of the trees (ntree). For the regression issue (i.e., 
estimating AOp), the mean amount of the estimated values 
in the single tree is applied.

According to the training dataset, a prediction of the 
error rate may be calculated according to the two follow-
ing steps:

1 At any iteration of bootstrap, estimate the non-informa-
tion in the instance of bootstrap using the tree grown 
with the bootstrap instance, named “out-of-bag” (OOB).

2 Collect the OOB estimations and predict the error.

More details of the RF algorithm can be explained in 
(Nguyen and Bui 2018; Breiman 2001; Bui et al. 2019).

Gradient boosting machine

GBM is an ensemble approach that is suggested by Fried-
man (2002). It is an improved boosting algorithm and can 
be applied for regression, as well as classification problems 
(Friedman 2001). The boosting algorithm can be described 
according to the pseudocode in Fig. 5 (Friedman 2002).

Subsequently, Friedman (Friedman 1999) provided a par-
ticular algorithm based on the platform of boosting algo-
rithm for various loss criteria like least squares:

Least absolute deviation:

(3)�(yAOp, T) = (yAOp − T)2

Fig. 4  Data collection for predicting AOp in this work

Table 2  Inputs, output, and their properties

Categories W H B S T

Minimum 1376 13.00 7.500 7.400 6.200
Mean 13183 14.37 8.064 7.814 6.879
Maximum 24171 16.00 8.500 8.200 7.500
Standard deviation 4685.73 0.937 0.332 0.213 0.362

Categories q N RH D AOp

Minimum 0.3500 2.000 76.00 180 92.26
Mean 0.4178 3.486 85.16 469 123.19
Maximum 0.4800 5.000 94.00 726 147.00
Standard deviation 0.035 1.216 4.817 159.896 11.912
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Huber M:

(4)�(yAOp, T) =
|

|

|

yAOp − T
|

|

|

(5)𝜓(yAOp, T) = (yAOp − T)21(
|

|

|

yAOp − T
|

|

|

≤ 𝛿) + 2𝛿(
|

|

|

yAOp − T
|

|

|

− 𝛿∕2)1(
|

|

|

yAOp − T
|

|

|

> 𝛿)

Let 
{

y
i.AOp, xi.AOp

}N

1
 as the entire training information 

instance and {�(i)}N
i

 stands for random permutation for 
integers {1,… ,N} . Then, a random subsample of size 
Ñ < N  is predicted by 

{

y𝜋(i.AOp), x𝜋(i.AOp)
}Ñ

1
 . The pseudoc-

ode of the GBM algorithm is described in Fig. 6 (Fried-
man 2002).

Cubist

Cubist algorithm (Rulequest 2016a, b) is one of the rule-
based algorithms, which is utilized to make predictive mod-
els according to the input information analysis, whereas the 
See5/C5.0 method that is able to solve classification prob-
lems (Quinlan 2004), the Cubist can solve regression issues 
very well. The outcomes from the Cubist model are more 
priority than those of linear regression models. In addition, 
it is simpler than the ANN model (Rulequest 2016a, b).

The Cubist model is expanded based on Quinlan’s M5 
model tree (Quinlan 1992) with the capability to apply for 
thousands of input characteristics (Rulequest 2016a, b). In 
the Cubist model, the targets depend on the inputs, and it 
is computed based on the rule(s). A combination of differ-
ent conditions with a linear function is conducted for these 
rules. The related linear function is used to estimate the 
output properly if a rule takes into consideration the whole 
requirements. The Cubist algorithm can perform multiple 
situations at the same time and then detect various distinct 
linear functions for estimating output. Therefore, Cubist can 
generate various models and mixes them based on the rules 
which are determined before. Developing multiple models 
with different rules and their combinations can assist Cubist 
model in attaining much higher levels of precision. More 
details of Cubist can be found in Refs. (Nguyen et al. 2019; 
Kuhn et al. 2012; Drzewiecki 2016; Kuhn et al. 2018; Bernat 
and Drzewiecki 2015).

Preparing the dataset

In this section, the AOp dataset is prepared as a geospatial 
database by the ArcGIS software; 146 records of blast were 
divided into two sections according to the recommendations 
of previous researchers (Nguyen et al. 2019a, b); 80% of the 
total datasets (approximate 118 events of blast) are selected 
by randomly and applied as the training dataset to build the 
AOp predictive models. The rest (28 records of the blast) 
were utilized as the testing dataset for evaluating the AOp 
models’ performance. Summary of training and testing data-
sets is shown in Tables 3 and 4, respectively.

Fig. 5  Pseudocode of the boosting algorithm

Fig. 6  Pseudocode of the GBM algorithm
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Establishing the AOp predictive models

For the empirical model, 118 blasting events (training data-
set) were used to compute the site factors k and β. Microsoft 
Excel 2016 was used to define k and β by the use of a multi-
variate regression analysis technique. As a result, k = 208.26 
and β = 0.183 are the optimal values of the USBM model 

for predicting AOp. The USBM model (in this case) can be 
described as:

For the development of the ensemble models, the ten-
fold cross-validation method, along with three repetitions, 
is utilized to avoid overfitting. Furthermore, the ensemble 
models used the same training as those used for the devel-
opment of the USBM model. To develop the RF model, the 
number of trees was set equal to 2000 to meet the diversity 
of the forest (Nguyen et al. 2017). Then, the random pre-
dictor (mtry) was tuned to get the optimal performance of 
the RF model. Herein, mtry was set in the range of 1–50 as 
a trial and error procedure. Ultimately, an optimal value 
of mtry was determined for the RF model with mtry = 41. 
Figure 7 shows the efficiency of the RF model for estimat-
ing AOp.

Unlike the RF model, the GBM model used four 
parameters to control the model’s performance, such 
as the number of trees, max tree depth, shrinkage, and 
n.minobsinnode. A grid search method was also applied 
to define the optimal parameters for the GBM model. As 
a result, number of trees =500, max tree depth =4, shrink-
age =0.1, and n.minobsinnode =5 were the best values for 
the GBM model in this case. GBM’s performance is illus-
trated in Fig. 8.

To develop the Cubist model, committees and neighbors 
were used as the key parameters. The results indicated 
that the Cubist model reached optimal performance with 
committees of 80 and neighbors of 0, as shown in Fig. 9.

Performance indices

For evaluating the efficiency of the AOp predictive mod-
els, three performance indices were computed, including 
mean absolute error (MAE), coefficient of determination 
(R2), and root mean square error (RMSE).

(6)AOp = 208.026(SD)−0.183

Table 3  Summary of the training dataset

Categories W H B S T

Minimum 1376 13.00 7.500 7.400 6.200
Mean 13036 14.36 8.054 7.807 6.877
Maximum 24171 16.00 8.500 8.200 7.500
Standard deviation 4735.744 0.949 0.332 0.209 0.367

Categories q N RH D AOp

Minimum 0.350 2.000 76.00 180 92.26
Mean 0.417 3.466 85.22 473.4 122.98
Maximum 0.480 5.000 94.00 726 147.00
Standard deviation 0.035 1.217 4.665 158.747 11.999

Table 4  Summary of the testing dataset

Categories W H B S T

Minimum 1376 13.00 7.500 7.400 6.200
Mean 13183 14.37 8.064 7.814 6.879
Maximum 24171 16.00 8.500 8.200 7.500
Standard deviation 4497.849 0.903 0.330 0.233 0.349

Categories q N RH D AOp

Minimum 0.3500 2.000 76.00 180 92.26
Mean 0.4178 3.486 85.16 469 123.19
Maximum 0.4800 5.000 94.00 726 147.00
Standard deviation 0.034 1.230 5.497 166.333 11.712

Fig. 7  RF modeling for predic-
tion of AOp
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Fig. 8  GBM modeling for 
prediction of AOp

Fig. 9  Cubist modeling for 
prediction of AOp
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n is the total number of observations. yAOp is recorded val-
ues, ŷAOp is predicted values, and ȳAOp is the average of 
recorded values.

Results and discussion

Once the models were well established, their performance 
is evaluated and checked through the performance indices 
according to Eqs. (7–9). Table 5 shows the results, as well 
as the performance of the ensemble and empirical models 
on training/testing datasets.

(7)RMSE =

√

√

√

√

1

n

n
∑

i=1

(yAOp − ŷAOp)
2

(8)R
2 = 1 −

∑

i
(yAOp − ŷAOp)

2

∑

i
(yAOp − ȳAOp)

2

(9)MAE =
1

n

n
∑

i=1

|

|

|

yAOp − ŷAOp
|

|

|

It can be easy to recognize that the ensemble models 
performed very well in this study. On the training data-
set, the ensemble models obtained high performance with 
RMSE of 1.739–2.199; R2 of 0.968–0.970; and MAE of 
0.980–1.451. The similar results were also observed on 
the testing dataset for the ensemble models with RMSE of 
2.483–2.721, R2 of 0.950–0.956, and MAE of 0.976–1.498. 
In contrast to the ensemble models, the empirical model 
provided the poorest efficiency (i.e., RMSE = 4.838, 4.448; 

Table 5  Performance indices 
of the ensemble and empirical 
models

Method Training dataset Testing dataset

RMSE R2 MAE RMSE R2 MAE

Empirical 4.838 0.871 4.101 4.448 0.872 3.719
RF 2.030 0.968 1.143 2.592 0.953 1.103
GBM 2.199 0.970 1.451 2.721 0.950 1.498
Cubist 1.739 0.969 0.980 2.483 0.956 0.976

Fig. 10  Relationship of meas-
ured and predicted AOp on the 
ensemble and empirical models

Fig. 11  Sensitivity analysis of the parameters
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R2 = 0.871, 0.872; and MAE = 4.101, 3.719, on the training 
and testing datasets, respectively). Among three ensemble 
models (RF, GBM, Cubist), the Cubist model was the most 
dominant model with an RMSE of 2.483, R2 of 0.956, and 
MAE of 0.976 on the testing database. Figure 10 shows the 
efficiency of the AOp predictive models in testing process.

Although the efficiency of the ensemble models is better 
than the empirical model in this study, however, the practi-
cal technique used only two input parameters (W and D) to 
estimate blast-induced AOp, whereas the ensemble models 
used nine input parameters for predicting the same objective. 
Therefore, a sensitivity analysis procedure was conducted to 
assess the effect of the inputs on the AOp predictive model 
(Tarantola et  al. 2007; Saltelli et  al. 2010). The results 
showed that W, S, T, RH, and D were the most influential 
parameters on the AOp predictive model, as illustrated in 
Fig. 11.

Conclusions and remarks

Based on the obtained results of this study, some conclusions 
and remarks are withdrawn as follows:

• Ensemble machine learning algorithms are good can-
didates for predicting blast-induced AOp than those of 
empirical methods, especially RF, GBM, and Cubist 
models. They should be considered to control the unde-
sirable effects of blasting in practical engineering.

• Cubist is a robust ensemble AI model for predicting AOp 
in this study. Its accuracy can ensure safety for the sur-
rounding environment. However, it should be reconsid-
ered in other locations/areas.

• RF and GBM are also good AI techniques for predict-
ing AOp. However, its performance seems not to satisfy. 
Therefore, they need to improve and further research.

• For predicting AOp, it is not only W and D, but also S, 
T, and RH are the important inputs for the development 
of the AOp predictive models. They should be carefully 
collected to ensure the accuracy level of the models.

Acknowledgements This research was supported by Hanoi University 
of Mining and Geology (HUMG), Hanoi, Vietnam; Duy Tan Univer-
sity, Da Nang, Vietnam; and the Center for Mining, Electro-Mechanical 
research of HUMG.

Compliance with ethical standards 

Conflict of interest Authors declare that they have no conflict of inter-
est

References

Alel MNA, Upom MRA, Abdullah RA, Abidin MHZ (2018) Opti-
mizing blasting’s air overpressure prediction model using swarm 
intelligence. In: Journal of Physics: Conference Series, vol 1. IOP 
Publishing, p 012046

AminShokravi A, Eskandar H, Derakhsh AM, Rad HN, Ghanadi A 
(2018) The potential application of particle swarm optimization 
algorithm for forecasting the air-overpressure induced by mine 
blasting. Eng Comput 34(2):277–285. https ://doi.org/10.1007/
s0036 6-017-0539-5

Amiri M, Amnieh HB, Hasanipanah M, Khanli LM (2016) A new com-
bination of artificial neural network and K-nearest neighbors mod-
els to predict blast-induced ground vibration and air-overpressure. 
Eng Comput 32(4):631–644

Armaghani DJ, Hajihassani M, Marto A, Faradonbeh RS, Mohamad 
ET (2015) Prediction of blast-induced air overpressure: a hybrid 
AI-based predictive model. Environ Monit Assess 187(11):666

Armaghani DJ, Hasanipanah M, Mohamad ET (2016) A combination 
of the ICA-ANN model to predict air-overpressure resulting 
from blasting. Eng Comput 32(1):155–171

Asteris PG, Nikoo M (2019) Artificial bee colony-based neural net-
work for the prediction of the fundamental period of infilled 
frame structures. Neural Comput Appl. https ://doi.org/10.1007/
s0052 1-018-03965 -1

Asteris P, Kolovos K, Douvika M, Roinos K (2016) Prediction of 
self-compacting concrete strength using artificial neural net-
works. Eur J Environ Civ Eng 20(sup1):s102–s122

Bach NV, Nam BX, An ND, Hung TK (2012) Determination of blast-
induced ground vibration for non-electric delay blasting (in 
Vietnamse). J SciTechnol Hanoi Univ Min Geol 38(02):25–28

Bernat K, Drzewiecki W (2015) A study of selected textural features 
usefulness for impervious surface coverage estimation using 
Landsat images. In: Image and signal processing for remote 
sensing XXI, 2015. International society for optics and photon-
ics, p 964327

Breiman L (2001) Random for Mach Learn 45(1):5–32
Bui XN, Nguyen H, Le HA, Bui HB, Do NH (2019a) Prediction of 

blast-induced air over-pressure in open-pit mine: assessment of 
different artificial intelligence techniques. Nat Resour Res. https 
://doi.org/10.1007/s1105 3-019-09461 -0

Bui X-N, Nguyen H, Le H-A, Bui H-B, Do N-H (2019b) Prediction 
of blast-induced air over-pressure in open-pit mine: assessment 
of different artificial intelligence techniques. Nat Res Res. https 
://doi.org/10.1007/s1105 3-019-09461 -0

Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen 
C-W, Khosravi K, Yang Y, Pham BT (2019) Assessment of 
advanced random forest and decision tree algorithms for mod-
eling rainfall-induced landslide susceptibility in the Izu-Oshima 
Volcanic Island, Japan. Sci Total Environ 662:332–346

Drzewiecki W (2016) Comparison of selected machine learning 
algorithms for sub-pixel imperviousness change assessment. In: 
Geodetic Congress (Geomatics), Baltic, 2016. IEEE, pp 67–72

Friedman J (1999) Greedy function approximation: A stochastic 
boosting machine. Department of Statistics Stanford University

Friedman JH (2001) Greedy function approximation: a gradient 
boosting machine. Ann Stat 29:1189–1232

Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data 
Anal 38(4):367–378

Gao W, Guirao JL, Basavanagoud B, Wu J (2018) Partial multi-
dividing ontology learning algorithm. Inf Sci 467:35–58

Gao W, Alqahtani AS, Mubarakali A, Mavaluru D, Khalafi S (2019) 
Developing an innovative soft computing scheme for prediction 
of air overpressure resulting from mine blasting using GMDH 

https://doi.org/10.1007/s00366-017-0539-5
https://doi.org/10.1007/s00366-017-0539-5
https://doi.org/10.1007/s00521-018-03965-1
https://doi.org/10.1007/s00521-018-03965-1
https://doi.org/10.1007/s11053-019-09461-0
https://doi.org/10.1007/s11053-019-09461-0
https://doi.org/10.1007/s11053-019-09461-0
https://doi.org/10.1007/s11053-019-09461-0


335Acta Geophysica (2020) 68:325–336 

1 3

optimized by GA. Eng Comput. https ://doi.org/10.1007/s0036 
6-019-00720 -5

Hajihassani M, Armaghani DJ, Sohaei H, Mohamad ET, Marto A 
(2014) Prediction of airblast-overpressure induced by blasting 
using a hybrid artificial neural network and particle swarm opti-
mization. Appl Acoust 80:57–67

Hasanipanah M, Armaghani DJ, Khamesi H, Amnieh HB, Ghoraba S 
(2016) Several non-linear models in estimating air-overpressure 
resulting from mine blasting. Eng Comput 32(3):441–455

Hustrulid W (1999) Blasting principles for open-pit blasting: theo-
retical foundations. Balkema, Rotterdam

Jhanwar J, Cakraborty A, Anireddy H, Jethwa J (1999) Application 
of air decks in production blasting to improve fragmentation and 
economics of an open pit mine. Geotech Geol Eng 17(1):37–57

Khandelwal M, Kankar P (2011) Prediction of blast-induced air 
overpressure using support vector machine. Arab J Geosci 
4(3–4):427–433

Khandelwal M, Singh T (2005) Prediction of blast induced air over-
pressure in opencast mine. Noise Vib Worldw 36(2):7–16

Kuhn M, Weston S, Keefer C, Coulter N (2012) Cubist models for 
regression. R package Vignette R package version 00 18

Kuhn M, Weston S, Keefer C, Kuhn MM (2018) Package ‘Cubist’
Kuzu C, Fisne A, Ercelebi S (2009) Operational and geological param-

eters in the assessing blast induced airblast-overpressure in quar-
ries. Appl Acoust 70(3):404–411

Loder B (1985) National Association of Australian State Road Authori-
ties. In: Australian Workshop for Senior ASEAN Transport Offi-
cials, 1985, Canberra, 1987

Mahdiyar A, Marto A, Mirhosseinei SA (2018) Probabilistic air-over-
pressure simulation resulting from blasting operations. Environ 
Earth Sci 77(4):123

McKenzie C (1990) Quarry blast monitoring: technical and environ-
mental perspectives. Quarry Manag 17:23–24

Mohamad ET, Armaghani DJ, Hasanipanah M, Murlidhar BR, Alel 
MNA (2016) Estimation of air-overpressure produced by blast-
ing operation through a neuro-genetic technique. Environ Earth 
Sci 75(2):174

Montahaei M, Oskooi B (2014) Magnetotelluric inversion for azi-
muthally anisotropic resistivities employing artificial neural net-
works. Acta Geophys 62(1):12–43. https ://doi.org/10.2478/s1160 
0-013-0164-7

Naganna SR, Deka PC (2019) Artificial intelligence approaches for 
spatial modeling of streambed hydraulic conductivity. Acta Geo-
phys. https ://doi.org/10.1007/s1160 0-019-00283 -5

Nguyen H, Bui X-N (2018a) Feasibility of artificial neural network 
in predicting blast-induced air overpressure in open-pit mine. J 
Min Ind 01:60–66

Nguyen H, Bui X-N (2018b) Predicting blast-induced air overpressure: 
a robust artificial intelligence system based on artificial neural net-
works and random forest. Nat Resour Res. https ://doi.org/10.1007/
s1105 3-018-9424-1

Nguyen H, Bui X-N, Tran Q-H (2017) Prediction of blast-induced air 
overpressure in Deo Nai open-pit coal mine using Random Forest 
algorithm. J Min Ind 06:47–53

Nguyen H, Bui X-N, Tran Q-H, Le T-Q, Do N-H, Hoa LTT (2018a) 
Evaluating and predicting blast-induced ground vibration in open-
cast mine using ANN: a case study in Vietnam. SN Appl Sci 
1(1):125. https ://doi.org/10.1007/s4245 2-018-0136-2

Nguyen H, Bui XN, Bui HB, Mai NL (2018b) A comparative study 
of artificial neural networks in predicting blast-induced air-blast 
overpressure at Deo Nai open-pit coal mine, Vietnam. Neural 
Comput Appl. https ://doi.org/10.1007/s0052 1-018-3717-5

Nguyen H, Bui X-N, Tran Q-H, Moayedi H (2019a) Predicting blast-
induced peak particle velocity using BGAMs, ANN and SVM: a 
case study at the Nui Beo open-pit coal mine in Vietnam. Environ 
Earth Sci 78(15):479. https ://doi.org/10.1007/s1266 5-019-8491-x

Nguyen H, Bui X-N, Tran Q-H, Mai N-L (2019b) A new soft com-
puting model for estimating and controlling blast-produced 
ground vibration based on hierarchical K-means clustering and 
cubist algorithms. Appl Soft Comput 77:376–386. https ://doi.
org/10.1016/j.asoc.2019.01.042

Nguyen H, Moayedi H, Foong LK, Al Najjar HAH, Jusoh WAW, 
Rashid ASA, Jamali J (2019c) Optimizing ANN models with PSO 
for predicting short building seismic response. Eng Comput. https 
://doi.org/10.1007/s0036 6-019-00733 -0

Nguyen H, Drebenstedt C, Bui X-N, Bui DT (2019d) Prediction of 
blast-induced ground vibration in an open-pit mine by a novel 
hybrid model based on clustering and artificial neural network. 
Nat Resour Res. https ://doi.org/10.1007/s1105 3-019-09470 -z

Nguyen H, Bui X-N, Bui H-B, Cuong DT (2019e) Developing an 
XGBoost model to predict blast-induced peak particle velocity 
in an open-pit mine: a case study. Acta Geophys 67(2):477–490. 
https ://doi.org/10.1007/s1160 0-019-00268 -4

Nguyen H, Bui X-N, Moayedi H (2019f) A comparison of advanced 
computational models and experimental techniques in predicting 
blast-induced ground vibration in open-pit coal mine. Acta Geo-
phys. https ://doi.org/10.1007/s1160 0-019-00304 -3

Piasecki A, Jurasz J, Adamowski JF (2018) Forecasting surface water-
level fluctuations of a small glacial lake in Poland using a wavelet-
based artificial intelligence method. Acta Geophys 66(5):1093–
1107. https ://doi.org/10.1007/s1160 0-018-0183-5

Pierini JO, Lovallo M, Telesca L, Gómez EA (2013) Investigating pre-
diction performance of an artificial neural network and a numeri-
cal model of the tidal signal at Puerto Belgrano, Bahia Blanca 
Estuary (Argentina). Acta Geophys 61(6):1522–1537. https ://doi.
org/10.2478/s1160 0-012-0093-x

Quinlan JR (1992) Learning with continuous classes. In: 5th Australian 
joint conference on artificial intelligence. Singapore, pp 343–348

Quinlan R (2004) Data mining tools See5 and C5. 0
Rahmani Y, Farnood Ahmadi F (2018) Application of InSAR in 

measuring Earth’s surface deformation caused by groundwater 
extraction and modeling its behavior using time series analysis by 
artificial neural networks. Acta Geophys 66(5):1171–1184. https 
://doi.org/10.1007/s1160 0-018-0182-6

Rulequest (2016a) Data Mining with Cubist. https ://www.ruleq uest.
com/cubis t-win.html. Accessed 26 Feb 2019

Rulequest (2016b) Data Mining with Cubist. https ://www.ruleq uestc 
om/cubis t-info.html RuleQuest Research Pty Ltd.,St. Ives, NSW, 
Australia

Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S 
(2010) Variance based sensitivity analysis of model output Design 
and estimator for the total sensitivity index. Comput Phys Com-
mun 181(2):259–270

Shang Y, Nguyen H, Bui X-N, Tran Q-H, Moayedi H (2019) A novel 
artificial intelligence approach to predict blast-induced ground 
vibration in open-pit mines based on the firefly algorithm and 
artificial neural network. Nat Resour Res. https ://doi.org/10.1007/
s1105 3-019-09503 -7

Siskind DE, Stachura VJ, Stagg MS, Kopp JW (1980) Structure 
response and damage produced by airblast from surface mining. 
Citeseer

Tarantola S, Gatelli D, Kucherenko S, Mauntz W (2007) Estimating 
the approximation error when fixing unessential factors in global 
sensitivity analysis. Reliab Eng Syst Saf 92(7):957–960

Vigneau E, Courcoux P, Symoneaux R, Guérin L, Villière A (2018) 
Random forests: a machine learning methodology to highlight the 
volatile organic compounds involved in olfactory perception. Food 
Qual Prefer 68:135–145

Vinacomin (2015) Report on geological exploration of Coc Sau open 
pit coal mine, Quang Ninh, Vietnam (in Vietnamse-unpublished). 
VINACOMIN, Vietnam

Walter E (1990) Surface blast design. Prentice Hall, New Jersey

https://doi.org/10.1007/s00366-019-00720-5
https://doi.org/10.1007/s00366-019-00720-5
https://doi.org/10.2478/s11600-013-0164-7
https://doi.org/10.2478/s11600-013-0164-7
https://doi.org/10.1007/s11600-019-00283-5
https://doi.org/10.1007/s11053-018-9424-1
https://doi.org/10.1007/s11053-018-9424-1
https://doi.org/10.1007/s42452-018-0136-2
https://doi.org/10.1007/s00521-018-3717-5
https://doi.org/10.1007/s12665-019-8491-x
https://doi.org/10.1016/j.asoc.2019.01.042
https://doi.org/10.1016/j.asoc.2019.01.042
https://doi.org/10.1007/s00366-019-00733-0
https://doi.org/10.1007/s00366-019-00733-0
https://doi.org/10.1007/s11053-019-09470-z
https://doi.org/10.1007/s11600-019-00268-4
https://doi.org/10.1007/s11600-019-00304-3
https://doi.org/10.1007/s11600-018-0183-5
https://doi.org/10.2478/s11600-012-0093-x
https://doi.org/10.2478/s11600-012-0093-x
https://doi.org/10.1007/s11600-018-0182-6
https://doi.org/10.1007/s11600-018-0182-6
https://www.rulequest.com/cubist-win.html
https://www.rulequest.com/cubist-win.html
https://www.rulequestcom/cubist-info.html
https://www.rulequestcom/cubist-info.html
https://doi.org/10.1007/s11053-019-09503-7
https://doi.org/10.1007/s11053-019-09503-7


336 Acta Geophysica (2020) 68:325–336

1 3

Wiszniowski J (2016) Applying the general regression neural net-
work to ground motion prediction equations of induced events 
in the Legnica-Głogów copper district in Poland. Acta Geophys 
64(6):2430–2448. https ://doi.org/10.1515/acgeo -2016-0104

Zhang X, Nguyen H, Bui X-N, Tran Q-H, Nguyen D-A, Bui DT, 
Moayedi H (2019) Novel soft computing model for predicting 
blast-induced ground vibration in open-pit mines based on particle 
swarm optimization and XGBoost. Nat Resour Res. https ://doi.
org/10.1007/s1105 3-019-09492 -7

Zhou J, Li E, Yang S, Wang M, Shi X, Yao S, Mitri HS (2019a) Slope 
stability prediction for circular mode failure using gradient boost-
ing machine approach based on an updated database of case his-
tories. Saf Sci 118:505–518

Zhou J, Nekouie A, Arslan CA, Pham BT, Hasanipanah M (2019b) 
Novel approach for forecasting the blast-induced AOp using a 
hybrid fuzzy system and firefly algorithm. Eng Comput. https ://
doi.org/10.1007/s0036 6-019-00725 -0

https://doi.org/10.1515/acgeo-2016-0104
https://doi.org/10.1007/s11053-019-09492-7
https://doi.org/10.1007/s11053-019-09492-7
https://doi.org/10.1007/s00366-019-00725-0
https://doi.org/10.1007/s00366-019-00725-0


Vol.:(0123456789)1 3

Acta Geophysica (2020) 68:337–355 
https://doi.org/10.1007/s11600-020-00418-z

RESEARCH ARTICLE - SOLID EARTH SCIENCES

Earthquake source dynamics and kinematics of the Eastern Indian 
Shield and adjoining regions

Rashmi Singh1 · Prosanta Kumar Khan1 · A. P. Singh2,3

Received: 22 September 2019 / Accepted: 3 March 2020 / Published online: 13 March 2020 
© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2020

Abstract
The Eastern Indian Shield (EIS) consists of two cratonic nuclei, namely Singhbhum craton and Chhotanagpur Granitic 
Gneissic terrain. This area contains several crisscross faults, lineaments, shear zones, numerous hot springs and three major 
rivers (e.g., Ganga, Brahmaputra and Damodar). The area is regionally covered by 7 seismic stations and jointly recorded 
16 events from the study area, and less noisy waveforms of 4 events were used for focal mechanism analysis using the Cut 
and Paste method. The focal parameters of these 4 events were compiled with results of 8 events computed by different 
workers for the study area. To understand the detailed tectonics, focal mechanisms of 21 events for the Himalayan segment 
were taken from CMT Harvard catalog of duration 1976–2017. Spatial variations of operative stress fields for major tec-
tonic domains were analyzed in the present study based on stress inversion of focal mechanism parameters. We observed 
strike-slip-dominated movements in the EIS, which changes partially into extension in the northeast part between the Ganga 
and Brahmaputra Rivers. Thrust-dominated movements evidenced by focal mechanisms and the pure compression in the 
western segment of the Himalaya in the north might be promoting shear movements in the EIS and adjoining regions. The 
pure strike-slip in the eastern segment of the Himalaya and its deeper level account for lateral shearing and eastward move-
ments of different tectonic blocks. The normal faulting earthquakes in the northeast part might be indicating stretching in 
the basement because of convergence of Indian lithosphere beneath the Myanmar plate.

Keywords Seismicity · Focal mechanism · Cut and Paste Method · Stress inversion · Eastern Indian Shield

Introduction

Cratons are usually composed of Precambrian metamor-
phic basements, which exhibit variable graded crystalline 
rocks of ages ranging from 3.6 to 2.6 Ga and account tec-
tonic stability over prolonged geological period (Mukho-
padhyay et al. 2008; Acharyya et al. 2010a, b; Tait et al. 
2011; Mazumder et al. 2012). Cratons are evidenced with 
folded structures of variable dimensions, occasionally 
interlinked by sutures or shear zones documenting mutual 

lateral movements of crustal blocks (Naqvi 2005). The pre-
sent study region consists of two cratonic blocks, namely 
Singhbhum and Chhotanagpur, converged along the Sing-
hbhum mobile belt during the Archean times (Sarkar 1982). 
The region is bounded by the Gondwana formations on its 
western side, Eastern Ghats mobile belt, Mahanadi fault and 
Ranipathar shear zone on its southern side, the Himalayan 
Frontal Thrust (HFT) in the northern side and the Bengal 
Basin in the eastern side (Fig. 1). Northern side of the study 
area comprises NE–SW striking major crustal discontinui-
ties such as West Patna Fault (WPF), East Patna Fault (EPF) 
and Munger–Saharsa Ridge Fault (MSRF), orthogonally 
transecting the Lower Himalaya (Valdiya 1976; Dasgupta 
et al. 1987). These faults are apparently oriented along the 
operative compressive stress evolved by the north-directed 
migration of the Indian Plate against the Asian Plate and 
are evidenced with strike-slip-dominated Holocene move-
ments (Valdiya 1976; Sahu et al. 2010). A NW–SE fast 
axis of anisotropy was found to the north of the study area 
and noted to be orthogonal to the convergence direction of 
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the Indian plate and accounts for diversity in the Himala-
yan region (Singh el al. 2007). The study region contains 
a large number of drainage systems along with three major 
rivers, namely Damodar, Ganga and Brahmaputra. Ganga 
River running from west to east along the Himalayan Foot-
hills passed the 87° E, turned toward south near the Rajma-
hal Trap, and finally merges with the Bay of Bengal. The 

River Brahmaputra also meets the Bengal basin, after turn-
ing toward south around the same area happened with the 
Ganga River (Fig. 1). Large numbers of north–south trend-
ing strike-slip marginal faults are also identified parallel to 
the flow of these two great rivers (Fig. 1). The changes in 
natural downstream flow of these river systems are found 
to be guided by the tilting of different faults bound blocks 

Fig. 1  Map on the left illustrates the tectonic setup and distribution 
of historical seismicity of the study area. Location of the study area 
is shown by rectangular block on the right top of the map (after Khan 
et al. 2015). Red and blue stars represent historical damaging earth-
quakes (Table 1). The size of stars varies according to the magnitude 
of earthquakes. Location of broadband seismic stations (blue trian-
gles) and 16 events (yellow stars) jointly recorded by IIT(ISM) Dhan-
bad and IMD (Table  2). Black solid lines represent the lineaments, 
black dashed lines show the faults, and red dashed lines represent the 

shear zones. Rivers are shown by blue lines. MSRF Munger–Saharsa 
Ridge Fault, MSRMF Munger–Saharsa Ridge Marginal Fault, GKGF: 
Garhmayna–Khandaghosh Fault, SBF Sainthia Bahmani Fault, MKF: 
Malda–Kishanganj Fault, JGF Jangipur–Gaibandha Fault, KNF Kati-
har–Nilphamari Fault, RPSZ Ranipathar shear zone, SSZ Singhbhum 
shear zone, NPSZ North Purulia shear zone, SPSZ South Purulia 
shear zone, MFT Main Frontal Thrust, MBT Main Boundary Thrust, 
MCT Main Central Thrust
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at its southward course of migration (Mohindra et al. 1992; 
Peakall et al. 2000; Sahu et al. 2010).

Occasional incidences of great destructive earth-
quakes, for example 1833 Nepal–Bihar (ML 7.6), 1934 
north Bihar–Nepal (MW 8.1), 1988 north Bihar (MW 6.8), 
2011 Sikkim earthquake (MW 6.9) and 2015 Nepal–Bihar 
earthquake (MW 7.9), invariably account for occasional 
stress accumulation and subsequent amplification near the 
Nepal–Bihar–Sikkim border of India (Ansari and Khan 
2014; Khan et al. 2017 and references therein). The Eastern 
Indian Shield, located to the south of this Nepal–Bihar–Sik-
kim border, experienced a number of moderate magnitude 
earthquakes such as 1811 Calcutta (5.0), 1842 Bengal 
(5.7), 1868 Manbhum (M 5.7), 1868 Hazaribagh (M 5.0), 
1963 Singhbhum (M 5.2), 1964 Midnapore (5.5) and 1969 
Bankura (M 5.7) (Kayal et al. 2009; Chandra 1977; Gupta 
et al. 2014; Rastogi 2016). Three moderate-size earthquakes 
such as 1979 (Mw 5.0), 2006 (Mw 4.7) and 2015 (Mw 5.1) 
were also reported from this area (Global CMT Catalog) 
(Fig. 1; Table 1). Incidentally, the 1979 earthquake was 
associated with MSRF. Normal faulting kinematics was 
also noted on its eastern side (Gupta et al. 2014), while on 
the western side of this fault, both thrust and strike-slip-
dominated movements are apparent. The 1988 earthquake 
was located near the EPF which shows strike-slip move-
ment (Ansari and Khan 2014; Dasgupta et al. 2013), and 
the 2011 Sikkim earthquake also showed similar movement 
along the Tista lineament (Dasgupta et al. 2013). Major 
damaging earthquakes (e.g., 1833 Nepal–Bihar, 1934 north 
Bihar–Nepal, 1988 north Bihar, 2011 Sikkim, 2015 Nepal 
earthquake) were found to be concentrated to the north of 
the study area along the Himalayan belt.

Other several strike-slip-dominated northward striking 
faults like Sainthia–Bahmani, Malda–Kishanganj, Pingla, 
Garhmayna–Khandaghosh and Rajmahal are passing 
along the western margin of the Ganga Basin toward its 

downstream, and few are likely continued up to the Himala-
yan Foothills (Godin and Harris 2014). The NNE-oriented 
gravity high identified in the study region (Chandra et al. 
1993; Godin and Harris 2014), the downwarping of the base-
ment caused by overriding of the Myanmar micro-plate (Roy 
and Chatterjee 2015) toward eastern margin of the study 
area (Sengupta 1966), the basement upliftment around the 
Rajmahal Trap, and the strike-slip-dominated movements 
along the Dauki faults facilitated the turning of the eastward 
moving Ganga River and the westward moving Brahmaputra 
River into the southward direction (Godin and Harris 2014). 
Anisotropic study (Singh et al. 2007) noted a distinct change 
in the directions of fast axes orientation at 88° E, near the 
area coinciding with the continuation of north–south trend-
ing marginal strike-slip fault (Fig. 1). Northward Holocene 
migration, accommodation of the Indian lithosphere and the 
concurrent intense southward thrusting along the crustal-
scale discontinuities in the Himalayan Foothills facilitated 
backpropagation of compressive stress field right within the 
Indian continental interior (Aggarwal et al. 2016; Khan et al. 
2014, 2016). These deformations were identified in the Cen-
tral Indian Basin and genetically linked with the deformation 
of the Himalayas (Khan et al. 2018). The deformation in 
the Himalaya toward north and the basement deformation 
toward east beneath the lower Gangetic Basin apparently 
caused by the subduction dynamics along the Myanmar mar-
gin transformed the study area into spectacular one in view 
of tectonic setting and motivated us for its in-depth probing. 
The present study involves seismicity, focal mechanisms and 
stress parameters compiled as well as computed using broad-
band waveform recorded by stations located in the Eastern 
Indian Shield and adjoining regions. The source parameters 
were used for finding the predominant stress fields operative 
at different tectonic domains extended from the Bay of Ben-
gal in the southern side to the Himalaya in the northern side.

Seismotectonics of the Eastern Indian Shield

The Indian continent was evolved and restructured in the 
period from Late Triassic to Early Jurassic (~ 200  Ma), 
when the Gondwana Land was separated from Pangaea, 
subsequently the East Gondowana from West Gondowana 
(Dietz and Holden 1970; Biswas 1987). Indian plate started 
northward journey and was resisted against the southern 
margin of the Asian plate, causing submergence evolving 
the active Himalayan orogeny. Further, separation of Indo-
Myanmar plate from Australian plate and the convergence 
of the Indian plate in the eastern part thrived the subduction 
of the Indian plate under the Asian plate (Biswas 2008). 
As a result, Bay of Bengal started to converge and the Ara-
bian Sea started to spread. It is also reported that the Indian 
plate is continuously experiencing north–northeasterly ridge 

Table 1  List of historical damaging earthquakes of magnitude ≥ 5.0 
occurred in the Eastern Indian Shield Region

OLD Oldham, USGS United States Geological Survey, RO Rothe, 
IMD India Meteorological Department (after Bapat et al. 1983)

Sl. no Date Lat (°N) Long (°E) Mag References

1 01-02-1811 22.6 88.4 5.0 OLD
2 21-05-1842 25.0 87.0 5.7 OLD
3 16-02-1861 22.6 88.4 5.7 OLD
4 23-05-1866 25.0 87.0 6.3 OLD
5 31-07-1868 24.0 85.4 5.0 OLD
6 30-09-1868 24.0 85.0 5.5 OLD
7 15-01-1934 26.84 86.75 8.1 USGS
8 08-05-1963 21.7 84.9 5.2 RO
9 03-05-1969 23.0 86.6 5.7 IMD
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push force (Biswas 2008) and easterly slab pull force caus-
ing it to move northward. Northward movement caused a 
compressive stress operative within all over the plate result-
ing tectonic activities in almost all sedimentary basins. The 
dynamic nature of the Indian continent can be understood 
by the mutual interactions of the Indian, Asian and Burma 
plates.

As a consequence of convergence of the Indian plate, a 
~ 1000 km laterally extended Ganges foredeep basin was 
evolved on the downwarp Indian lithosphere during the Early 
to Middle Tertiary period (Dewey and Bird 1970; DeMets 
et al. 1994) and successive tectonic events (Gansser 1964; 
Lyon-Caen and Molnar 1983; Thakur 1992; Khan et al. 
2010). The Ganga Basin is segmented into different tec-
tonic domains demarcated and separated by different faults 
and highs. The southward extension of the Ganga Plains 
between the East Patna Fault (EPF) and the West Patna 
Fault (WPF) experienced stretching and channel migration 
induced by tilting of blocks (Alam et al. 2003). Ganga River 
has migrated in the down-tilting direction and enters into 
the thickened Early Cretaceous–Holocene sediment of the 
Bengal Basin. The Ganga River in this area is controlled by 
different tectonic features on all sides, except in the southern 
part (Roy and Chatterjee 2015). The western Archean shield 
plunges at ~ 87° E longitude and prolongs further toward east 
below the dense covers of recent sediment (Sengupta 1972). 
A dense outcrop of horizontal to sub-horizontal basaltic lava 
flow of Late Jurassic to Early Cretaceous times casing over 
4000 km2 (i.e., Rajmahal hills) is found in the western por-
tion of the Bengal Basin (Sengupta 1966). The region has 
been acknowledged by numerous landforms, namely plateau, 
hills, uplands, plains, several regional lineaments and active 

drainage system in the form of rivers. Those are the Ganga, 
Son, Ghaghra, Tista, Brahmaputra, Damodar, Subarnarekha 
and Mahanadi rivers; all are dipping toward east or southeast 
directions. Along with them, a large number of hot springs 
are also found in the study area.

Data and methodology

Earthquake data

Eastern Indian Shield is covered by 7 seismic stations 
at Gangtok (GTK), Siliguri (SILIG), Calcutta (CAL), 
Sahibganj (SAHIB), Bhubaneshwar (BWNR) and Bokaro 
(BOKR). These are maintained by India Meteorological 
Department (IMD), Government of India, New Delhi, and 
other one by Indian Institute of Technology (ISM), Dhanbad 
(Fig. 1). Earthquake waveform data of 16 events (Table 2) 
have been collected from IMD and IIT(ISM) catalogs for the 
period from January 2008 to May 2017. Finally, waveforms 
of 4 events (Table 3) recorded at IIT(ISM) Dhanbad, GTK, 
SILIG, CAL, BWNR and BOKR with hypocentral distance 
between 144 and 380 km were found excellent quality. These 
waveform data were used for analysis of focal mechanisms 
based on correlation coefficient between synthetic and 
observed waveforms. The selected waveforms have more 
than 70% correlation coefficients for long-period body wave 
(Pnl) and 75% for surface waves. We follow the criteria given 
by Zhu and Helmberger (1996), D’Amico et al. (2011), Tan 
et al. (2006) and Singh et al. (2016) for determining the best 
focal mechanism solutions. Cut-and-paste (CAP) method 
(Zhao and Helmberger 1994; Zhu and Helmberger 1996) 

Table 2  List of events recorded by IIT(ISM) and IMD seismic stations

Sl. no Date Origin time hr:min:sec Lat. (°N) Long. (°E) Mag. (MW) Depth (km) Recording seismic stations

1 21-06-2017 18:36:11 25.7 87.1 4.5 50 BOKR, CAL, IIT(ISM), GTK, SAHIB, BWNR
2 29-05-2017 14:43:17 26.7 88.8 3.7 30 BOKR, CAL, GTK, BWNR, SILIG
3 17-05-2016 10:12:32 26.2 88.8 3.5 08 BOKR, GTK, IIT(ISM)
4 25-04-2015 08:20:46 26.63 84.60 4.7 10 BOKR, SILIG, IIT(ISM), GTK
5 14-02-2015 17:06:51 26.7 87.6 3.8 10 BWNR, BOKR, GTK
6 01-06-2013 13:28:55.1 22.02 88.54 4.0 16.5 BOKR, GTK, IIT(ISM)
7 27-03-2012 23:40:12.6 26.11 87.78 4.9 27.8 BOKR, SILIG, GTK, IIT(ISM)
8 25-02-2012 08:45:57.7 26.36 88.93 3.8 19.2 BOKR, SHL, GTK, IIT(ISM)
9 05-11-2011 02:32:12.5 21.50 85.56 3.9 21.2 BWNR, BOKR, SILIG, GTK, IIT(ISM)
10 09-08-2011 03:33:46.8 22.80 86.70 3.5 10.0 BOKR, SHL, GTK, IIT(ISM)
11 28-07-2011 17:53:38.3 25.23 88.64 4.5 15.0 BOKR, SILIG, GTK, IIT(ISM)
12 26-12-2010 05:47:16.5 24.89 85.79 3.1 15.0 BOKR, SHL, IIT(ISM)
13 26-03-2009 04:44:13.0 22.48 85.77 4.2 10.0 BWNR, CAL, IIT(ISM)
14 08-11-2008 16:51:38.5 23.59 87.34 4.2 10.0 BWNR, CAL, IIT(ISM), BOK, SHL
15 06-10-2008 06:15:59.8 21.98 86.47 3.5 10.0 BWNR, CAL, BOKR, IIT(ISM)
16 06-06-2008 21:16:33.7 24.70 84.98 4.1 10.6 IIT(ISM), BOK, CAL
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has been applied for waveform inversion using 1D velocity 
model (Kayal et al. 2011). Seismograms were decomposed, 
and amplitude information was extracted over different time 
windows of body and surface waves (Fig. 2a) to increase the 
stability and resolution of the inversion process (Zhu and 
Helmberger 1996).

Focal mechanism

The CAP method has been used in the present analysis for 
computing focal parameters. This method is suitable for 
small- to large-magnitude earthquakes and accounts for 
errors in the location of the event vis-à-vis Green’s function 
(D’Amico et al. 2014). Inversion of the whole waveform 
is difficult as it depends on various factors like velocity 
model, event location, azimuthal coverage of stations and the 
Green’s function, which is affected by the strongest portion 
of the waveform (i.e., surface wave, Tan et al. 2006). The 
CAP method takes account of two decomposed segments, 
i.e., long-period body wave (Pnl) and surface wave (Zhu and 
Helmberger 1996; D’Amico et al. 2011; Tan et al. 2006). 
It weights differently in the misfit calculation because the 
surface waves are directed by shallow crustal divergence and 
the Pnl waves are apparently influenced by the mean crus-
tal velocity structure, and the amplitudes decay differently 
with distance (Zhu and Helmberger 1996). Thus, the CAP 
method provides a more efficient and stable inversion when 
azimuthal coverage around the source is poor (D’Amico et al 
2013, 2014).

Recorded waveform data have three factors: (a) source 
factor, (b) Green’s function, and (c) instrument response. 
Source factor is retrieved by deconvolving the instrument 
response, while Green’s functions are retrieved from the 
recorded waveform data. The instrumental response-cor-
rected three component waveforms are cut into 5 different 
seismic phase windows (i.e., vertical and radial compo-
nents of long-period primary wave (Pnl), vertical and radial 
components of Rayleigh wave and transverse component 
of Love wave), which help to increase the resolution and 
stability of the solutions. The CAP method allows a selec-
tive time shift among synthetic and observe waveforms to 
overcome the inaccuracy in the 1D model applied for calcu-
lation of Green’s functions, locations and origin time of the 
earthquakes. It makes the final results of focal mechanism 
solutions less sensitive to the 1D velocity model, Green’s 
functions and earthquake location errors. Positive time shift 
implies that the model estimation is too quick, so the syn-
thetics are to be late to match the observed trace and vice 
versa. In the present computation, we have taken instrumen-
tal response-corrected SAC format waveforms, processed 
with the help of header information (e.g., location of events 
and stations, epicentral distances and azimuth). Time win-
dows have been selected as 25 s and 60 s for Pnl and surface 

waves, and the cutoff band-pass frequencies of 0.05–0.3 Hz 
for Pnl and 0.02–0.1 Hz for surface waves (Fig. 2a) (Tan 
et al. 2006; Zhu and Helmberger 1996; D’Amico et al. 2011). 
These windows were extracted automatically according to P- 
and S-wave arrival times based upon the information stored 
in the Green’s function file (Zhao et al. 2013). A weight-
ing factor of 2 is taken for the P-wave comparative to the 
S-wave for the waveform matching. We have used distant 
scaling factors of 1–0.5 for P- and S-waves (Zhu and Helm-
berger 1996). There are three reasons to select the frequency 
ranges: First one is the removal of long-period offset gener-
ated from long-period microtremors and the integrated pro-
cess used for velocity to displacement conversion; second 
one is to avoid small-scale effect due to inhomogeneous 
structures of the crust; and the third one is for computing 
accurate scalar moment (Lv et al. 2013).

Green’s functions are computed by applying the Haskell 
propagator matrix (fk) method (Zhu and Rivera 2002). We 
have taken here an appropriate 1D velocity model for the 
study region (Kayal et al. 2011). We calculate the Green’s 
function for all epicenter–station distances and depth range 
from 1.0 to 10.0 km, which depends on the double couple 
type, epicentral distance and focal depth. During computa-
tion of the source mechanism (Fig. 2b), the station location 
and epicenter are fixed, and a grid search is performed at a 
depth interval of 1 km and 6° of angle interval of strike, dip 
and rake to determine the finest source parameters and focal 
mechanism with minimum residuals between synthetic and 
recorded waveforms. Figure 2c shows a comparison between 
observed and synthetic waveforms, and a fairly good fitting 
is obtained. A mutual time lag is found between synthetic 
and recorded waveform due to error in epicentral distances 
vis-à-vis Green’s functions, and the error is taken care using 
waveform cross-correlation. It is clear that the inversion 
variance reaches its minimal value at a focal depth of 15 km 
(Fig. 2d). The best focal depth and the best mechanism solu-
tion are obtained by minimizing the misfit function of the 

Fig. 2  Plots in a indicate a complete time series of an event of mag-
nitude Mw 4.5 occurred on July 28, 2011. Various phases are also 
clearly marked on the time series. The first trace for all three stations 
shows unfiltered time series of the event recorded on Z-components 
with marking of P-phase. The second trace for all the stations is fil-
tered time series used for clear marking of Pnl, and the third trace is 
used for clear marking of Rayleigh phase on vertical and radial com-
ponents, respectively. Tangential component is used for marking Love 
phase. b Optimal focal mechanism solution (beach ball) c Compari-
son between synthetic (red traces) and observed (black traces) wave-
forms for finding optimal solution. Radial and vertical components of 
P- and S-waves are denoted by Pr, Pz and Sr, Sz, respectively. Two 
numerical values are written in each component trace: The top one is 
the time shift in seconds and the bottom one indicates the correlation 
coefficient. Epicentral distances in km are written below the station 
name. d Plot for waveform misfit variation with source depth for opti-
mal focal mechanism solution. Moment magnitude of earthquake is 
written on the top of each beach ball

▸
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inversion (Figs. 2, 3; Table 3). Synthetic and recorded seis-
mograms of each phase window of P- and S-waves over dif-
ferent frequency bands are independently evaluated for best 
fit. This method uses parting of P- and S-waves to enhance 
the impact of P-wave as well as the resolution of source 
parameter, mainly source depth. This method improves the 
result of relatively large-amplitude arrivals. After comput-
ing the focal mechanism of 4 best recorded events (Fig. 4), 
the scalar moment  M0 is computed using least-square fit 
between amplitudes of the synthetics and records of entire 
stations.

Stress inversion

Totally, 34 events (Fig. 5) were considered for stress inver-
sion analysis using the STRESSINVERSE code of Václav 
Vavryčuk (2014). STRESSINVERSE procedure of Václav 
Vavryčuk (2014) is a modified method of Micheal (1984). 
Although Micheal method is quite fast and reasonably accu-
rate for the computation of the principal stresses, it does not 
give accurate shape ratio if the nodal and auxiliary planes are 
not properly selected. Instead, the stress inversion method 
of Václav Vavryčuk (2014) takes care of the selection of the 
fault parameters using joint inversion of stress and nodal 
plane parameters.

Of the 34 events, focal mechanism solutions of 12 events 
of magnitude MW ≥ 2.5, are selected for Zone I and lie 
between 20° and 26° N (Figs. 1, 4; Table 3). Of the 12 focal 
mechanisms, 4 were computed under the present study using 
the CAP method, 1 has been taken from CMT Harvard cata-
log, 2 from Kayal et al. (2009), while the other 5 have been 

taken from Biswas and Mandal (2017). In addition, focal 
mechanism parameters of 8 events of Zone I, lying in the 
depth range of 0–20 km, were analyzed through stress inver-
sion to find the optimum stress field prevailing in the region. 
Remaining 21 focal mechanism solutions of earthquakes 
of magnitude MW > 4.5 that occurred during 1976–2017 
between latitudes 26° and 28° N in the Himalayan foot-
hills have been compiled from the CMT Harvard catalog 
(Table 5) and demarcated by Zone II (Fig. 1). Based on the 
diversity of focal mechanisms, Zone II has been divided 
over two depth ranges: 8 events for shallow part (0–20 km) 
and 13 events for deeper part (> 20 km). For high-resolution 
stress inversion analysis, Zone II has been further divided 
into Zones II(a) and II(b) at longitude 87.5° E (Fig. 1) based 
on the tectonics of the area (Valdiya 1976; Dasgupta et al. 
1987; Singh et al. 2007; Sahu et al. 2010). Solutions of 8 
events, occurred up to a depth of 30 km, were considered 
for Zone II(a) to compute the optimum inverted solution. 
To avoid scattered solution of inverted stress parameters for 
the deeper events, 4 events for the shallower (up to 30 km 
depth) part of Zone II(b) were considered for optimum stress 
inverted solution.

Strike of the fault planes is corrected by using the fault 
variability constraint, and stress is computed in each itera-
tion giving an overall friction on the fault. We compute three 
principal stress variables (σ1, σ2 and σ3) and shape ratio (R) 
with the help of stress inversion analysis (Fig. 6; Table 6). 
The deviations of the maximum compressive stress direc-
tions for respective zones have been computed (Fig. 6). 
The stress tensors were categorized into extensional strike-
slip (ESS), pure strike-slip (PSS), pure compression (PC), 
radial compression (RC), compressional strike-slip (CSS) 
and semi-compressional strike-slip (SCSS) in a manner of 
relative magnitude of the intermediate (σ2) axis (Table 6) 
and shape ratio R (Delvaux et al. 1995; Khan et al. 2019; 
Shamim et al. 2019).

Results

Focal mechanism

We estimate fault plane solutions of 4 best recorded events 
(event nos. 4, 5, 6, 7, Table 3) out of 16 events (Table 2) for 
understanding the seismoteconics of the area (Fig. 4). The 
strike, dip and rake of nodal plane 1 for event 4 of magnitude 
Mw = 4.1 were 130°, 82°, and − 180°, whereas 40°, 90° and 
− 8° for nodal plane 2 (Fig. 4; Table 3). It was occurred on 
June 6, 2008, near the Indo-Gangetic Plain and associated 
a throw on a vertical dipping plane and was dominated by 
strike-slip motion. The azimuth and plunge of P-axis were 
310° and 6°, and the T-axis was oriented horizontally along 

Fig. 2  (continued)



345Acta Geophysica (2020) 68:337–355 

1 3

Fig. 3  Plots indicate the methodology of computation of focal mecha-
nism. a Optimal focal mechanism solution (beach ball) for March 
26, 2009, Mw 4.2 earthquake. b Comparison between synthetic 
(red traces) and observed (black traces) waveforms for finding opti-
mal solution. Radial and vertical components of P- and S-waves are 
denoted by Pr, Pz and Sr, Sz, respectively. Two numerical values are 

written in each component trace: The top one is the time shift in sec-
onds, and the bottom one shows the correlation coefficient. Epicentral 
distance in km is written below the station name. c Plot for waveform 
misfit variation with source depth for optimal focal mechanism solu-
tion. Moment magnitude of earthquake is written on the top of each 
beach ball
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E–W direction (Table 4). Event 5 of magnitude Mw = 4.2 
occurred on March 26, 2009, in the area near Singhbhum 
shear zone. The strike, dip and rake of nodal planes 1 and 2 
were 51°, 57° and 10° and 315°, 81° and 146°, respectively 
(Fig. 3; Table 3). Beach ball plot of this event shows a strike-
slip-dominated movement (Fig. 4). Orientation of P-axis is 
found with an azimuth 220° and a plunge of 16°, while an 
azimuth of 268° and a plunge of 29° for T-axis. This indi-
cates nearly horizontal compression along NE–SW direc-
tion and predominant tension along E–W direction (Table 4). 
Event 6 of magnitude MW = 4.5 occurred on July 28, 2011, 
right within the zone between the southward turning of 
the Ganga and Brahmaputra Rivers. Strike, dip and rake 
are 346°, 35° and − 90° and 166°, 55° and − 90° for nodal 
planes 1 and 2 (Fig. 4; Table 3), and the source was domi-
nated by normal faulting with P-axis along ~ NE–SW (azi-
muth = 231° and plunge = 80°) and T-axis was acting along 
~ E–W directions plunging horizontally (azimuth = 256° 

and plunge = 10°). Event 7 of magnitude MW = 3.9 occurred 
on November 5, 2011, at latitude 21.50°N and longitude 
85.56°E. Fault plane solution of this event illustrates strike-
slip-dominated movement along NW–SE direction. Strike, 
dip and rake are 311°, 77° and − 172° and 220°, 83° and 
− 13° for nodal planes 1 and 2 (Fig. 4; Table 3). P-axis was 
predominantly acting along SE–NW direction and plunging 
almost horizontally, and the T-axis was performing along 
E–W direction with a plunge of 31° (Table 4).

Stress inversion

Computed focal parameters of 4 events were compiled 
with focal parameters of other 8 events taken from Kayal 
et  al. (2009), Biswas and Mandal (2017) and Harvard 
CMT catalog. Most of these events were dominated by 
strike-slip movements and grouped in Zone I. The maxi-
mum compressive stress axis (σ1) was found to be aligned 

Fig. 4  Best computed focal 
mechanisms (blue-colored 
beach ball) for Eastern Indian 
Shield Region using the CAP 
method. Yellow stars represent 
the events precisely located 
by IMD and IIT(ISM) seismic 
stations, and red beach ball for 
earthquake source mechanisms 
that were compiled from Biswas 
and Mandal (2017) and Kayal 
et al. (2009)
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almost along N–S having a plunge of 36°, whereas the 
minimum compressive stress axis (σ3) was striking along 
E–W direction and plunging horizontally. However, the 
intermediate stress (σ2) was operative along N–S having 
a plunge of 53°. The shape ratio and frictional coefficient 
were found to be 0.21 and 0.45 for the Zone I. The strike, 
dip and rake of the jointly derived fault plane are 155°, 76° 
and − 145°, respectively (Fig. 6a; Table 6). Zone I is fur-
ther subdivided into shallower (depth ≤ 20 km) and deeper 
(depth > 20 km) parts, which contains 8 and 4 events, 

respectively. It was found that the σ1 was acting along N–S 
direction with a plunge of 2.6°, whereas σ3 was directing 
along E–W having a plunge of 5° for the shallower part, 
while σ2 is dipping steeply with an azimuth of 118°. The 
computed shape ratio and frictional coefficient are 0.12 
and 0.40, respectively (Fig. 6b; Table 6). The strike, dip 
and rake of the derived focal plane are 327°, 87° and 174°.

Zone II is passing across the Himalayan Foothills and 
Lower Himalaya. In-depth investigation has been carried out 
to find the genetic linkage between the strike-slip-dominated 

Fig. 5  Seismicity and source 
mechanisms illustrate the 
detailed tectonics of the study 
area and adjacent regions
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movement operative to the south of Zone II and the evolv-
ing tectonics of the Nepal–Bihar–Sikkim–Darjeeling segment 
of the Himalayan Belt. First, the stress inversion of 21 focal 
mechanisms of events occurring in Zone II has been carried 
out, and it is found that the σ1 is oriented along an azimuth 
of 190° with a plunge of 29°, whereas the σ3 is acting nearly 
horizontally along E–W side (Fig. 6c; Table 6), while σ2 is 
operative at an azimuth of 339° with a plunge of 56°. The 
computed shape ratio is found to be 0.81, and the overall fric-
tion is 0.4. The derived strike, dip and rake are found to be 
333°, 86° and − 146°, respectively (Fig. 6c; Table 6). Zone 
II is further subdivided into two depth ranges: Shallower part 
containing 8 events lies at ≤ 20 km, and deeper part containing 
13 events lies at depth > 20 km. The azimuth of the predomi-
nant direction of σ1 is 193° with a plunge of 32°, whereas the 
σ3 is operating at an azimuth of 346° with a plunge of 54° for 
the shallower part. The σ2 is acting along E–W horizontally. 
The shape ratio and optimum frictional coefficient are 0.88 and 
0.5, respectively. The strike, dip and rake of the derived fault 
plane are 89°, 66° and 75°, respectively (Fig. 6d; Table 6). 
Joint stress inversion of 13 deeper events of Zone II shows that 
σ1 is dipping at 27° and striking along NNE–SSW direction, 
whereas σ2 is acting predominantly along NNW–SSE direc-
tion with a plunge of 58°. The σ3 is almost acting along E–W 
direction horizontally. The computed shape ratio and friction 
are 0.67 and 0.45 (Fig. 6e; Table 6). The strike, dip and rake of 
the computed fault plane are 159°, 84° and 155°, respectively.

The thrust-dominated movements in the western segment 
and the strike-slip-dominated movements in the eastern seg-
ment motivated us to divide Zone II into Zones II(a) (8 events) 
and II(b) (4 events) (Fig. 1). The thrust-dominated 2015 Mw 
7.9 Nepal earthquake and strike-slip-dominated 2011 Mw 6.9 
Sikkim earthquake were also occurred in Zones II(a) and II(b), 
respectively. The σ1 is found to be oriented along 200° azimuth 
with a plunge of 27.7°, and the σ3 is operating at an azimuth of 
349° with a plunge of 58° for Zone II(a). The intermediate σ2 

is acting at 102° azimuth and plunging at 13°. The shape ratio 
and overall friction are 0.61 and 0.4, respectively. The strike, 
dip and rake of the computed fault plane are 95°, 63° and 
75° (Fig. 6f; Table 6). Joint inversion of focal parameters of 4 
events in Zone II (b) shows that σ1 is of azimuth 357.6° and 
plunge 3.1°, whereas σ3 is of azimuth 267° and plunge 3.6°, 
while the σ2 is acting along a direction of azimuth 128° having 
a plunge of 85°. The strike, dip and rake of the fault plane are 
95.8°, 63.5° and 75°, respectively. The computed shape ratio 
and optimum friction are 0.78 and 0.9 (Fig. 6g; Table 6).

Discussions

Although the 7 seismic stations spreading over the study 
area recorded the 16 earthquake events, best records of 4 
events were used for focal mechanism parameters computa-
tion in the present study. These 4 focal mechanism param-
eters are grouped with another 8 focal parameters compiled 
from other catalogs (discussed above) and found that 8 
events (1–5, 7–9) were dominated with strike-slip move-
ments, while 4 events (6, 10–12) were dominated by normal-
type faulting (Figs. 4, 5). The hypocenters are mainly distrib-
uted in the shallower part, located in the upper crust, in this 
area. Stress inversion results show that the Zone I is under 
semi-compressive stress field with a predominant strike-
slip component along the NNW–SSE direction (Table 6; 
Fig. 7i), while the Zone II, lying in the Himalayan Foothills 
and Lower Himalaya, is under extensional stress field with 
a strike-slip component almost along the NNW-SSE direc-
tion. Figure 7ii shows the operative stress fields at shallower 
(≤ 20 km) and deeper (> 20 km) parts of the lithosphere. 
The shallower part is dominated under radial compres-
sion (RC), whereas the deeper part is under pure strike-slip 
(PSS) regime (Table 6). The shallower part of Zone I (depth 
≤ 20 km) is under the influence of compressive strike-slip 

Table 4  Stress parameters of 
earthquake events occurred in 
Zone I

Event no. P-axis T-axis Sources

Azimuth (deg.) Plunge (deg.) Azimuth (deg.) Plunge (deg.)

1 221 6 314 27 Global CMT
2 328 21 234 11 Kayal et al. (2009)
3 360 13 267 12 Kayal et al. (2009)
4 310 6 85 6 Present study
5 220 16 268 29 Present study
6 231 80 256 10 Present study
7 136 22 276 31 Present study
8 350 15 250 33 Biswas and Mandal (2017)
9 176 20 80 17 Biswas and Mandal (2017)
10 31 46 174 38 Biswas and Mandal (2017)
11 217 58 352 24 Biswas and Mandal (2017)
12 360 64 155 24 Biswas and Mandal (2017)
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regime (CSS). Based on the focal mechanisms, Zone II was 
divided into Zone IIa (western segment) and Zone IIb (east-
ern segment), and the shallower levels (depth ≤ 30 km) of 
these two zones are dominated by pure compression (PC) 
and pure strike-slip (PSS), respectively (Fig. 7iii).

Although the overall tectonic processes are E–W exten-
sive strike-slip (Fig. 7i) in this Himalayan segment (Zone II), 
the shallower and deeper parts of the converging lithosphere 
are of different tectonic domains (i.e., RC and PSS, Fig. 7ii), 
even the western (Zone IIa) and eastern (Zone IIb) segments 
are dominated differently with PC and PSS stress regimes 
(Fig. 7iii). Thrust faulting processes in the western segment 
operative under overall compressive stress field might be 
indicating that the Indian lithosphere is under compressional 
tectonics and complies with the thrust-dominated movement 
during incidences of 2015 Mw 7.9 and 2015 Mw 7.2 Nepal 
mainshocks and other major aftershocks (Fig. 2 of Khan 

et al. 2017). The 1934 Mw 8.11 North Bihar earthquake, 
which occurred at shallower level (focal depth = 20 km) in 
the western segment and was dominated by thrust faulting 
(Ansari and Khan 2014), also supports this inference. The 
strike-slip-dominated faulting process at deeper level during 
1988 Mw 6.8 North Bihar earthquake (focal depth = 34.7 km) 
corroborates the PSS stress regime at deeper level in Zone 
II. The strike-slip-dominated movements during occur-
rences of 2011 Mw 6.9 Sikkim earthquake and its majority 
of aftershocks (Fig. 3 of Kumar et al. 2019; Paul et al. 2015) 
comply with the PSS stress regime operative in the eastern 
segment. The Monghyr–Saharsa Ridge (MSR) along with its 
two marginal faults (Fig. 1) is interacting through the bound-
ary between eastern and western segments with the Hima-
layan trench, apparently controlling the two distinct tecton-
ics on either sides of longitude 87.5° E. Seismic anisotropy 
analysis also shows the diversity in tectonics in these two 

Fig. 6  Stress inversion results (after Vavryčuk 2014) for earthquakes happened in Zone I and Zone II (explained in Figs. 1 and 7, Table 6)
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segments (Singh et al. 2007). The sudden changes in trends 
of tectonic lineaments and faults toward north are found to 
be converging surrounding this junction. Ansari et al. (2014) 
found strike-slip-dominated faulting processes in the eastern 
Himalayan Foothills and explained to be caused by shear 
movements of the converging lithosphere and is principally 
controlled by the changes in plate obliquity. Toward south, 
the eastward trend of Ganga River is turning at its down-
stream, where the sediment thickness increases sharply (Roy 
and Chatterjee 2015). The PSS stress regime at the shallower 
part of the eastern segment as well as in the deeper part of 
Zone II might be accounting the eastward convergence and 
subduction of the Indian lithosphere beneath the floating 
Myanmar micro-plate (Khan 2005). The normal faulting-
associated source kinematics of the earthquakes adjacent to 
the zone of southward migration of the Ganga River might 
have been affected by the eastward extension of the converg-
ing lithosphere (Curray and Moore 1974; Curray et al. 1979; 
Mitchell 1981) and account for rift-controlled extension in 
the Bengal Basin (Ismaiel et al. 2019; Khan and Chouhan 
1996; Roy and Chatterjee 2015). A sudden increase in the 
depth of the basement passed the Eastern Indian Shield 
toward east, where the lithosphere begins to flexed, and the 
extension at the shallow level is dominant and advocates 
the stretching of the lithosphere (Isacks et al. 1968; Condie 
1982). In Bengal basin, various crustal features along with 
normal and en-echelon faulting, e.g., Hing Zone (Ismaiel 
et al. 2019; Alam et al. 2003), indicate that the basin has 
been affected by extensional forces due to the outpouring of 
basaltic lava (i.e., Rajmahal Trap) during Cretaceous prior 
to tertiary deposition (Mall et al. 1999; Desikachar 1974). 
Kaila et al. (1992) showed by deep seismic sounding stud-
ies (DSS) that the crystalline basement of Bengal basin is 
dipping toward east up to a maximum depth of 14 km. The 
Bouguer gravity anomaly decreases from + 10 to − 12 mGal 
from west to east, which supports the dipping of basement 
toward east (Reddy et al. 1993), where the Moho varies from 
26 to 36 km with a prominent domal feature of about 40 km 
(Reddy et al. 1993; Mall et al. 1999).

There are several factors which control faulting processes 
vis-à-vis stress accumulation like stress intensification adja-
cent to plutons (Campbell 1978; Stevenson et al. 2006), lith-
ospheric flexure (Bilham et al. 2003; Khan 2007; Khan and 
Chakraborty, 2009), confined strain in middle to lower crust 
(Zoback et al. 1985), stress amplification near regional grav-
ity lows (Chandrasekhar et al. 2005), stress buildup caused 
by lateral deviation of density (Sonder 1990), confined 
stress accumulation in response to plate tectonic forces in 
the neighborhood of crisscrossing faults (Talwani 1988; 
Khan et al. 2009), etc., in stable continental regions. There 
is a reliable pattern of a complete N–S to NNE compres-
sion indicating a shrinkage of the Indian Plate at an amount 
of ~ 1–10 mm/year (Bilham and Gaur 2000). Figure 7i, iii Ta
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shows an operative strike-slip-dominated stress regime in the 
EIS region, and about 70% events are strike-slip-dominated 
movements with both P- and T-axes sloping sub-horizontally 
(Fig. 4; Table 5). It is thus clear that multiple processes are 
involved under changing environment of stress field thriv-
ing co-seismic slip along the preexisting fractures, seismic-
ity, flexible flow of subcrustal rocks and inter-seismic strain 
accumulation (Singh et al. 2012, 2016). The alignment of the 
principle stress axes obtained from the inversion of earth-
quake focal mechanism parameters also indicates that the 
whole EIS province is controlled through the CSS and SCSS 
(Table 6). This pure strike-slip motion in the EIS might be 
genetically linked with the compressive stress regime in the 
Himalaya. It was also proposed elsewhere that the opera-
tive stress field in the continental interior has been rightly 
controlled by the convergence of the Indian lithosphere and 
its consequent resistance by the Himalayan orogeny (Khan 
et al. 2016, 2019).

Summary

Several crisscross faults, lineaments and three big rivers 
(Ganga, Brahmaputra and Damodar) have transformed the 
study area into a strange tectonic setting. Basement undula-
tion with widely variable thickness of sediments and numer-
ous hot springs with interspaced shear zones account for 
shallow-level deformation of the lithosphere, while on the 
north, the interacting domal shape basement (MSR) and the 
faults (e.g., MSRF, EPF, WPF) with the Foothills of the 
Himalayas are apparently controlling the tectonics of this 
area. The eastward convergence and subsequent subduction 
of the Indian lithosphere under the Myanmar plate started 
stretching and rifting in the basement of the Bengal Basin 
and enhanced accommodation of sediments in the graben 
(Ismaiel et al. 2019; Roy and Chatterjee 2015). The strike-
slip-dominated movements supported by the focal mecha-
nisms over the study area are likely caused by the north to 
north–northeast convergence of the Indian plate. Holocene-
activated north–south trending faults over the shield area 
and the transecting faults near the Foothills of this part of 
the Himalayas might also be accounting some parts of the 
convergence of the Indian lithosphere. The thrust-dominated 
movements in the northwestern segment of the study area 
account for strong deformation of the converging lithosphere 
to the south of the Nepal Himalaya. The pure compression 
(PC, Fig. 7iii) in this segment supports this inference. Focal 

mechanisms of two events show normal faulting, either indi-
cating that the stretching of the basement is still continued or 
subsidence is quite active. The E–W strike-parallel extension 
is found to be quite active in the northeastern part of the 
study area, and the operative stress field of pure strike-slip 
regime (Fig. 7iii) corroborates this views. The strike-slip-
dominated faulting processes in the Foothills areas of north-
eastern part might be operative for shear movements of the 
converging lithosphere and is proposed to be controlled by 
changes in India plate obliquity toward north (Ansari et al. 
2014). We therefore may propose that the PSS stress regime 
at the shallower part of the eastern segment as well as in the 
deeper part of Zone II might be accounting the eastward 
convergence and subduction of the Indian lithosphere under 
the floating Myanmar micro-plate. Finally, we can conclude 
that the entire EIS region is dominated by CSS and SCSS 
(Table 6) and might be genetically linked with the compres-
sive stress regime in the Himalaya.
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Abstract
Instantaneous phase is a commonly used attribute for structural and stratigraphic feature characterization. The conventional 
calculation method is to construct the complex-valued seismic trace, then get the ratio of the imaginary part to the real part 
and finally compute the antitangent of the ratio as the instantaneous phase attribute. In this way, the phase result at one time 
sample point is the total phase rotation from the beginning of the trace to this point, which means the traditional instantane-
ous phase is cumulative. Furthermore, the phase obtained by arctangent is usually entangled, which makes it more difficult 
to apply to seismic interpretation. To address the two issues above, we proposed a new way to calculate the improved local 
phase variation attributes. Firstly, we calculate traditional instantaneous phase and unwrap it. Then we set a time window 
on the unwrapped phase to compute the local phase variation by using some difference methods. Finally, we slide the time 
window on the whole trace to obtain the final phase variation attributes. This strategy turns the whole cumulative value into 
local variational value, which makes the obtained local phase variation nearly zero in the continuous region but changed 
greatly at the interface or the abnormal structure areas. Tested by the numerical model and the real data, the proposed attrib-
utes have a good application effect in channel detection, which provides a train of thought to seismic structure interpretation 
with phase attributes.

Keywords Discontinuity detection · Instantaneous phase · Local phase variation · Sliding time window

Introduction

Instantaneous phase is a commonly used seismic attribute, 
which was defined as the phase angle of complex seismic 
trace (Taner et al. 1979) and can be obtained by inverse 
trigonometric function. At present, the existing application 
studies on the phase attribute mainly focused on seismic 
structure interpretation, thin interbeds identification and for-
mation thickness estimation. However, these applications 
mainly utilize the instantaneous phase, which has a low reso-
lution and poor reliability, especially for the deep seismic 
data with a low signal-to-noise ratio. To solve this problem, 

some scholars adopted median filtering or other effective 
denoising methods to remove full-band noise or high-fre-
quency noise by integrating (e.g., Bekara and Vender 2007; 
Yuan et al. 2018) and then extracting the instantaneous 
phase attributes. These methods have reached some good 
application effects, but there are still some problems such 
as local ambiguity or illusion.

Over the past few years, some other complex seismic 
trace technologies were also put forward. Gabor proposed 
the concept of complex signals in 1946 and applied it in 
the field of electronic engineering for the first time. Later 
Taner introduced this concept to seismic signal analy-
sis in 1979, and it has been widely used in seismic data 
processing and interpretation. The conventional complex 
seismic trace analysis is based on the Hilbert transform, 
through which virtual seismic records and some related 
instantaneous attributes can be obtained. For example, the 
instantaneous amplitude or envelope can characterize the 
subsurface lithological variations, hydrocarbon (bright 
spot) and gas accumulation. The instantaneous phase can 
be used as a continuity measurement of seismic events. 
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The sweetness attribute (Duan et al. 2011) is defined as 
the ratio of the instantaneous amplitude to the root mean 
square of the instantaneous frequency, and it can be used 
to indicate hydrocarbon reservoirs. Furthermore, com-
pared to the instantaneous amplitude and sweetness, the 
instantaneous phase has a great advantage in identifying 
features exhibiting weak reflections with poor continu-
ity in deep formation, such as small faults and channels. 
In 2010, Miao et al. adopted the fast Fourier transform 
to obtain the complex seismic trace and realized the fast 
phase calculation algorithm. In 2013, Wang et al. adopted 
frequency division phase technology for fault interpreta-
tion and firstly tried to combine the means of phase place-
ment with frequency division. In 2020, Yuan et al. devel-
oped six-dimensional phase attributes for wide-azimuth 
seismic data interpretation. In recent years, the instanta-
neous attributes obtained by complex seismic trace tech-
nique have been widely used in ground-penetrating radar 
and other cutting-edge technologies. Phase attributes are 
attracting more and more attention with its unique quali-
ties and potential advantages.

However, the physical meaning of the traditional instan-
taneous phase attribute is the spatial rotation of the com-
plex seismic trace from the beginning time sample point. 
It means that it is difficult to establish definite numerical 
measurement with the phase attribute, so the related studies 
on the phase attributes are usually only qualitative but not 
quantitative. Furthermore, the wrapping of the phase results 
makes the phase a jumping curve bounded by ± π rather than 
a continuous function. All of these make it difficult to carry 
out accurate seismic interpretation by using the traditional 
instantaneous phase attributes.

In this paper, we proposed a new way to calculate the 
improved local phase variation attributes based on the slid-
ing time window and unwrapping operation. This strategy 
can effectively obtain the local phase variation of seismic 
data and avoid the local phase value being affected by the 
whole seismic trace. It considers the physical significance 
that phase is the spatial rotation of complex seismic trace, 
and the local real phase variation is obtained by the idea 
of subsection. The effective utilization of phase attributes 
reflects the true location of subsurface interface and can help 
to identify the weak reflection and subtle structure, which 
offers great help to fine seismic data interpretation. Firstly, 
we describe the basic principle and calculation steps of the 
proposed method to make a brief introduction. Then, we 
present the results of a simple numerical model and a real 
data to demonstrate the feasibility of this method for iden-
tifying subsurface interfaces and structures. And the com-
parison of the obtained results by the proposed method and 

the traditional instantaneous phase method further show its 
advantages. Finally, some related conclusions and future 
work are drawn.

Method

Conventional instantaneous phase attribute

In general, we can obtain the complex seismic trace s(t) cor-
responding to the original seismic trace x(t) by using the 
Hilbert transform (Taner et al. 1979):

where t represents two-way traveling time, i repre-
sents the imaginary unit, h(t) is the Hilbert transform 
result, which is orthogonal to the real seismic signal x(t), 
�s(t)� =

√
x2(t) + h2(t) is the instantaneous amplitude or 

envelope and �(t) is the instantaneous phase attribute. The 
Hilbert transform has been widely applied to seismic data 
processing, inversion and interpretation (e.g., Bozdag et al. 
2011; Alkhalifah 2014; Lian et al. 2018; Yuan et al. 2019).

As shown in Eq. (1), the instantaneous phase is the phase 
angle of complex seismic trace, which can be obtained by 
the following arctangent function:

where real (.) and imag (.) represent taking the real part and 
the imaginary part of s(t), respectively. The denominators 
are usually nonzero values in most cases, but when the val-
ues in denominator are nearly zero, the phase result is sensi-
tive to noise. The equation often produces a discontinuous 
instantaneous phase in the range [− 180° 180°] due to the 
inverse tangent calculation.

According to Eq. (2), for the whole seismic trace, the 
instantaneous phase at one time sample point is the total 
phase accumulation from the beginning point of the trace 
to this point, which means the instantaneous phase obtained 
through the whole trace has accumulativeness. Although 
there are no geological structures developed in some places 
underground, the instantaneous phase attributes will be 
affected by other time locations in front of the current seis-
mic trace, so there is often a nonzero-phase value and the 
value is usually uncertain. Different from the instantane-
ous amplitude attributes with zero values in the continuous 
area, this will cause the difficulty to interpret some special 
geological structures by using the phase attributes directly.

Besides, the phase obtained by the inverse tangent func-
tion is usually wrapped, and the direct result of the phase is 

(1)s(t) = x(t) + ih(t) = |s(t)|ei�(t),

(2)�(t) = a tan(imag(s(t))∕real(s(t))),
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a discontinuous function limited by the extremum of  ± π. 
To obtain real phase results, the unwrapping operation is 
necessary. At present, a variety of software including MAT-
LAB can realize the phase unwrapping operation directly. 
The general principle is to determine whether the difference 
value between two adjacent points is greater than or equal 
to 2π. If so, add or subtract 2π to each point beyond that 
later target point. Here, take a zero-phase wavelet model 
as an example, as shown in Fig. 1a. Figure 1b, c shows the 
corresponding phase results before and after unwrapping 
operation. The phase result becomes continuous after such 
an operation, which shows the necessity of unwrapping 
operation.

Local phase variation attribute based on sliding 
window

To overcome the deficiency of the instantaneous phase 
mentioned above, we tried to utilize the sliding time win-
dow method to calculate the improved local phase variation 
attributes. To explain the principle of this method better, we 
firstly take a simple synthetic model with a single interface 
as an example.

Figure 2a shows the velocity profile of the numerical 
model with the upper layer velocity of 2000 m/s and the 
lower layer velocity of 3000 m/s. The designed reflecting 
interface was located at 60 ms. Figure 2b shows the cor-
responding seismic profile, which was obtained by 30 Hz 
Ricker wavelet convoluted with the reflectivity coeffi-
cients calculated by the velocity model. Figure 2c displays 

Fig. 1  a A zero-phase wavelet. 
The corresponding instanta-
neous phase results b before 
unwrapping operation, and c 
after unwrapping operation. The 
phase becomes a continuous 
curve after such an operation
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Fig. 2  a The velocity profile 
of the numerical model. The 
designed interface was located 
at 60 ms, the velocities in the 
upper and lower layers are 
2000 m/s and 3000 m/s, respec-
tively. b The obtained seismic 
profile by 30 Hz Ricker wavelet 
convolved with the calculated 
reflectivity coefficients. c A 
seismic trace record from b. d 
The corresponding phase result 
after unwrapping, and the red 
box represents the time win-
dow. Each time sample point 
corresponds to a sliding time 
window, only the first and the 
last windows are shown here. 
e Enlarged local time window 
containing 11 time sampling 
points, as A is the first time 
point and B is the last time point 
of the current time window
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a seismic trace record of Fig. 2b. Then, the instantane-
ous phase of the seismic trace was calculated and further 
carried out the unwrapping operation. The phase result 
after unwrapping is shown in Fig. 2d. We first open a time 
window containing several time samples at the beginning 
of the unwrapping phase trace, as indicated by the red 
box in Fig. 2d. And the enlarged local time window is 
shown in Fig. 2e, as A is the first time point and B is 
the last time point of the current time window. Then, we 
perform differential operations on the local phase data in 
the current time window to obtain the local phase vari-
ation as the improved phase attributes at the location of 
the center point. Here, we gave three different kinds of 
differential methods to calculate the local phase variation, 
as following:

1. First point and last point difference. We calculate the 
difference between the phase results at these two time points 
as the local phase variation of the center point in the current 
time window, as follows:

where Δt represents half of the time window length but with-
out the center point, the whole time window length can be 
expressed as 2Δt + 1,�1(Δt + 1) represents the phase vari-
ation corresponding to the center point obtained by the dif-
ference between the first and last points, and abs represents 
taking the absolute value. �(1) and �(2Δt + 1) represent the 
instantaneous phase after unwrapping corresponding to the 
first and last points of the current time window.

2. First and last points, and middle point difference. We 
calculate the difference between the phase results corre-
sponding to the first point and middle point, and the dif-
ference between the phase results corresponding to the last 
point and middle point, then calculate the average value as 
the local phase variation of the center point in the current 
time window, as follows:

where �2(Δt + 1) represents the phase variation correspond-
ing to the center point, and the other symbols are the same 
as above.

(3)�1(Δt + 1) = abs(�(2Δt + 1) − �(1)),

(4)

�
2
(Δt + 1) = [abs(�(2Δt + 1) − �(Δt + 1)) + abs(�(1)

− �(Δt + 1))]∕2

(a)

(b)

(c)

(d)

Fig. 3  a Conventional instantaneous phase. The local phase variation 
results calculated by using: b first point and last point difference, c 
first and last points, and middle point difference and d mean differ-
ence, respectively

▸
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3. Mean difference. After obtaining the average phase 
value in the time window, we calculate the difference 
between each time point and the average value as the phase 
variation of the center point in the current time the window, 
as follows:

where �3(Δt + 1) represents the phase variation correspond-
ing to the center point by the mean difference, �aver repre-
sents the average phase value in the current time window and 
the other symbols are the same as above.

Among the above three different differential methods, 
the first method (first point and last point difference) is the 
simplest and highly efficient, but when the slide time win-
dow is large or the phase within the window changes in a 
non-monotonic way, this method will produce some wrong 
results. The second method (first and last points, and middle 
point difference) takes into account the phase change at the 
beginning and end points of the time window relative to the 
middle point. When the time window length is small and the 
phase change is relatively gentle, this method has a higher 
accuracy, but it still fails for the phase change which is more 
drastic. The last method (mean difference) is complex, but it 
ensures that all time points in the slide time window partici-
pate in the calculation, which can reflect the phase variation 
within the window better.

After obtaining the phase variation in the time window at 
one time point, we then slide the time window along the time 
direction and repeat the above calculation steps to obtain 
the final results of the whole seismic trace. Figure 3a shows 
the conventional instantaneous phase result correspond-
ing to the seismic profile in Fig. 2b. Figure 3b–d shows the 
local phase variation results calculated by using the above 
three differential methods. Compared with the conventional 
instantaneous phase results, the obtained local phase varia-
tion results by three methods can effectively reflect the local 
phase changes and have a more obvious correspondence 
with the construction.

(5)�3(Δt + 1) =

[
2Δt+1∑

t0=1

abs(�(t0) − �aver)

]
∕(2Δt + 1)
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(e)

Fig. 4  a The horizontal slice of the numerical model at 
time = 100 ms. The slice position is at the center of the sand layer. 
b The velocity profile of the numerical model along the direction of 
crossline100 (as indicated by the red line in Figure 4a). c The con-
ventional instantaneous phase attribute profile. d The local phase 
variation attribute based on the proposed method, and the red lines 
represent the locations of top and bottom interfaces of the target layer. 
e The time slice through the local phase variation attribute volume at 
time = 70 ms

▸
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Examples

The application on the simple interface model shows the fea-
sibility of the proposed method. In this section, we choose 
a 3D numerical model and a 3D real dataset to make fur-
ther tests and analysis. For convenience, we use the second 
differential method (first and last points, and middle point 
difference) to obtain local phase variation attributes in this 
section, and the advantages of this method over the tradi-
tional instantaneous phase attribute are further illustrated.

The tested numerical model consists of surrounding 
rock with wave velocity of 2000 m/s and target sandstone 
layer with wave velocity of 3000 m/s. The total time 
length is 151 ms with a time–sample interval of 1 ms, and 
the sampling points in the inline and crossline directions 
are 201. The sand body with a time thickness of 12 ms 
ranging from 70 to 82 ms mainly consists of a channel and 
two alluvial fan structures. Figure 4a shows the time slice 
of the numerical model at time of 100 ms. It can observe 
the edges and spatial extension of the channel and two 

alluvial fan structures in the amplitude slice. Figure 4b 
shows the velocity profile of the numerical model along 
the direction of crossline 100 (as indicated by the red 
line in Fig. 4a), and we can see the distribution range of 
the target layer along the time direction and the interface 
location. Figure 4c, d shows the conventional instantane-
ous phase attribute profile and the local phase variation 
attribute by using the proposed method, respectively. And 
the red lines in Fig. 4d represent the locations of the top 
and bottom interfaces of the target layer. Figure 4e shows 
the time slice through the local phase variation attribute 
volume at time =  0 ms. We can see the proposed attribute 
that depicts the boundaries of all geological structures 
perfectly on the time slice, and there is also a good rela-
tionship with the interface on the profile. By comparison, 
it can be observed that the conventional instantaneous 
phase attribute has nonzero-phase value (indicated by 
the red arrows in Fig. 4c) even in the continuous areas, 
which are caused by the utilization of arctangent func-
tion. However, the local phase variation attribute by the 

(a)

(b) (c)

Fig. 5  a The horizon amplitude slice of interest. b The conventional instantaneous phase attribute slice. c The horizon slice through the 
improved local phase variation attribute volume
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proposed method can effectively avoid this problem and 
only produce nonzero results near the interface. In this 
way, we can directly use the phase attribute to develop 
a set of interface and geological structure identification 
methods similar to the coherence attributes, but with 
much a higher calculation efficiency.

A 3D real data from Western China is used to test the 
applicability of the proposed method. The buried depth of 
the channel sand embedded in this area exceeds 4.5 km, 
and the reservoir has a strong lateral heterogeneity. Fig-
ure 5a shows the horizon amplitude slice of interest. The 
lineament and edges of the observed channels are ambigu-
ous, which will cause great difficulties for subsequent 
fine structural interpretation. Figure 5b shows the con-
ventional instantaneous phase attribute slice along the 
target layer. It is almost impossible to identify some geo-
logical bodies from this slice, which makes it difficult to 
explain. Figure 5c displays the horizon slice through the 
improved local phase variation attribute volume. In con-
trast to the conventional instantaneous phase, the result 
can favorably identify the edges and lineament of the 
channels, showing a relatively high phase change amount 
compared with surrounding structures. Several channel 
branches can be clearly identified including their widths 
and extension directions. The results illustrate that the 
proposed method in this paper has a better performance 
to identify subtle abnormalities in the application of real-
data interpretation.

Conclusions

In this paper, we proposed a new way to calculate the 
improved local phase variation attributes based on the slid-
ing time window and unwrapping operation. The examples 
including the numerical model and 3-D real dataset are 
adopted to demonstrate that the proposed method can effec-
tively avoid the accumulation of traditional instantaneous 
phase attributes. Compared to conventional instantaneous 
phase attributes, the obtained local phase variation attributes 
can directly realize the identification of the geological struc-
tures and interface. The calculation method is simple and has 
extremely high computational efficiency. However, as the 
phase attributes tend to be affected by noise easily, the qual-
ity of results will be reduced when the signal-to-noise ratio 
is low. Furthermore, the selection of the sliding time window 
length also has a significant effect on the final results. It is an 
important content of our future work to change the window 
length adaptively according to the geological structure scale 
in subsurface.
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Abstract
Three-dimensional inversion for susceptibility distributions is a common approach for quantitative interpretation of magnetic 
data. However, this approach will fail when strong remanence exists because the total magnetization direction is unknown. 
Magnetic amplitude inversion can reduce remanence effects and thus improve reconstructed results. In this paper, we pro-
pose a sparse magnetic amplitude inversion method which minimizes an  L0-like-norm of model parameters subject to bound 
constraints. By using the iteratively reweighed least squares technique, the bound-constrained  L0-like-norm sparse inversion 
is transformed to a sequence of bound-constrained nonlinear least squares subproblems. To deal with the bound constraints, 
we use a logarithm barrier algorithm to solve each subproblem. Compared with the classical  L2-norm inversion method, 
the proposed sparse method utilizes the known physical property information to produce binary results characterized by 
sharp boundaries. This method is tested on synthetic data produced by a dipping dyke model and a field data set acquired 
in Australia.

Keywords Magnetic amplitude inversion · Remanence · Sparse · Binary · Sharp boundary

Introduction

Three-dimensional (3D) inversion is an important method 
for quantitative interpretation of magnetic data. It has been 
successfully applied to mineral exploration (Oldenburg et al. 
1997) and in the study of geological structures (Abedi et al. 
2018). The classical inversion method for susceptibility dis-
tributions (Li and Oldenburg 1996, 2003; Pilkington 1997, 
2009; Portniaguine and Zhdanov 1999, 2002) assumes that 
there is no remanence and that the self-demagnetization 
effect is negligible, so that the magnetization direction is 
parallel to the direction of ambient field. However, when 
strong remanence exists, the magnetization direction can be 
significantly different from that of the ambient field. In this 

case, the classical inversion method can produce incorrect 
results, which poses a major challenge to quantitative inter-
pretation of magnetic data affected by strong remanence. To 
overcome this problem, researchers have developed several 
methods that can be divided into two categories.

One category first transforms the magnetic anomalies 
into nonnegative quantities that are less dependent on the 
magnetization direction and then inverts the transformed 
quantities using standard magnetic inversion algorithms. 
Paine et al. (2001) first convert total-field data into the ana-
lytic signal of the vertical integral and the vertical integral 
of the analytic signal and then use these two quantities as 
pole-reduced anomalies for standard inversion. Shearer and 
Li (2004) invert the total gradient data (Nabighian 1972; 
Roest et al. 1992) to reduce remanence effects. Li et al. 
(2010), Li and Li (2014), Li et al. (2015), and Krahenbuhl 
and Li (2017) invert the magnetic amplitude data (Hou 1979; 
Stavrev and Gerovska 2000) to mitigate effects of remanence 
and self-demagnetization. Pilkington and Beiki (2013), Guo 
et al. (2014), and Zhou et al. (2015) invert the normalized 
source strength (Wilson 1985; Beiki et al. 2012) to allevi-
ate effects of remanent magnetization. Such methods only 
exploit the amplitude information of the magnetic data. 
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Therefore, only the magnitude information of the magneti-
zation is obtained.

The other category is magnetization vector inversion, 
which makes full use of the amplitude and phase informa-
tion of the magnetic data. Wang et al. (2004) validate the 
feasibility of 2D magnetization vector inversion by using 
simple model experiments. For realistic and complicated 
conditions, due to the enhanced non-uniqueness introduced 
by the added model parameters, methods in this category 
require the incorporation of extra prior information to obtain 
geologically meaningful solutions (Lelièvre and Oldenburg 
2009). One can exploit a sequential strategy to deal with 
the added model parameters. Li et al. (2010) first estimate 
the total magnetization directions and then invert the effec-
tive susceptibilities of the model, whereas Liu et al. (2013, 
2015, 2017) first invert the effective susceptibilities and 
then recover the total magnetization directions of the model. 
Alternatively, one can directly recover all the parameters by 
explicitly introducing prior information into the objective 
function. Lelièvre and Oldenburg (2009) derive equations of 
3D magnetization vector inversion in Cartesian and spheri-
cal coordinates and introduce some pieces of prior informa-
tion that are readily incorporated into the inversion. Ellis 
et al. (2012) propose a similar magnetization vector inver-
sion method. Li and Sun (2016) use fuzzy c-means clus-
tering to incorporate magnetization direction information 
into the magnetization vector inversion. They also develop 
an algorithm to automate their clustering inversion method 
(Sun and Li 2018).

In this paper, we have chosen to focus on the magnetic 
amplitude inversion method falling into the former category 
for the following two reasons. First, magnetic amplitude 
inversion is applicable for complicated multiple-source 
conditions and requires minimum prior information. Sec-
ond, magnetic amplitude inversion plays an important role in 
several magnetization vector inversion methods (Liu 2013; 
Li and Sun 2016). The amplitude inversion proposed by Li 
et al. (2010) uses the classical  L2-norm for model objective 
function and produces a smooth solution. An alternative 
choice of model objective function is the sparse norm. The 
sparse model norms, applied to gravity and magnetic inver-
sion, have been used to obtain compact (Last and Kubik 
1983), blocky (Farquharson and Oldenburg 1998; Farquhar-
son 2008), and focused (Portniaguine and Zhdanov 1999; 
Pilkington 2009) solutions. Here, we develop a sparse 
magnetic amplitude inversion algorithm extended from Li 
et al. (2018). Similar to the approach of Li et al. (2018), 
this algorithm makes use of the known physical property 
information and produces binary results characterized by 
sharp boundaries in the presence of strong remanence. In 
the following sections, we first introduce the sparse magnetic 
amplitude inversion algorithm and then test this algorithm 
using a synthetic example and a field data example.

Method

Forward modeling

Assuming the subsurface is divided into many rectangu-
lar prisms with constant effective susceptibility defined 
as the ratio of magnetization magnitude over the ambient 
field strength, we express the forward modeling of the three 
orthogonal components of magnetic anomaly vector as

where Gx, Gy, and Gz are the sensitivity matrices between the 
effective susceptibility vector m and the x, y, and z compo-
nents of magnetic anomaly vector dx, dy, and dz, respectively. 
The amplitude vector (Hou 1979; Stavrev and Gerovska 
2000) is given by

In practice, we need to calculate the amplitude data from 
the measured total-field data. For plane gridded measured 
data in midlatitude and high latitude, we can use the wave 
number-domain method (Pedersen 1978) to obtain the 
amplitude data. For more complicated conditions, such as 
high topographic relief and low latitudes, using the equiva-
lent source technique (Dampney 1969; Li and Li 2014) to 
calculate the amplitude data is more reasonable.

Inverse problem

First, we consider the unconstrained  L0-like-norm inversion 
of magnetic amplitude data. The objective function is

where μ is a regularization parameter. φd is a data misfit 
function formulated as

where Wd is a diagonal data-weighting matrix and F is the 
nonlinear forward operator. The ith diagonal element of Wd 
is the reciprocal of the estimated noise standard deviation 
of the ith datum. φum is an  L0-like-norm (Rao and Kreutz-
Delgado 1999) of the model parameters and given by

Equation 3 is an  L0-like-norm inverse problem, which 
can be solved by the iteratively reweighed least squares 

(1)

dx = Gxm

dy = Gym

dz = Gzm,

(2)d = (d2
x
+ d

2

y
+ d

2

z
)1∕2.

(3)�u(m) = �d(m) + ��um(m),

(4)�d(m) = ‖‖Wd[F(m) − d]‖‖22,

(5)�um(m) =
∑M

j=1
lnm2

j
.
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(IRLS) algorithm (Beaton and Tukey 1974; Holland and 
Welsch 1977; Chartrand and Yin 2008; Daubechies et al. 
2010). By using IRLS, Eq. 3 is transformed to a sequence 
of  L2-norm inverse problem, where the objective function 
of the nth iteration is

where R(n) is a diagonal reweighting matrix. Its diagonal 
element is

To avoid singularity of Eq. 7 in case of mj = 0, Eq. 7 is 
modified by

where ε is a small positive number.
To obtain a geologically meaningful solution, more 

prior information should be incorporated into the objective 
function. We focus on bound-constrained sparse inversion 
of magnetic amplitude data. Similar as the unconstrained 
sparse inversion, the bound-constrained sparse inversion 
is formulated as a sequence of bound-constrained  L2-norm 
inverse problem, where the objective function of the nth 
iteration is defined as

where φd is given in Eq. 4, μ(n) is the regularization param-
eter at the nth iteration, and mmin and mmax are vectors of 
lower and upper bounds. �(n)

cm
 is the model objective function 

at the nth iteration, given by

where Z is the depth weighting matrix (Li and Oldenburg, 
1996). R(n) is given in Eq. 8, and R(0) is set to the identity 
matrix I. Equation 9 belongs to bound-constrained nonlinear 
least square problems. Many algorithms, such as nonlinear 
mapping (Li and Oldenburg 1996; Lelièvre and Oldenburg, 
2006), logarithm barrier method (Li and Oldenburg 2003), 
and gradient projection method (Lelièvre et al. 2009), have 
been successfully applied to solve these problems in gravity 
and magnetic inversion. In this paper, we choose to use the 
logarithm barrier method (Li and Oldenburg 2003) to solve 
Eq. 9. The detailed algorithm for solving Eq. 9 is summa-
rized in "Appendix".
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Assuming the regularization parameter at each iteration 
has been obtained according to Morozov’s discrepancy prin-
ciple, the algorithm of bound-constrained sparse inversion of 
magnetic amplitude data is summarized as follows:

1. Initialize μ(0), R(0) =I, and n = 0.
2. Solve Eq. 9 for m(n) using the algorithm in "Appendix".
3. Terminate on convergence or when n attains a speci-

fied maximum number of iterations nmax. Otherwise, 
n ← n + 1 , update μ(n), generate R(n) from m(n−1), and 
go to Step 2.

Synthetic example

To test the proposed sparse magnetic amplitude inversion 
algorithm, we invert magnetic data produced by a dipping 
dyke model. The dyke is buried at a depth of 100 m and 
extends to 1000 m depth at a dip angle of 45°. The strike 
length of the dyke is 1000 m in the north direction. The 
dyke has an effective susceptibility of 0.05 SI. The ambi-
ent field has a strength of 50,000 nT, an inclination of 65°, 
and a declination of − 25°. The magnetization vector has an 
inclination of 45° and a declination of 75°. The total-field 
data produced by the dyke model are observed over a 21 × 21 
grid of 100 m spacing and contaminated by uncorrelated 
Gaussian noise whose standard deviation is equal to 2% of 
the accurate datum magnitude plus 2 nT, as shown in Fig. 1a. 
The corresponding amplitude anomaly is shown in Fig. 1b.

Assuming an unknown magnetization direction, we invert 
the amplitude data in Fig. 1b using four different model 
norms, including the classical  L2-norm, total variation func-
tional (Rudin et al. 1992), minimum gradient support func-
tional (Portniaguine and Zhdanov 1999), and the proposed 
 L0-like-norm. The lower and upper bounds of all inversions 
are set to 0 and 0.05 SI, respectively. The model region is 
divided into 40 × 40 × 30 cubes of 50 m on each side. The 
proposed  L0-like-norm sparse inversion is converged in 20 
iterations. At each iteration, by searching for an appropriate 
regularization parameter, the achieved data misfit is near 441 
(number of data), with 10% tolerance.

The recovered models of all inversions are shown in 3D 
perspective views in Fig. 2 and in 2D slice views in Fig. 3. 
The inversion results using the classical  L2-norm (Figs. 2a 
and 3a, b) are smooth and fuzzy. The model recovered from 
the total variation inversion (Figs. 2b and 3c, d) is blockier, 
but still contains smooth structures. The reconstructed model 
using the minimum gradient support functional (Figs. 2c 
and 3e, f) is piecewise constant. The results of the proposed 
 L0-like-norm inversion possess a binary feature. Although 
results of all of the four inversions are featured by a dipping 
slab, the model recovered from the proposed  L0-like-norm 
inversion has more accurate dip angle and deep structures.
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(a) (b)

Fig. 1  a The total-field anomaly produced by the dipping slab model. b The amplitude data computed from the data in Fig. 1a

Fig. 2  Perspective views of inversion results of magnetic amplitude 
data in Fig. 1b using different model norms of a  L2-norm, b total var-
iation functional, c minimum gradient support functional, and d the 
proposed L0-like-norm. The lower and upper bounds of all inversions 

are set to 0 and 0.05 SI, respectively. The cutoff values of a and b are 
0.01 SI. The cutoff values of c and d are 0.001 SI. The black lines 
indicate the position of the true model
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 3  Central slices of inversion results of magnetic amplitude data 
in Fig. 1b using different model norms of a–b  L2-norm, c–d total var-
iation functional, e–f minimum gradient support functional, and g–h 

the proposed L0-like-norm. The lower and upper bounds of all inver-
sions are set to 0 and 0.05 SI, respectively. The black lines indicate 
the position of the true model
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In the previous example, we invert amplitude data pro-
duced by the dyke model using the true upper bound of 
0.05 SI. Here, we invert the amplitude anomaly in Fig. 1b 
using the proposed sparse inversion method with incor-
rect upper bounds of 0.025 and 0.1 SI, respectively. The 
recovered models are shown in 3D perspective views in 
Fig. 4 and 2D slice views in Fig. 5. Figures 4a and 5a, b 

display the model produced by using an upper bound of 
0.025 SI. Figures 4b and 5c, d present results by using an 
upper bound of 0.1 SI. Both recovered models are still 
binary. However, the sizes of the recovered bodies are 
overestimated if a smaller upper bound is set and vice 
versa. Therefore, reliable physical property information 

Fig. 4  Perspective views of inversion results of magnetic amplitude data in Fig. 1b using the proposed L0-like-norm with upper bounds of a 
0.025 and b 0.1 SI, respectively. The cutoff values of both a and b are 0.001 SI. The black lines indicate the position of the true model

(a) (c)

(b) (d)

Fig. 5  Central slices of inversion results of magnetic amplitude data in Fig. 1b using upper bounds of a–b 0.025 and c–d 0.1 SI, respectively. 
The black lines indicate the position of the true model
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is crucial to precise recovery of source distribution when 
the proposed sparse inversion method is used.

Field example

We also apply the algorithm to a field data set acquired in 
Australia. The total-field anomaly is shown in Fig. 6a and 
gridded into a 53 × 71 grid of 50 m spacing. The geomag-
netic field has an inclination of − 64.7°, a declination of 2.1°, 
and a strength of 58240 nT. We can see that three anomalies 
with different orientations occur in the survey area. Using a 
single magnetization direction to invert these data would be 
clearly inappropriate. Therefore, we transform the total-field 
anomaly to amplitude data shown in Fig. 6b.

For the magnetic data shown in Fig. 6a, we have no avail-
able physical property information. To estimate the effec-
tive susceptibilities of causative bodies, we first perform a 
positivity-constrained smooth inversion of the amplitude 
data. The model region is divided into 52 × 70 × 40 cubes 
of 50 m on each side. The maximum value of the smooth 
model (Fig. 7a) is about 0.05 SI. Considering the uncertainty 
of the source susceptibility, we perform three sparse inver-
sions with different upper bounds of 0.03, 0.05, and 0.07 
SI, respectively.

The models recovered from sparse inversion are shown 
in Fig. 7b–d. Each one possesses a binary feature. Although 
these models have sharp boundaries, the accuracy of 
boundaries depends on the upper bounds of the inversion. 
Figure  8 shows the inversion results in cross-sectional 
views. Figure 8a, b presents the results of positivity-con-
strained  L2-norm inversion, which are smooth and diffused. 

Figure 8c, d displays the results of sparse inversion with an 
upper bound of 0.05 SI, which are binary.

The two models (smooth and sparse) in Fig. 8 show some 
differences. For example, the causative bodies on the north 
in the two models have different dipping angles and differ-
ent depth extent. Judging the reliability of the two models 
requires more geological information.

Conclusion

The existence of strong remanence changes magnetization 
directions and thereby affects inversion and interpretation 
of magnetic data. Magnetic amplitude inversion is an effec-
tive means for recovering subsurface source distributions in 
the presence of strong remanence. In this paper, we present 
a method for sparse inversion of magnetic amplitude data. 
This method minimizes a  L0-like-norm of model parameters 
subject to bound constraints. The IRLS technique trans-
forms the bound-constrained sparse inversion to a sequence 
of bound-constrained weighted least squares subproblems, 
each of which is solved by the logarithm barrier algorithm. 
Tests on synthetic and field data examples demonstrate that 
the proposed method produces binary results in the presence 
of strong remanence.
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Appendix

The logarithm barrier method 
for bound‑constrained  L2‑norm inversion 
of magnetic amplitude data

Li and Oldenburg (2003) and Li et al. (2010) have devel-
oped practical logarithm barrier methods for solving 
bound-constrained nonlinear least squares problems in 

magnetic inversion. We summarized their methods (Li 
and Oldenburg, 2003; Li et al. 2010) here. First, for sim-
plicity, we omit the superscripts and rewrite Eq. 9 as

The logarithm barrier method approximates Eq. 11 as a 
sequence of unconstrained minimizations, making the ine-
quality constraints implicit in the new objective function by 
adding a barrier term:

where λ is a barrier parameter and will be decreased during 
minimization. φλ is a barrier function and has the form

(11)
min �

c
(m) = �

d
(m) + ��

cm
(m)

s.t. mmin ≤ m ≤ mmax.

(12)min �(m) = �c(m) + ���(m),

Fig. 7  Perspective views of inversion results of magnetic amplitude 
data in Fig. 6b. a Results of positivity-constrained  L2-norm inversion. 
b–d Results of sparse inversion with upper bounds of 0.03, 0.05, and 

0.07 SI, respectively. Noise level is assumed to be 5% datum magni-
tude plus 5 nT. The cutoff value of a is 0.01 SI. The cutoff values of 
b–d are 0.001 SI
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Applying one step of Gauss–Newton method for Eq. 12 
at the kth iteration, we obtain

where J(k) is the Jacobian matrix (Li et al. 2010) at the kth 
iteration, Δm is the descent direction of objective function, 
X(k) and Y(k) are diagonal matrixes with m(k−1) − mmin and 
m(k−1) − mmax on their main diagonals, and 1 is the column 

(13)

��(m) = −

M∑
j=1

[
ln(

mj − mmin

mmax − mmin

) + ln(
mmax − mj

mmax − mmin

)

]
.

(14)
{
(J(k))TWT

d
WdJ

(k) + �ZT
R
T
RZ + �(k−1)[(X(k))−2 + (Y(k))−2]

}
Δm

= (J(k))TWT
d
Wd[d − F(m(k−1))] − �ZT

R
T
RZm

(k−1) + �(k−1)[(X(k))−1 + (Y(k))−1]�,

vector with all entries 1. Once the descent direction has been 
computed, the solution of Eq. 11 can be iteratively solved 
with appropriate choice of a step length and careful update 
of the barrier parameter. The algorithm for solving Eq. 11 is 
summarized as follows:

1. Initialize m(0) = �.��� , �(0) = �c(m
(0))

/
��(m

(0)) , and 
k = 1.

2. Form X(k) and Y(k) from m(k−1).
3. Solve Eq. 14 for Δm.
4. m(k)

← m(k−1) + ��(k)Δm , where � = 0.925 and

(a) (c)

(b) (d)

Fig. 8  Cross-sectional views of inversion results of magnetic amplitude data in Fig. 6b. a–b The recovered model produced by positivity-con-
strained  L2-norm inversion. c–d The recovered model produced by sparse inversion with the upper bound of 0.05
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5. �(k) ← [1 −min(�(k), �)]�(k−1).
6. Terminate on convergence or when k attains a speci-

fied maximum number of iterations kmax. Otherwise, 
n ← n + 1 and go to Step 2.
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Abstract
Onshore seismic exploration analyzes seismic wave propagation in elastic media, which includes the conversion between 
P- and S-waves. The development of multi-wave and multi-component seismic exploration methods provides data that 
enable onshore elastic wave full-waveform inversion. However, most data sets of onshore exploration are single component 
obtained from the particle-motion response from the vertical geophone. When the aiming area has a low-velocity zone, the 
ray path of reflected wave that propagates to the detector is nearly perpendicular to the ground surface, so that we call it 
P-wave data. In this paper, we focus on multi-parameter waveform inversion using P-wave reflection seismic data. Although 
only P-wave data are received, it still contains the converted P-wave information, and the converted P-wave energy gradu-
ally increases as the offset increases. As seismic acquisition technology, observation systems and science develop, the folds 
and acquisition offset increase significantly, and the seismic data contain important converted P-wave information. In this 
paper, the first-order elastic velocity–stress equation is decomposed to obtain the scalar-P-wave equation from which the 
S-wave velocity is included firstly. Then we present the theoretical framework for onshore multi-parameter full-waveform 
inversion using P-wave data. In order to explore the inversion potential of the P-wave data (extracting the S-wave velocity 
from the converted P-wave information) and accuracy and stability of the P- and S-wave velocity inverted by our method, 
we carry out numerical tests via different inversion strategies, by using the P-wave data regarded as containing converted 
P-wave information, and get successful results.

Keywords Scalar-P-wave equation · Converted P-wave · Onshore seismic full-waveform inversion · P- and S-wave velocity

Introduction

Full-waveform inversion (FWI) is a quantitative data-fitting 
procedure which minimizes the residuals between the simu-
lated and the observed seismic data to obtain high-resolution 
subsurface physical parameters such as P-wave velocity, 
density, impedance, or anisotropic parameters (Virieux and 

Operto 2009). Lailly (1983) and Tarantola (1984) first pro-
posed the least-squares misfit functional FWI framework 
and built the gradient of the misfit function by cross-corre-
lating the incident wavefield emitted from the source and the 
back-propagated residual wavefields. Pratt and Worthington 
(1990) extended FWI to the frequency domain and pointed 
out that multi-scale inversion can improve the effectiveness 
and stability of the inversion. At present, FWI has been suc-
cessfully applied for both simulated and real seismic data 
(Shipp and Singh 2002; Sears et al. 2008; Sirgue et al. 2010).

Since the 1990s, the emergence of the ocean bottom cable 
(OBC) system has caused a dramatic change in marine multi-
wave seismic exploration technology. Since 2000, onshore 
multi-wave multi-component exploration has gradually devel-
oped. For multi-component seismic data, elastic wave full-
waveform inversion (EFWI) is more suitable for high-precision 
reconstruction of subsurface elastic parameters than acoustic 
full-wave inversion (AFWI) (Brossier et al. 2009). In some 
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complex areas, AFWI cannot describe elastic wave propaga-
tion processes (Barnes and Charara 2009), such as the P/S con-
verted wave and amplitude variation with offset (AVO) effects. 
EFWI can provide more accurate P- and S-wave velocities for 
seismic data processing and interpretation, and also provide 
high-quality parameter information for reservoir description 
and for oil and gas field development (Tatham and Stoffa 1976).

When multiple parameters are simultaneously processed, 
the nonlinearity of FWI increases because certain parameters 
are coupled to each other (Wu and Aki 1985). Many scholars 
(e.g., Tarantola 1986; Mora 1988; Crase et al. 1990) discussed 
the elastic wave waveform inversion theory and applied it to 
simulated and actual data. They developed and improve the 
forward modeling and inversion theory, iterative optimization 
method, misfit function, and inversion strategy. Pratt (Pratt 
et al. 1998, 1999a, b) also proposed the frequency-domain 
EFWI theory while presenting the AFWI. Crase et al. (1990) 
used the first-order velocity–stress equation to invert the 
P-wave impedance, based on various minimization criteria.

Compared with the P- and S-wave velocity parameters, the 
density variation mainly affects the amplitude information of 
the seismic wavefield, and has little effect on wave diffusion 
parameters such as travel time and phase. Therefore, density 
is the most difficult parameter to be inverted in multi-param-
eter inversions. Tarantola (1984) proposed a velocity–density 
inversion strategy based on the acoustic wave equation with 
variable density. Mora (1987) pointed out that near-offset 
seismic data are suitable for impedance parameter inversion, 
while the far-offset data are suitable for velocity parameter 
inversion, but neither method can adequately invert the den-
sity model. Köhn et al. (2012) showed that the use of veloc-
ity–density parameterization in multi-parameter EFWI is 
better than Lame constant-density parameterization. Jeong 
et al. (2012) proposed a multi-parameter EFWI strategy in 
the frequency domain, which first inverts the elastic modulus, 
then simultaneously inverts the velocity and density.

Multi-wave and multi-component seismic exploration 
technology are still developing, and many problems still 
need to be solved. At present, most onshore exploration is 
based on single component, which is collected from obtained 
from the particle-motion response from the vertical geo-
phone. In this situation, there is a classical assumption that 
the subsurface is regarded as a fluid (Raknes et al. 2015). 
When the area has a low-velocity zone, which causes the ray 
path of reflected wave that propagates to detector is nearly 
perpendicular by Snell’s law working, we call the field data 
set the P-wave data. Acoustic wave equation is generally 
used to match the P-wave data, and AFWI is a well-known 
method in the application of current onshore full-waveform 
inversion, but it has no possiblity to invert S-wave veloc-
ity. However, the seismic data does not contain the S-wave 
information directly, while it includes a large amount of con-
verted P-wave information, such as P–S–P-wave. It would 

therefore be possible to establish a scalar-P-wave multi-
parameter equation in the elastic wavefield to synthesize 
record to match the real seismograms.

In this paper, we decompose the elastic first-order veloc-
ity–stress equation and obtain the scalar-P-wave equation that 
includes the S-wave velocity. We apply the conventional acous-
tic equation, the scalar-P-wave equation and the elastic wave 
equation to a simple layered model, then analyze the converted 
wave characteristics of the three equations by comparing the 
different forward results, and evaluate the S-wave velocity 
inversion. Then we propose the onshore FWI algorithm based 
on P-wave data and carry out different inversion strategies 
using the Marmousi-2 model. Our results confirm the accuracy 
and stability of the inversion of the P- and S-wave velocities 
using P-wave data with converted P-wave information.

Method

Why the acoustic approximation can work on land 
seismic

In exploration geophysics, FWI has come into broad use for 
applications (Sirgue and Pratt 2004). Generally, scholars make 
an assumption that subsurface can be considered as a fluid, 
as we called acoustic approximation (Tarantola 1984). Not 
considering the limitations in available computer resources, 
there are two main reasons for this assumption. One is that 
seismic usually acquire measurements of P-wave, whether 
current marine data obtained from the pressure response of 
hydrophone (Vigh et al. 2014) or land data obtained from the 
particle-motion response from the vertical geophone (details 
in the next paragraph) correspond to compressional wavefield 
(Gaiser et al. 2001). The other is that conventional processing 
focuses on the kinematics of P-waves, and it is well modeled 
by acoustic wave equation (Raknes et al. 2015).

Different from marine data that obtain pressure response 
directly, land seismic data usually acquire measurements 
of the vertical particle velocity (Simmons and Backus 
2003). As we all know, the numerical solution of elastic 
wave equation is more reliable than that of acoustic wave 
equation to approximate field data (Virieux and Operto 
2009). Actually, land seismic data contains converted 
S-wave, which could have a very strong impact on the 
acoustic inversion results. Fortunately, the near surface is 
a low-velocity zone, which causes the ray path of reflected 
wave that propagates to detector is nearly perpendicular to 
the ground surface (Snell’s law works), as shown in Fig. 1. 
Thus, land seismic data obtained from the vertical geo-
phone can be considered as P-wave, and it can be assumed 
that the P- and S-wave are naturally decoupled in land 
seismic data as shown in Fig. 1. However, this assumption 
is not applicable in all cases, such as strong anisotropy of 
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near surface and exposed bedrock environment, which are 
not considered in this paper.

In acoustic FWI, the subsurface medium is parameter-
ized by density (ρ) and P-wave velocity ( vP ), and well 
inverted (Virieux and Operto 2009). In the field, the land 
seismic data are obtained only from vertical particle veloc-
ity from the vertical geophone, while in the real applica-
tion, the measurements of seismograms is pressure but 
not velocity, because the most choice of acoustic equation 
is second-order system (Ravaut et al. 2004; Operto et al. 
2006), in which the vertical particle velocity is implicit. 
In fact, almost all research use simulated pressure data to 
match vertical velocity data observed, directly. Then we 
analyze the relationship between the vertical velocity field 
and the pressure field and explain that why the seismic 
data can be modeled by acoustic wave equation in the field.

For the convenience of research, we give the first-order 
system acoustic wave equation as,

(1)

�vx

�t
=

1

�

�P

�x

�vz

�t
=

1

�

�P

�z

�P

�t
= K

(
�vx

�x
+

�vz

�z

)
+ f

,

where P is pressure wavefield, K is bulk modulus, � is den-
sity, f is the source, � =

(
vx, vz

)
 is particle velocity vector, 

and t is the time.
The pressure and velocity record modeled by acoustic 

wave equation are shown in Fig. 2a–c, and the travel time and 
phase information of reflected waveform in vertical veloc-
ity record are the same as that in pressure record. For the 
medium with strong contrasts, the pressure date and velocity 
data have significant amplitude mismatch at far offsets, which 
could be solved by data regularization (Hobro et al. 2014). 
This explains that why the pressure field is used directly to 
match observed data in conventional land seismic FWI. In 
this paper, we assume the medium is full elastic, and propose 
a new multi-parameter waveform inversion method to invert 
the S-wave velocity ( vS ). In our method, the P-wave data 
are considered to contain rich convert P-wave information 
to match observed vertical velocity data, which details in the 
next section.

In addition, the land FWI is also affected by near-surface 
heterogeneity, anisotropic, attenuation and ground roll, 
which have a very strong impact on the inversion results 
and are ignored here.

Scalar‑P‑wave equation based on elastic 
decomposition

The application of FWI in industry typically invert two-
parameter models, as vP and ρ. In this work, in additional to 
aforementioned models, we also try to invert S-wave veloc-
ity ( vS ). Because of the natural decomposition of P- and 
S-wave in land seismic data, converted S-wave is not col-
lected directly in vertical geophone, and the S-wave velocity 
can only be indicated by converted P-wave.

In order to match Methods of decomposition for elastic 
field are generally divided into three categories. The first is 
Helmholtz decomposition (Dellinger and Etgen 1990; Sun 
et al. 2007). The second is vector-based wave equation decom-
position (Ma and Zhu 2003; Xiao and Leaney 2010). The third 
is wavenumber-domain field vector decomposition (Zhang 
and McMechan 2010). This paper focuses on the elastic 

Fig. 1  Ray path of reflection in low-velocity zone

Fig. 2  Pressure (a), horizontal (b) and vertical (c) velocity records modeled by acoustic wave equation
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information of P-wavefield based on acoustic approximation 
and its potential ability to invert vS . Thus by decomposing 
constitutive equations into the swell-shrinking (pressure) and 
shear-rotating forms to decompose the elastic wavefield, we 
obtain the scalar-P-wave equation (details in “Appendix 1”),

where Čijkl is new stiffness tensor, and �ij is Kronecker’s sym-
bol. All indices change from 1 to 3, and rule in Einstein’s 
summation convention over repeated indices.

In isotropic medium, it can be written as:

If we set � = 0 , the � is equal to K,

and scalar-P-wave equation can be rewritten as,

Equation (5) is conventional acoustic wave equation, in 
which the pure pressure P is different from scalar-P-wave 
in Eq. (2), which can be regarded as a pseudo-pressure in 
elastic medium. Like acoustic FWI, we must first study the 
relationship of the vertical velocity field and the pseudo-
pressure field, before the seismic data are modeled by scalar-
P-wave equation.

We construct a three-layer elastic model with model 
size of 2400 × 1500 m, the elastic parameters of first layer 
are: P-wave velocity of 2500 m/s and S-wave velocity of 
1785 m/s; the second layer: P-wave velocity of 3000 m/s and 
S-wave velocity of 2140 m/s; the third layer: P-wave velocity 
of 3500 m/s and S-wave velocity of 2500 m/s, while all the 
density parameter is 1420 kg/m3. The source, set at (500 m, 
10 m), is Ricker wavelet with peak frequency of 20 Hz.

Figure 3a, b shows vertical velocity ( vz ) and vertical 
P-wave ( vPz ) velocity elastic wavefield snapshots. Compared 
with acoustic wavefield (Fig. 3c), elastic vz field has a lot of 
converted P- and S-wave, which are decoupled as vPz and vSz 
in land seismic data (see in Sect. 2.1). As shown in Fig. 3b, 
for the vertical P-wave component, the converted waves gen-
erated at the reflection points of two interfaces are visible 
(Tang and McMechan 2017). Moreover, a converted P–S–P-
wave is generated at the second interface, which exists in 
pseudo-pressure field modeled by scalar-P-wave equation 
(Fig. 3d) in the same elastic case, but not exist in pure pres-
sure field modeled by acoustic wave equation in acoustic 

(2)
𝜕P2

𝜕t2
+ K

𝜕

𝜕xm

[
1

𝜌

𝜕

𝜕xn

(
Čijkl

𝜕uk

𝜕xl
− P𝛿ij𝛿kl𝛿il

)]
𝛿mn = f ,

(3)
Čijkl = 𝜆𝛿ij𝛿kl + 𝜇

(
𝛿il𝛿jl + 𝛿il𝛿jk

)
���������������������������������

Cijkl

−K𝛿ij𝛿kl.

(4)Čijkl = 𝜆𝛿ij𝛿kl − K𝛿ij𝛿kl = 0,

(5)
�P2

�t2
− K

�

�xm

(
1

�

�P

�xn

)
�mn = f .

medium (setting vS = 0 ). Thus vPz of elastic equation or 
pseudo-pressure of scalar-P-wave equation can be directly 
used to match land seismic data in elastic FWI, because of 
decomposition of P- and S-wave, whose ray path of seis-
mic wave perpendicular to the surface. However, pseudo-
pressure modeled by scalar-P-wave equation is a better 
choice to match observed data. There are two reasons: (1) 
in order to get vPz , the computation of elastic modeling by 
P/S-wave decomposed method(Ren and Liu 2016) requires 
higher computational cost than scalar-P-wave modeling; (2) 
conventional processing most focuses on the kinematics of 
P-waves, and it is well modeled by scalar-P-wave data.

Comparison of vPz record and pseudo-pressure record 
as shown in Fig. 4b, d illustrates that converted waves 
generated of two fields in elastic case are consistent, and 
this proves the possibility of inversion of S-wave veloc-
ity under pseudo-acoustic approximation, which cannot 
works on acoustic record (Fig. 4c) under pure acoustic 
approximation.

2D scalar‑P‑wave equation FWI

Tarantola (1984) defines a local optimization problem of 
least-squares minimization of the misfit function E between 
an observed record Pobs and simulated data Pcal,

where mi denotes the elastic parameters: vP,vS , and ρ, xr and 
xs denote receivers and sources.

The gradient expression of 2D scalar-P-wave equation 
FWI can be derived by applying the first-order Born approxi-
mation (details in “Appendix 2”),

Since the parameterization method using the Lamé con-
stant and density is not a reliable method (Tarantola 1986; 
Köhn et al. 2012), we chose the velocity–density model 
parameterization. The gradient of the misfit function with 
respect to the other parameters can be obtained using the 
chain rule (Mora 1987):

(6)E
(
mi

)
=

1

2

∑
xr ,xs

∫
t

(
Pcal − Pobs

)t(
Pcal − Pobs

)
dt,

(7)
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t
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(
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�w
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)
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��
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t
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(
�u
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)
+
(
�∗
xx
− �∗

zz

)(�u
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−

�w
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)

+ �∗
xz

(
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)
dt
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��
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−

(
u∗

�2u

�t2
+ w∗ �

2w

�t2

)
dt

,
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Thus, the velocity–density gradient of the elastic multi-
parameter inversion can be expressed as,

There are various inversion algorithms used in FWI, such 
as Gauss–Newton, conjugate-gradient, and Newton method. 
This paper we apply the conjugate-gradient method (Fletcher 
and Reeves 1964) to update elastic parameters model with 
the following steps,

(8)

�E

�vP
=

�E

��

��

�vP
+
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��

��

�vP
�E
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=
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��
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��

��
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,

(9)
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dt
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where n denotes the current iteration round, t denotes vec-
tor transpose operator, � represents the iteration step length, 
calculated by a one-dimensional line search, and ∇mi

E rep-
resents the gradient of the misfit function with respect to the 
elastic parameters, kn is update direction.

Model testing

Marmousi model example

In this section, we test the scalar-P-wave FWI with the well-
known 2D Marmousi model. The model shown in Fig. 6 has 
a grid size of 551 × 251, a sampling interval of 10 m, and a 
time interval of 0.8 ms. The source excited 8 m under the 

(10)

gn = ∇mi
E

𝛽 =
gt
n
gn

gt
n−1

gn−1

kn =

{
−g0 if (n = 0)

𝛽kn−1 − gn if (n > 0)

mn+1
i

= mn
i
− 𝛼nkn,

Fig. 3  Layered model forward modeling wavefield snapshots at 0.4 s: a vz of elastic wavefield; b vPz of elastic wavefield; c acoustic wavefield; d 
scalar-P-wavefield
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ground. The source wavelet is a Ricker wavelet with peak 
frequency of 7 Hz. Fifty-six shots totally are exploded with 
the 10 m distance between adjacent sources. The geophones 
were placed on the surface. We generate elastic pseudo-pres-
sure data by Eq. (2), and Fig. 5 shows the real and initial 
velocity models.

We now carry out two tests: (1) one step: invert P- and 
S-wave velocities simultaneously by scalar-P-wave FWI; (2) 
two steps: firstly invert P-wave velocity singly, then invert 
S-wave velocity. The density is regarded as a constant of 
1500 kg/m3 in all tests.

We apply the one-step inversion method to the elastic 
multi-parameter waveform inversion: the P- and S-wave 
velocity are inverted simultaneously. The inversion results 
are shown in Fig. 6. As we can see, the P-wave velocity 
inverted model is more reliable, but the S-wave velocity 
looks worse because of the crosstalk effects between vari-
ous parameters.

To overcome the drawbacks of the one-step inversion 
method, we applied the two-step inversion method to the 
elastic multi-parameter waveform inversion: first, the S-wave 
velocity (Fig. 5d) is not updated and the P-wave velocity is 

inverted; then, the S-wave velocity is inverted by using the 
inverted result from the first step as the initial P-wave veloc-
ity model. The results are shown in Fig. 7, and the S-wave 
velocity inverted model is much better than that inverted 
simultaneously.

Figures  8 and 9 show the depth profiles of P- and 
S-wave from the true, initial and inverted (singly and 
simultaneously) models at x-axis locations of 1, 2, 3, 4, 
and 5 km. The trace contrast curve (Fig. 8) extracted from 
the P-wave velocity models shows that the resolution of 
two inverted models computed singly and simultaneously 
are similar. The depth profiles of S-wave velocity model 
derived from the singly inversion results (Fig.  9) are 
greatly improved compared with the simultaneous inver-
sion method, and the S-wave velocity is well recovered. 
Although the singly inversion produces good results, the 
cross talk effects between the various parameters still exist 
and cause some deviation from the true value in the deep 
layer, which could be mitigated effectively by resorting to 
Hessian-based method. In conclusion, the two-step inver-
sion strategy is a better option for multi-parameter wave-
form inversion.

Fig. 4  Layered model forward 
modeling record: a vz of elastic 
wave; b vPz of elastic wave; c 
acoustic wave; d scalar-P-wave
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Field data example

In this section, we apply a real 2D seismic data set obtained 
from the particle-motion response from the vertical geo-
phone to verify the scalar-P-wave equation FWI method. 
This area has a low-velocity zone in near surface, so that 
the ray path of reflected wave is nearly perpendicular to the 
ground surface, thus the data set can be regarded as P-wave 
data, which can be implemented with our scalar-P-wave FWI 
method.

We use a Fourier transform method to make data interpo-
lation. The sources and receivers are set at the surface. There 
are 40 shots from x = 1 to 5 km and the shot space is 100 m, 
and the largest offset is 4 km. The receiver spacing is 10 m. 
The time spacing is 0.8 ms, and maximum time is 2.88 s. 
The source wavelet is obtained from seismograms analysis.

Figure 10 shows the initial P-wave velocity models computed 
by migration velocity analysis (MVA), while S-wave velocity 
model and density are not given. Thus we must find a perfect 
match empirical relationship between elastic parameters. In 

Fig. 5  Marmousi model: a real Vp; b real Vs; c initial Vp; d initial Vs

Fig. 6  Inverted simultaneously model: a Vp; b Vs
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Fig. 7  Inverted singly model: a Vp; b Vs

Fig. 8  Depth profiles of Vp 
from the true (black solid line), 
initial (black dashed line), 
one-step inverted (blue line) 
and two-step inverted (red line) 
model at x-axis locations of 1, 
2, 3, 4, and 5 km

Fig. 9  Depth profiles of Vs 
from the true (black solid line), 
initial (black dashed line), 
inverted (blue line) and two-step 
inverted (red line) model at 
x-axis locations of 1, 2, 3, 4, 
and 5 km
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this test, density model is given by well-known Gardner’s rela-
tionship: � = 310 ×

(
vp
)0.25 (Gardner et al. 1974), and S-wave 

velocity model is given by relationship: vs = vp∕1.41 . Figure 11 
displays the P- and S-wave velocity inversion results simultane-
ously after 23 iterations. As we can see, the reflections in P-wave 
velocity model is more continuous. However, there are some dis-
continuous events and noise in low depth area in S-wave velocity 
models, and there are two reasons: (1) the trade-off between 
P- and S-wave; (2) the data set mainly contains P-wave informa-
tion. We synthesize one shot record by finite difference forward 
modeling method with inverted P- and S-velocity model, and 
we compare them with the real seismogram in the same picture, 
which is illustrated in Fig. 12. Except for surface wave and direc-
tion cut in inversion, the main reflections match well.

Conclusions

In this paper, we propose a multi-parameter full-waveform 
inversion method using the P-wave data with high-quality 
converted P-wave information. The following conclusions 
were drawn from model testing.

1. The scalar-P-wave equation obtained by decoupling the 
first-order velocity–stress equation contains only P-wave 
information, unlike the conventional acoustic and elas-
tic wave equations. Compared with the acoustic equa-
tion, scalar-P-wave equation can simulate the converted 
P-waves at the elastic interface, hence it can indicate the 
variability of the S-wave velocity. This provides infor-
mation similar to that of the elastic wave equation. The 
P-wave information received from actual seismic data 
obtained from the particle-motion response from the 
vertical geophone is also similar, when the aiming area 
has a low-velocity zone.

2. The scalar-P-wave equation proposed in this paper has 
the ability to simulate the converted P-waves, and can 
invert the P- and S-wave velocity and density parameters. 

Fig. 10  Initial P-wave velocity model

Fig. 11  P- (a) and S-wave velocity (b) inversion results

Fig. 12  the synthetic record (right side) modeled by inverted models 
compared with real seismograms (left side)
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Because of the strong crosstalk effects between the density 
and the other elastic parameters, density can be generally 
regarded as a constant. We compared the different inver-
sion methods and their effect on the elastic multi-param-
eter inversion results, and the singly inversion method 
performed better in the Marmousi-2 model inversion test.

3. The scalar-P-wave multi-parameter inversion method 
is the only method that evolves from P-wave explora-
tion to multi-wave and multi-component exploration. 
As P-wave data still dominates onshore seismic surveys, 
the proposed method has great significance for inverting 
S-wave velocity parameters based on P-wave.
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Appendix 1

Combining the relationship between the elastic wave veloc-
ity and elastic modulus and density, the three basic equations 
of elastic dynamics are used to derive the two-dimensional 
elastic wave equations in homogeneous isotropic media,

where u and v are the displacement components.
The conventional first-order displacement–stress elastic 

wave equations [Eq. (11)] have been used by many scholars 
to study EFWI (Tarantola 1986; Mora 1987, 1988; Crase 
et  al. 1990; Pratt and Worthington 1990). In practical 
applications, multi-wave and multi-component data need 

(11)
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,

to be acquired to provide the displacements in different 
directions in the equation. As mentioned above, onshore 
exploration depends on P-wave data. Therefore, our aim is 
to decompose the elastic wave equation and obtain a multi-
parameter equation containing only pure P-wave informa-
tion. Using the equivalent representation of the constitutive 
equation, the constitutive equations in the swell-shrinking 
(pressure) and shear-rotating forms can perform the decom-
position of the elastic waves. The constitutive relationship 
of the pressure form of the media is,

where K is the bulk modulus and

The constitutive relationship in the shear-rotating form is

And the tensors Si,j and Ti,j are,

Equations (12) and (15) represent the constitutive equa-
tions in the swell-shrinking and shear-rotating forms. Com-
bining Eq. (11), the two-dimensional scalar-P-wave equation 
consisting of K and μ can then be obtained,

where f is the source term and the P-wave source is loaded 
onto the P-wave component in this paper.

Equation  (9) decomposes the elastic wave equation 
into a first-order pressure–displacement–stress equation, 
thereby separating the pressure term, which corresponds to 
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3
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the P-wave data received onshore, and this form is equal to 
Eq. 2.

Appendix 2

The scalar-P-wave Eq. (15) also satisfies the wave equation 
in the background model. In the Born approximation, the 
model m can be decomposed as the background model m0 
and the perturbation �m,

where � represent the perturbation, and m is

The wavefields can be similarly decomposed as

Substituting Eqs. (18) and (19) into Eq. (17), we obtain
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Subtracting Eq. (21) from the equation satisfied by the 
background media,

The above expression can be written as

where s̃ is the virtual source

and

Therefore, the gradient can be calculated as

Thus, the Lame constant-density gradient is expressed as
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Abstract
Seismic exploration is an important means of oil and gas detection, but affected by complex surface and near-surface condi-
tions, and the seismic records are polluted by noise seriously. Particularly in the desert areas, due to the influence of wind and 
human activities, the complex desert noise with low-frequency, nonstationary and non-Gaussian characteristics is produced. 
It is difficult to extract effective signals from strong noise using existing denoising methods. To address this issue, the paper 
proposes a new denoising method, called multimodal residual convolutional neural network (MRCNN). MRCNN combines 
convolutional neural network (CNN) with variational modal decomposition (VMD) and adopts residual learning method 
to suppress desert noise. Since CNN-based denoisers can extract data features based on massive training set, the impact of 
noise types and intensity on the denoised results can be ignored. In addition, VMD algorithm can sparsely decompose signal, 
which will facilitate the feature extraction of CNN. Therefore, using VMD algorithm to optimize the input data will condu-
cive to the performance of the network denoising. Moreover, MRCNN adopts reversible downsampling operator to improve 
running speed, achieving a good trade-off between denoising results and efficiency. Extensive experiments on synthetic and 
real noisy records are conducted to evaluate MRCNN in comparison with existing denoisers. The extensive experiments 
demonstrate that the MRCNN can exhibit good effectiveness in seismic denoising tasks.

Keywords Residual learning · Desert seismic record · Noise suppression · Variational mode decomposition

Introduction

Driven by the development of national economy and the 
improvement in science and technology, the requirement 
of seismic exploration technology has gradually devel-
oped from enhancing effective signals to “three high” (high 
signal-to-noise ratio, high resolution and high precision) 
demands. In the “three high” requirements, high signal-
to-noise ratio (SNR) is the foundation. However, in the 
desert area, due to the influence of wind (Shoulong et al. 
2014; Li et al. 2015; Wang et al. 2017), surface conditions 
(Michael et al. 2018) and human noise of near field and far 

field (Li et al. 2017), seismic noise has complex natures. 
Firstly, desert noise shares the same frequency band with the 
effective signal (Li and Li 2016), which makes the time–fre-
quency domain filtering algorithm unable to extract the 
effective signal while suppressing the noise; secondly, most 
of the desert noise is non-Gaussian (Zhong et al. 2015), so 
some current methods of suppressing Gaussian noise cannot 
be applied to desert noise. Meanwhile, high intensity and 
irregular interference make the random noise more complex 
than the common noise. Therefore, it is necessary to develop 
a high-performance denoising method for desert noise.

Many traditional denoising methods have been proposed 
and successfully applied to the seismic data denoising 
(Cobelli 2010; Pilikos and Faul 2017; Liu and Ma 2018). 
These methods are not limited to the simple or direct appli-
cations, and the corresponding improved algorithms (Gan 
et al. 2016; Liu et al. 2017; Yuan et al. 2018a; Yu and Ma 
2017) or the algorithms combined with other methods 
(Baron et al. 2008; Bagheri et al. 2017) have also been 
proposed to improve their deficiencies in denoising. These 
methods and their extension algorithms have performed 
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well in suppressing noise with specific characteristics. 
However, since the denoising algorithms often rely on the 
priori assumptions of signal or noise models (Makitalo and 
Foi 2012; Yuan and Wang 2013), the denoising methods 
need to meet certain applicable conditions: For example, the 
SNR cannot be too low, the noise needs to obey the specific 
distribution (e.g., Gaussian distribution, white noise) and 
satisfy some characteristics (e.g., uniformity, linearity), and 
so on. For desert noise, due to its complex characteristics, 
it is gradually difficult to process low-quality desert seismic 
data by existing techniques.

Deep learning (DL) is based on a large amount of samples 
and obtains more abstract high-layer information by com-
bining low-layer information to acquire the latent features 
of data, thus realizing intelligent processing and analyzing 
of data (Hao et al. 2016). At present, many DL-based net-
works have been successfully applied in the field of seismic 
exploration: For example, Yuan et al. (2018b) have realized 
seismic waveform classification and first-time picking and 
Ross et al. (2018) have detected seismic body-wave phases. 
For seismic noise attenuation, Li et al. (2019) used a small 
amount of collected prestack noise as the training set to train 
the network which can suppress ground roll. However, the 
prestack noise cannot fully reflect all the characteristics of 
noise, so the obtained network cannot suppress the noise that 
is not included in the training set. To solve the problem of 
inadequate training set, in Yu et al. (2018), both the synthe-
sized data and the field data are used as the training set to 
train the network. Random noise, linear noise and multiple 
noise are successfully removed by using the obtained net-
work model. Nevertheless, due to the limited richness of the 
synthesized training set, the suppression effect of seismic 
noise still needs to be improved.

Residual network (ResNets) was proposed by He et al. 
(2016) at the CVPR in 2016. The network utilizes resid-
ual learning to deepen the layers of network and has made 
remarkable achievements in the field of denoising since it 
was proposed. Zhang et al. (2016) proposed a denoising con-
volutional neural network called DnCNN and applied it to 
image denoising tasks. DnCNN combines residual learning 
and batch normalization to speed up the training process as 
well as boost the denoising performance, and removes the 
latent clean image with the operations in the hidden layers 
to predict the residual image, i.e., the difference between 
the noisy observation and the latent clean image. Zhao et al. 
(2019) successfully applied DnCNN algorithm to seismic 
denoising, which proves that the effective combination of 
residual learning and batch normalization is suitable for the 
seismic noise.

This paper proposes a novel desert seismic denoising 
method, namely multimodal residual convolutional neural 
network (MRCNN). This method sparsely processes desert 
seismic data in VMD domain and extracts the desert noise 

by the feature extraction capability of DnCNN. In addition, 
in order to improve the execution efficiency and reduce the 
computational load, similar to the FFDNet method proposed 
in Zhang et al. (2018), MRCNN adopts subpixel convolution 
operation proposed by Shi et al. (2016) to process the data 
in the downsampling subspace. The experimental results 
of synthetic and field seismic records show that our algo-
rithm can effectively suppress the seismic noise and recover 
the effective reflections almost completely. By comparing 
the proposed algorithm with other denoising algorithms 
(band-pass filter, VMD filter and DnCNN), it is proved that 
MRCNN has the best denoising performance in suppressing 
noise and protecting signals. The structure of this paper is as 
follows. “Theory” section introduces the denoising theory 
of proposed method, including the decomposition principle 
of VMD, the denoising principle of DnCNN and the denois-
ing principle of MRCNN. “Experiments and result” section 
analyzes the denoising performance of MRCNN through 
synthetic and field records. The last section is the conclu-
sion and discussion of this paper.

Theory

Variational mode decomposition

VMD is an adaptive signal decomposition method proposed 
by Dragomiretskiy and Zosso (2014). It mainly determines 
the bandwidth and center frequency of component modes by 
solving the variational problem of modal components and 
decomposes the input signals into a series of sparse signals. 
The variational optimization problem can be described as:

where �k and �k are shorthand notations for the set of all 
modes and their center frequencies, respectively. Use both 
quadratic penalty term and Lagrangian multipliers, � , in 
order to render Eq. (1) unconstrained. The above problem 
can be written as follows:

where α is used to constrain data fidelity.
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After that, minimization of Eq. (2) is solved with alternat-
ing direction method of multipliers (ADMM). The ADMM 
is used to update alternately the parameters according to 
Eqs. (3) and (4) to solve the above variational problems until 
the convergence condition Eq. (5) is satisfied:

where �̂�k is the Fourier transform of �k.

where � is the convergence value.

Denoising principle of DnCNN

Denoising convolutional neural network (DnCNN) (Zhang 
et al. 2016) adopts residual learning to predict the residual 
data and gradually separate effective signal from the noisy 
observation through the hidden layers. Since the type of 
noise removed by DnCNN is mainly determined by training 
set, the network can suppress the desert seismic noise as 
long as we design the training set reasonably. Figure 1 shows 
the network architecture of the DnCNN, which includes the 
convolutional layer (Conv), batch normalization layer (BN) 
and rectified linear unit (RELU). Specifically, the convolu-
tional layer consists of a stack of convolution kernels, which 
can extract seismic noise through the convolution operation 
of convolution kernel and seismic data. The batch normali-
zation layer can make the input of each layer have approxi-
mately the same distribution, which effectively avoids the 
problem of vanishing gradient and improves the convergence 
speed of the network. Rectified linear unit is an activation 
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function commonly used in artificial neural networks, which 
can also overcome the vanishing gradient problem and accel-
erate the network training.

The input of DnCNN is a noisy observation

where s represents the effective signal, n represents the 
desert noise and y represents the noisy record. DnCNN 
employs the residual learning formulation to train a residual 
mapping, and the learning target of the network is

where � is the network parameter including weight W and 
bias b. Then, we can get the clean data

To make R(∙) and n as close as possible, the averaged 
mean squared error between the desired residual data and 
estimated ones from noisy input

can be adopted as the loss function to learn � , and {yi, ni}Ni=1 
represents N noisy–noise training data pairs.

Denoising principle of MRCNN

Desert seismic data have complex noise structure, which 
will not conducive to extracting the seismic events directly. 
The VMD method can decompose the seismic data into a set 
of band-limited modes with obvious characteristics, which 
will facilitate the feature extraction. Meanwhile, as the VMD 
method is shift-invariant, the noisy decomposed modes can 
be processed in a patch-by-patch manner using the convolu-
tion operator. Therefore, the paper proposes to use VMD 
method to sparsely decompose the input data, which will 
facilitate feature extraction of the network.

Subpixel convolution is an ingenious method of super-
resolution proposed by Shi et al. (2016), which can improve 
the operational efficiency of deep networks. According to 
Zhang et al. (2018), MRCNN samples decomposed modes 
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Fig. 1  Architecture of the DnCNN
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into subdata as input of DnCNN. At the output end, the 
periodic shuffling operator (Shi et al. 2016) method is used 
to reconstruct the final output. By doing so, we effectively 
reduce the network parameters and increase the receptive 
field while maintaining the accuracy of the results.

Figure 2 illustrates the architecture of the proposed algo-
rithm. The first layer is the decomposition layer. We decom-
pose the input data into multiple modes by 1D VMD and 
arrange the same mode into a two-dimensional data. Figure 3 
shows the decomposition results of noisy records with dif-
ferent SNRs (− 5.6890 dB, − 9.2108 dB and − 11.7096 dB) 
at different decomposition times (4–6), where the red boxes 
are the modes with effective signals and the blue boxes are 
the modes without effective signals. It can be seen from the 
two modal distributions that the effective signals are con-
centrated in mode 1 and mode 2 when decomposed for four 
times, and the reflection events are retained well. When the 
decomposition times are 5 and 6, a small amount of effective 
signals remain in the third mode, which will affect the accu-
racy of the network to extract effective signals. Therefore, 
the decomposition times of VMD are set as 4 in this paper.

The second layer is a reversible downsampling opera-
tor, which reshapes the modes of size W × H into tensors of 
size W

r
×

H

r
× r2 . Here, r is the downsampling factor and the 

paper sets r to 2 since it can largely improve the speed with-
out reducing modeling capacity. The third layer to the penul-
timate layer is 16-channel DnCNN. In the previous theory, 
we decompose the dataset into four modes, and each mode 
is reshaped into four ( r2 = 4 ) subdata, so the DnCNN inputs 
data through 16 channels. For the last layer, we adopt the 
subpixel convolution to reverse the downsampling process 
to estimate the noise modes, and all estimated modes are 
added together to obtain the ultimate estimated noise. The 

denoised record is the difference between the noisy seismic 
observation and the predicted noise.

Experiments and result

Experiments on synthetic record

This paper designs a 2D synthetic data to verify the MRCNN 
for desert noise suppression. Figure 4a exhibits a synthetic 
noise-free record which contains 17 reflections with 90 
receivers, each receiver with 1000 samples; the dominant 
frequencies of the record include 20 Hz, 25 Hz and 30 Hz; 
and the signal amplitude is decremented from shallow to 
deep. In addition, the field seismic data are prone to fail to 
meet the sampling theorem due to the influence of acquisi-
tion factors, resulting in the loss of seismic traces. Therefore, 
we add some sparse areas to the synthetic seismic data to 
reflect the phenomenon of missing seismic traces, as shown 
in the red boxes in Fig. 4a. Figure 4c shows a noisy synthetic 
record with the SNR of − 6.5707 dB, which is gained by 
adding real desert noise to the noise-free record shown in 
Fig. 4b. Figure 4d–f shows the f–k spectrum of Fig. 4a–c, 
respectively. From the f–k spectrum, we can conclude that 
the noise in desert area has the characteristic of low fre-
quency, and the frequency of effective signal and noise over-
lap seriously.

We set the parameters of MRCNN according to Table 1, 
and the rules for selecting network parameters are as follows:

1. Patch size Patch-based image denoising techniques com-
monly use a patch of size 40 × 40. According to Levin 
and Nadler (2011), high noise level usually requires 

Fig. 2  Architecture of the MRCNN
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Fig. 3  Decomposition results of seismic records with different SNRs 
at different decomposition times (four, five and six times). a Decom-
position results of seismic record with a SNR of − 5.6890  dB, b 

decomposition results of seismic record with a SNR of − 9.2108 dB, 
c decomposition results of seismic record with a SNR of 
− 11.7096 dB
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larger effective patch size to capture more context infor-
mation for signal recovery. Considering that desert seis-
mic data are usually seriously polluted by random noise 
and regular noise, a larger patch size should be applied 
to extract sufficient effective information. However, the 
increasing patch size will increase the difficulty of net-
work training, so we conduct a large number of simula-
tions and practical experiments and find that the network 
has the best performance when the patch size is 50 × 50. 
Therefore, we finally determine the patch size in this 
paper is 50 × 50.

2. Convolution kernel size In order to reduce the network 
parameters and improve the nonlinearity of the network, 
we use a stack of multiple small convolution kernels 
instead of a larger one. The convolution kernel size of 
the first convolutional layer in DnCNN (the third layer 
of MRCNN) is set to 3 × 3×16 × 128 (the reason for 
choosing 16 channels is explained in Part C of “The-
ory” section), and the convolution kernel size of the last 
convolutional layer in DnCNN (the penultimate layer 
of MRCNN) is set to 3 × 3×128 × 16. For the remaining 
convolutional layers of DnCNN, convolution kernels of 
size 3 × 3×128 × 128 are used.

3. Network depth: Theoretically, deeper networks have 
stronger ability to extract features. However, when the 
network depth reaches a certain level, the network per-
formance tends to be stable. Excessive increase in the 
network depth will not only increase the computational 
cost, but also may lead to network overfitting. In order 
to find the appropriate network depth, we use the control 
variable method to train the network. Specifically, we 
only change the network depth (nine layers to 24 layers) 
and maintain other hyperparameters unchanged (set the 
other hyperparameters according to Table 1), and then 
test the denoising performance of MRCNN at differ-
ent layers by the variation in SNR. Figure 5 shows that 
the SNR has no significant improvement after 18 layers, 

Fig. 4  Synthetic record processing. a Noise-free record, b desert noise, c noisy record, d f–k spectrum of noise-free record, e f–k spectrum of 
desert noise, f f–k spectrum of noisy record

Table 1  Network training parameters

Training environment Specification

Patch size 50 × 50
Batch size 128
Convolution kernels First layer: 

3 ×  3 × 16 × 128
Last layer: 

3 ×  3 × 128 × 16
Other layers: 

3 ×  3 × 128 × 128
Epoch 50
Network depth 18
Learning rate range [10−3–10−5]
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but the network training time will be greatly increased. 
Therefore, taking into account the ability of network 
denoising and training efficiency, we finally determine 
the depth of the MRCNN to be 18.

In this paper, signal set consists of simulated seismic 
events, including Ricker wavelets of different apparent 
velocities, different dominant frequencies and different 
amplitudes. The noise used in the construction of training 
set is collected in the field or extracted from the field seis-
mic data. The main factors of pollution desert seismic data 

are random noise and surface wave, so this paper mainly 
extracts these two kinds of noise to train the network. For 
random noise, the noise data are collected from the desert 
area of Tarim Basin in Western China. There are a total of 
2300 receivers, each receiver with 30,000 samples, and the 
sampling rate is 500 Hz. Figure 6a shows part of the random 
noise. For surface wave, the noise data are extracted from 
the field seismic data in the western desert region of China. 
There are a total of 800 receivers, each receiver with 1200 
samples, and the sampling rate is 500 Hz. Figure 6b shows 
part of the surface wave. The noisy training set is obtained 
by adding the noise training set and the signal set.

Figure 7d shows the denoised record using the proposed 
algorithm, and the SNR can reach 13.2438 dB. This paper 
compares the denoising performance of MRCNN with 
band-pass filter, VMD filter and DnCNN algorithm. Fig-
ure 7a shows the result of band-pass filter, and the SNR 
is 2.5023 dB. Figure 7b shows the result of VMD filter 
(the mode number of decomposition is 4) with the SNR of 
3.9436 dB). The DnCNN algorithm with the same set as 
the MRCNN is used to process the synthetic record, and the 
result is shown in Fig. 7c, with the SNR of 7.2031 dB. For 
the execution time of the algorithm, the introduction of sub-
pixel convolution mitigates the time loss caused by VMD. 
With the same network parameters (including the number of 
network layers, number of training sets, patch size, epoch, 
etc.), the training time of DnCNN and MRCNN is 22.45 h 
and 10.62 h, respectively.

Fig. 5  SNR of a synthetic seismic data after being processed by 
MRCNN with different network depths (nine layers, 12 layers, 15 lay-
ers, 18 layers, 21 layers and 24 layers)

Fig. 6  Partial random noise (a) and surface wave (b)
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From Fig. 7, we have the following observations. The 
denoising results of band-pass filter and VMD filter are very 
poor. In these results, the noise cannot be suppressed effec-
tively and there is serious energy loss of reflections. The 
result of DnCNN is better, reflection events can be recov-
ered clearly, but the denoised record still contains a certain 
amount of noise. In comparison, the result of MRCNN is 
the best. It can almost completely suppress the desert noise 
without the signal energy loss. The red boxes in Fig. 7 
show that both MRCNN and DnCNN have the ability to 
recover the lost seismic events, but the MRCNN can recover 
the seismic reflections more continuously.

Figure 8a–d shows the single-trace contrast figures of 
the 46th trace, where the green curves represent the noisy 
records, the black curves represent the noise-free records 
and the red curves represent denoised records. The compari-
son shows that although most of the low-frequency noise 
has been effectively suppressed after being processed by the 
band-pass filter, the noise sharing the same frequency band 
with the signal still exists and the signals have energy loss. 

Compared with band-pass denoised record, VMD denois-
ing result has less energy loss. However, the suppression of 
desert noise is still incomplete. MRCNN and DnCNN have 
similar performances in amplitude preservation of signals, 
but MRCNN algorithm can suppress noise more thoroughly. 
The black boxes in the figures represent the missing seismic 
traces. The comparison shows that the attenuation of signal 
for MRCNN denoising result is less than 10%, and it is sig-
nificantly better than the DnCNN.

Figure 9a–d shows residual maps of synthetic record, that 
is, difference between noisy record and denoised record. The 
comparison shows that (1) there are some effective signal’s 
residues in the residual map of band-pass filter, which indi-
cates that this method cannot protect the signals effectively; 
(2) VMD algorithm cannot suppress the desert noise com-
pletely; and (3) there is no significant difference between 
the residual maps of DnCNN and MRCNN, indicating that 
the two algorithms have similar ability to protect signals 
and noise.

Fig. 7  Comparison of synthetic record. a Band-pass denoised record, b VMD denoised record, c DnCNN denoised record, d MRCNN denoised 
record
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Fig. 8  Single-trace contrast of the 46th trace. a 46th trace in band-pass denoising result, b 46th trace in VMD denoising result, c 46th trace in 
DnCNN denoising result, d 46th trace in MRCNN denoising result

Fig. 9  Residuals comparison of synthetic record. a Band-pass denoised residuals, b VMD denoised residuals, c DnCNN denoised residuals, d 
MRCNN denoised residuals
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Figure 10a–d demonstrates the f–k spectrum of the resid-
ual maps, and the results obtained from the time-domain 
analysis can be further verified in the frequency domain. 
From the red boxes, we can see that the band-pass filter 
and VMD filter cannot separate the signal from the noise 
in the overlapping of frequency band, and the residual of 
the seismic reflections can be clearly seen in the band-pass 
residual. The white boxes exhibit that DnCNN algorithm 
cannot completely suppress the desert noise in the mid-
dle- and high-frequency band, and some noise remains in 
the record after denoising. Only the residual of MRCNN is 
closest to the actual noise, which reflects that the denoising 
effect of MRCNN is the best.

Furthermore, to verify the denoising ability of MRCNN 
for noisy data with different levels of noise, we adopted the 
four algorithms above to process five kinds of noisy records. 
SNR and mean squared error (MSE) are used to measure 
the noise suppression ability and the amplitude preserva-
tion ability of these four algorithms, respectively, shown in 
Table 2. In each noise level, the SNR of MRCNN denoised 

result is higher than the other three algorithms, and the MSE 
of MRCNN denoised result is lower than the other three 
algorithms, which proves that the performance of MRCNN 
is better. In particular, when the SNR of synthetic records is 
low, the other three algorithms fail in processing ultralow-
quality seismic data, whereas MRCNN can still achieve 
excellent denoising effect.

Experiments on field record

In this paper, we apply the four algorithms to the field 
common-shot-point record shown in Fig. 11a, which is pol-
luted by both random noise seriously and surface waves. 
The denoised results of the four algorithms are shown in 
Fig. 11b–e, respectively. We can see that band-pass filter, 
VMD filter and DnCNN algorithms have a limited suppres-
sion ability to desert noise. Particularly for the surface wave, 
there are obvious noise residues in the results of the other 
three algorithms. Moreover, for random noise, VMD and 
DnCNN cannot suppress it either. In comparison, MRCNN 
performs the best. MRCNN can remove the desert noise 
completely and recover seismic reflection events clearly and 
continuously. Meanwhile, we compare the difference before 
and after denoising by using selected methods (Fig. 12). 
From the removed noise, we can see that Fig. 12a, b shows 
a large number of effective signal remains. In Fig. 12c, the 
random noise reduction is not complete. Only in Fig. 12d, 
the effective signal has no energy loss and the noise is sup-
pressed thoroughly.

Conclusion and discussion

This paper proposes a new denoising method—MRCNN, 
which adopts the VMD method to decrease the complexity 
of the seismic data and enhance the accuracy of residual 
network denoising. The contributions of this work are sum-
marized as follows:

(a) Due to the complex characteristics of desert seismic 
noise, some denoising methods cannot separate the sig-
nal from noise effectively. This paper uses discrimina-

Fig. 10  f–k spectrum of residual map. a f–k spectrum of residual map 
for band-pass, b f–k spectrum of residual map for VMD, c f–k spec-
trum of residual map for DnCNN, d f–k spectrum of residual map for 
MRCNN

Table 2  Suppressing 
performance of noisy record 
with different noise levels

Original record Band-pass filter VMD filter DnCNN MRCNN

SNR (dB) MSE SNR (dB) MSE SNR (dB) MSE SNR (dB) MSE SNR (dB) MSE

2.3032 0.0518 5.6899 0.0283 7.9207 0.0146 13.2394 0.0038 19.9070 0.0010
− 2.1338 0.1697 5.0720 0.0330 5.1390 0.0328 9.3692 0.0095 16.0520 0.0014
− 6.5707 0.3162 2.5023 0.0492 3.9436 0.0430 7.2031 0.0162 13.2438 0.0019
− 8.653 0.6860 − 0.4777 0.1043 − 5.0391 0.3023 2.2804 0.0504 7.9557 0.0132
− 12.175 1.2790 − 3.0589 0.1862 − 7.7828 0.5306 − 3.3102 0.1966 3.0943 0.0501
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Fig. 11  Comparison of field record. a Field seismic data, b band-pass denoised result, c VMD denoised result, d DnCNN denoised result, e 
MRCNN denoised result
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tive learning method to separate the signal and noise 
by feature extraction, which avoids the influence of 
complex noise characteristics on the denoised result.

(b) This paper integrates the VMD algorithm into CNN-
based network. VMD has excellent ability to sparsely 
decompose data, which can simplify the learning 
requirements of network and increase the capacity to 
predict the noise.

(c) Efficiency is also a crucial issue in practical CNN-
based denoising. We adopt the subpixel convolution to 
improve the running speed of the network and predict 
the desert noise in the subdata space.

The excellent performance of MRCNN has been proven 
by both synthetic and field experiments. The proposal of 
MRCNN provides a new solution for the denoising task of 
desert seismic data.

However, the VMD algorithm applied in MRCNN is still 
a 1D VMD algorithm, which causes the neglect of the global 
feature of the dataset. In the future, we will try to combine 
MRCNN with multidimensional VMD algorithm or with 
other decomposition algorithms which contain the global 
feature to improve the MRCNN network.
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Abstract
Seismic data in desert area generally have low signal-to-noise ratio (SNR) due to special surface conditions. Desert noise is 
characterized as low-frequency, non-Gaussian and non-stationary noise, which makes the noise suppression in desert area 
more challenging by conventional methods. Conventional methods are effective for the signal with high SNR, but in desert 
seismic signal, the SNR is low and the signal can easily be obliterated in desert noise. In this paper, we propose an approach 
that operates in synchrosqueezing transform (SST) domain and use classification techniques obtained from supervised 
machine learning to identify the coefficients associated with signal and noise. First of all, we transform the real desert seis-
mic data into time–frequency domain by SST. Secondly, we select features by calculating the SST coefficients of signal and 
noise. And then, we train them in the Adaboost classifier. Finally, when the training is completed, we can obtain the final 
classifier that can effectively separate the signal from noise. We perform tests on synthetic and field records, and the results 
show great advantages in suppressing random noise as well as retaining effective signal amplitude.

Keywords Adaboost classifier · Desert low-frequency noise suppression · Seismic low-frequency signal detection · 
Synchrosqueezing transform

Introduction

Seismic exploration is one of the important methods for 
prospecting oil and gas resources (Mondol 2010). In the 
exploration process, the field data in desert area contain a 
lot of low-frequency noise due to complex geological struc-
tures and surface environment, which reduces the SNR 
(Zhong et al. 2015). Hence, it is important to distinguish 
the effective signal from noise in desert seismic data. The 
unsupervised machine learning based on k-means algorithm 
was proposed to detect the waveform in transform domain, 
which can effectively detect the main waveform in the data 
and quickly extract the microseismic signal (Chen 2018). 
However, this method may lose efficacy under a high noise 
level. Sparse S transform can be used to obtain the sparse 
and aggregated time-spectrum with high resolution (Wang 

et al. 2017), but it is limited by fixed window function and 
its energy concentration is not as high as SST (Kumar et al. 
2017). In addition, the Ricker wavelet kernel using LS-SVM 
can be adopted in waveform detection of seismic signal to 
achieve a favorable denoising result (Deng et al. 2007). 
However, LS-SVM embeds two adjustment parameters. If 
these parameters are not properly selected, the performance 
will decrease. Neural network methods have been success-
fully applied in seismic denoising in recent years (Yuan et al. 
2018; Zhao et al. 2019), whereas these methods often require 
a large number of sample sets for training, resulting in an 
increase in the complexity during denoising. Besides, there 
are many methods playing an important role in transform 
domain analysis such as time-varying median filtering (Liu 
et al. 2009), vector median filtering (Liu 2013), empirical 
mode decomposition (Chen and Ma 2014; Bekara and Van 
der Baan 2009) and others utilizing the coherence of signal 
(Zhang and Van Der Baan 2018a,b; Zhou et al. 2016; Chen 
2017). However, in desert area, most conventional methods 
are not ideal due to the low-frequency, non-Gaussian, non-
stationary and other complex characteristics of desert noise 
(Li et al 2017; Zhong et al 2015).
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In this paper, we propose an approach that operates in 
time–frequency domain (Qin and Song 2016; Wang et al. 
2018; Anvari et al. 2017) and use classification technique 
adopted from supervised machine learning (Freund and 
Schapire 1997; Lv et al. 2017) to identify the signal and 
noise coefficients. Firstly, the noisy desert seismic signal is 
transformed into time–frequency domain by SST. We use 
the coefficients in SST domain to extract the features of the 
signal and the noise. Secondly, these features are trained in 
the Adaboost classifier. Through the continuous iterations, 
the final classifier can be obtained and the signal and noise 
are separated. Finally, we keep the coefficients of the effec-
tive signal and transform them back to time domain by the 
inverse transform of SST. Unlike neural network methods 
(Yuan et al. 2018; Zhao et al. 2019), Adaboost algorithm 
in this paper requires a smaller number of samples for 
training, which reduces the complexity of the algorithm 
(Freund and Schapire 1997). And it also can enhance its 
classification accuracy, so as to achieve the optimal clas-
sification effect.

Noise reduction method

The proposed method mainly includes two parts: feature 
extraction and classification. SST (Daubechies and Maes 
1996) is selected to realize domain transformation. The 
features are extracted by the coefficients in SST domain. 
Adaboost algorithm is used to accurately classify signal 
and noise features. Once the classification of Adaboost is 
completed, the SST coefficients of the effective signal can 
be identified. Therefore, the innovation of this paper is the 
feature extraction and the classification in transform domain.

Transform domain

SST is a time–frequency method (Daubechies et al. 2011). 
It is used to solve the problem of speech recognition under 
noise interference. The main idea is to calculate the speech 
signal analyzed by wavelet transform and then refocus on the 
calculated divergent blur values. A detailed theoretical deri-
vation of SST is given by Daubechies et al. (2011). Firstly, 
the definition of CWT is given:

where �∗ is complex conjugate, a is scale factor, b is time 
shift factor, and s(t) is the signal.

According to Parseval theory in frequency domain (Yuan 
et al. 2018):

(1)Ws(a, b) =
1
√
a ∫ s(t)�∗

�
t − b

a

�
dt

where j =
√
(−1) and � is the angular frequency.

If we ignore the ambiguity near the time axis, we can 
calculate the partial derivative of the wavelet transform at (a, 
b) to obtain the instantaneous frequency; for all Ws(a, b) ≠ 0 , 
we have:

The signal can be projected from time domain to time–fre-
quency domain using Eq. (3). Convert (a, b) into (b,ws(a, b)) . 
The operation is called synchronous compression.

Taking the scale interval Δak = ak−1 − ak  ,  the 
value of SST is determined by the frequency range [
wl − Δw∕2,wl + w∕2

]
 around the center frequency wl:

Among them, the value of ak is in the interval 
|||w
(
ak, b

)
− wl

||| ≤ Δw∕2 , wl is the lth discrete angular fre-
quency, and ak is the kth discrete scale.

After the synchronous compression, the signal can be 
reconstructed.

When s is a real signal, there is ŝ(�) = ŝ∗(−�) , then 
s(b) =

1

�
Re

[∫ ∞

0
ŝ(�)eib�d�

]
 , here we make C� =

1

2
∫ ∞

0
�̂∗ d�

�
 , 

then we have: 

The inverse transformation of SST is:

Examples of clean signal and noisy signal in SST domain 
are shown in Fig. 1. The SNR of the noisy signal in Fig. 1b 
is − 6.7305 dB. It can be seen that there are significant dif-
ferences between signal and noise in transform domain. We 
use SST to map the desert seismic data into time–frequency 
domain.

Feature extraction and classification

Freund and Schapire (1997) proposed Adaboost algorithm. 
The key idea is to train the same training set using several 
weak classifiers and then obtain a final classifier by the 
weak classifiers. The final classifier can classify the sam-
ples more accurately. Figure 2 shows the training workflow 
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1
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of the Adaboost classifier. The obtained weak classifiers are 
integrated by a voting weight method to generate the final 
classifier.

For seismic data processing, a set of pure signal and 
desert noise are transformed into time–frequency domain 
by SST (Daubechies et al. 2011). Then, we extract features 
of the noise and the signal in SST domain and train them 
with the Adaboost classifier. Once the training is completed, 
we can obtain the final classifier that can effectively identify 
the signal from noise. After the separation, we can retain the 
effective signal part. The denoising effect is also achieved 
during detection.

We use Eqs. (1)–(4) to obtain the coefficients of the pure 
signal as the positive samples and the coefficients of the 
noise as the negative samples. All the samples are put into 
the Adaboost classifier for training. We input the sample set 
Q =

{(
x1, y1

)
,
(
x2, y2

)
,… , (xi, yi)

}
, yi ∈ {−1,1} , where xi is 

the sample to be classified, yi is the label, a positive sample 
(pure signal point) is set as 1, and a negative sample (noise 
point) is set as − 1. The number of iterations is T  , the final 
strong classifier is H(x) , and n is the sum of the samples. 
Assuming the distribution of the sample to be evenly distrib-
uted,Dt(i) = 1∕n , where Dt(i) is the weights assigned to the 

sample 
(
xi, yi

)
 in the tth iteration. Each sample is of weight 

1∕n . The training set is trained according to the Dt sample 
distribution to obtain the classifier Gt(xi) ( xi is the ith sample 
point), whose classification error rate is:

where xi is the sample being classified and yi is the label. The 
weighting coefficient � of the tthweak classifier is:

where et is the classification error rate. The weight of the 
sample is updated:

where Zt is the normalization factor.
The Adaboost classifier adds new weak classifiers contin-

uously to achieve a sufficiently small error rate. The classifier 
uses the weight factor of each sample to allocate the prob-
ability of entering the next training. The sample correctly 

(7)et = p(Gt(xi) ≠ yi)

(8)�t =
1

2
ln
1 − et

et

(9)

Dt+1(i) =
Dt(i)

Zt
×

{
e−�t ,Gt

(
xi
)
= yi

e�t ,Gt

(
xi
) ≠ yi

=
Dt(i)exp(−�tyiGt(xi))

Zt

Fig. 1  Time–frequency of the signal in SST domain. a Pure signal. b Noisy signal. c Time–frequency of a in SST domain. d Time–frequency of 
b in SST domain
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classified during the training process should be lowered to 
reduce the probability of being selected in the next training 
process. On the contrary, weight of the sample incorrectly 
classified in the training process will be increased. Follow-
ing this process, Adaboost can pay more attention to the 
samples with difficult classification and increase the correct 
rate in the final classification results (Lv et al. 2017).

The initialized sample weights are constantly changed 
during the iterations. Once the iteration is terminated, 
the classification is completed. Then, we can get the final 
classifier:

where x is the sample set and sign is a symbol function.
Once the training is completed, the final classifier in 

Eq. (10) can be used for the separation of signal and noise.

Desert seismic noise reduction

We use SST coefficients as the input features to train an 
Adaboost classifier for the signal and noise separation. The 
main steps are given as follows:

(10)H(x) = sign

(
T∑

t=1

�tGt(x)

)

Transform the pure signal and the noise samples into 
time–frequency domain by SST, and the respective SST 
coefficients are obtained as features. The coefficient of 
the signal is set as a positive sample, and the coefficient 
of the noise is set as a negative sample.
Put the positive and negative samples into the Adaboost 
classifier for training, and the iterative process is repeated 
according to the weight. When the iterative process is 
done, we can obtain the final classifier.
Use the final classifier to identify signal and noise in 
SST domain, retain the signal coefficients, and discard 
the noise coefficients.
Convert the effective signal coefficients back to time 
domain using SST inverse transform.

The workflow is summarized in Fig. 3.

Experiments and results

Implementation

The features of the noisy desert signals in Fig. 1 are extracted 
in SST domain and sent to the classifier. The classification 
results are given in Fig. 4. Figure 4a shows the classifica-
tion result of a pure signal in SST domain. Figure 4b shows 
the classification result of the SST threshold method in SST 
domain. The method performs an adaptive threshold on the 
SST coefficients of the signal in SST domain (Fig. 4b). The 
signal and the noise are effectively separated in Fig. 4c. In 
addition, the signal in Fig. 4c is very close to the pure signal 
shown in Fig. 4a. We keep the signal and eliminate the noise. 
Then, the inverse SST is used to transform the signal part 
into time domain. According to the classification results in 
Fig. 4, it can be concluded that the method proposed is more 
effective.

Figure 5 shows the results of single-trace processing in 
Fig. 1b. It implies that the SST threshold method not only 
causes the incomplete noise removal, but also attenuates 
the amplitude of signal, which cannot achieve an accept-
able denoising result. The proposed method performs better 
than the SST threshold method in denoising.

Synthetic desert seismic record

We use SNR to verify the effectiveness of a denoising 
method, which is defined as follows:

where d(f ) is the denoised signal and s(f ) is the original 
signal.

(11)SNR = 10log10

∑
t�s(f )�

2

∑
t�d(f ) − s(f )�2

Fig. 2  Training workflow of the Adaboost classifier
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Ricker wavelet with dominant frequencies of 15 Hz, 
20 Hz, 25 Hz and 30 Hz composes the training set, each of 
which wavelet has a random amplitude between 0 and 1, and 
then they are substituted into Eq. (4). After calculating the 
corresponding SST coefficients, we can get the correspond-
ing SST value of clean signal Ts1(wl, b)…Ts40(wl, b) and the 
real desert noise Ts41(wl, b)…Ts70(wl, b) . Regarding the SST 
coefficient points, x1 to x40 represent the pure signal, while 
x41 to x70 represent the actual desert noise (assuming n = 70 
and T = 40).

Figures 6 and 7 show the denoising results of different 
simulation records. As we can see from the figures, the 
method proposed in this paper can suppress noise more 
effectively, while retaining signal more completely. Further-
more, the proposed method can increase the SNR more. Fig-
ure 6 shows a comparison of three methods. The noisy signal 
in Fig. 6c is composed of Fig. 6a, b. According to the experi-
mental results, the wavelet transform in Fig. 6d remains a lot 
of random noise, and its signal has great distortion. The SST 
threshold method in Fig. 6e loses a lot of effective signal 

Fig. 3  The workflow of the 
proposed algorithm

Fig. 4  Coefficient classification results (red and blue dots repre-
sent the signal and the noise, respectively). a Classification result of 
pure signal (corresponding to Fig. 1c). b Classification result of SST 

threshold method (corresponding to Fig. 1d). c Classification result in 
this paper (corresponding to Fig. 1d)
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Fig. 5  The results of single-trace processing in Fig. 1b. a SST threshold method and b the proposed method

Fig. 6  Synthetic record processing. a Pure synthetic signal; b desert 
noise; c synthetic records (SNR = − 6.7305 dB); d wavelet transform 
(− 2.1638  dB); e SST threshold method (2.2941  dB); f proposed 

method (7.2489  dB); g difference between c and d; h difference 
between c and e; i difference between c and f 
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in denoising process, and there are many inaccuracies in 
its classification. In contrast, Fig. 6a, f is relatively close, 
the amplitude of the signal is well preserved, and the noise 
is suppressed more thoroughly. Figure 6g, h, i shows the 
results of the removed noise by using wavelet transform, the 
SST threshold method and the proposed method. We can 
see that the removed noise (Fig. 6i) is very similar to the 
desert noise (Fig. 6b), and there is almost no valid signal in 

this part, which demonstrates superior recovery. However, 
the wavelet denoising method (Fig. 6g) still has some signal 
residual after denoising, and the degree of amplitude pres-
ervation is not as good as the proposed method. Moreover, 
the removed noise of the SST threshold method in Fig. 6h 
also presents some residual signal. Although the denoising 
effect is better than the wavelet transform, it still has too 
much signal distortion.

Fig. 7  Synthetic record f–k spectra. a Original signal, b desert noise, c noisy signal, d proposed method, and e removed noise in this paper
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Figure 7 shows f–k spectra in this paper. It can be seen 
from the comparison among Fig. 7a, c, d that the signal part 
after denoising is more concentrated and it is close to the 
pure signal in Fig. 7a. Moreover, there is not much differ-
ence between Fig. 7e and b. The effective signal is well pre-
served in this method. In summary, the proposed algorithm 
has advantages in desert noise attenuation.

Since the algorithm in this paper has the limitation of the 
lowest SNR, we add 5 random noises of different levels in 
the experiments in Fig. 6 and we repeat the same experiment 
100 times for each noise level (500 experiments in total). 
The output SNRs are calculated. The noise level is differ-
ent in every 100 experiments, and the SNRs have different 
values, but they are basically in a stable level. As shown 
in Table 1, the values are represented by SNR. The SNR 
fluctuates within the range. Obviously, the proposed method 
has obvious advantages in improving SNR, and it also has a 
stable effect in denoising.

We also analyze the SNR of the methods mentioned 
above quantitatively. Figure 8 shows the output SNRs of 
the three methods (wavelet transform, the SST threshold 
method, and the proposed method) under different input 
SNR levels. The line of the proposed algorithm is signifi-
cantly higher than that of two methods, which demonstrates 
its superiority. Table 1 gives a more specific comparison 
among these methods. It shows that the largest SNR values 
belong to the proposed method.

Field record

We use the field records to test the practical application abil-
ity (Fig. 9). The training set is generated by Ricker wave-
let with the dominant frequencies from 15 to 30 Hz, each 
of which is randomly selected with 30 numbers between 
0 and 2 as amplitudes, and then they are substituted into 
Eq. (4). After calculating the corresponding SST coeffi-
cients, we can get the corresponding SST value of clean 
signal T �

s1
(wl, b)⋯T �

s480
(wl, b) , and the real desert noise 

T �
s481

(wl, b)⋯T �
s1480

(wl, b) from real data set and real sur-
face wave. Regarding the SST coefficient points, x′

1
 to x′

480
 

represent the pure signal, while x′
480

 to x′
1480

 represent the 
actual desert noise (assuming n = 1480 and T = 60). We 
still compare the algorithm with wavelet transform and 

SST thresholding algorithm. Figure 9b shows the result of 
wavelet transform, it can be seen from the circled part of 
the red frame that the effective signal becomes thicker in 
Fig. 9b, and the signal on both ends is still aliasing in the 
noise. Also the high-frequency part loses effective signal. 
The SST threshold method in Fig. 9c has a better effect, 
the signal recovery is better than the wavelet transform, and 
the signal is more continuous on both sides. The proposed 
method in Fig. 9d has the best denoising effect. The signals 
are more continuously and clearly recovered. It also com-
pletely removes the surface wave. In summary, the effect of 
the proposed is better than that of the other two methods.

Conclusions

To process complex desert seismic data, we have devel-
oped a novel denoising method in time–frequency domain 
based on supervised machine learning. The method only 
relies on some small training samples. We adopt the idea 
of iterative classification in transform domain. We can clas-
sify the signal and the noise via the training of Adaboost 
classifier. The final classifier of the Adaboost classifier can 
be used to extract the effective signal from desert seismic 
record. In the training process, we try to use samples with 

Table 1  Output SNR with three 
methods in Fig. 6

Input SNR (dB) Output SNR (dB)

Wavelet transform SST threshold method Proposed

− 4.3468 1.1689 ± 0.0131 5.2164 ± 0.0063 11.9188 ± 0.0024
− 6.7305 − 2.1638 ± 0.0206 2.2941 ± 0.0081 7.2489 ± 0.0037
− 8.0197 − 4.4321 ± 0.0431 1.5488 ± 0.0104 4.8543 ± 0.0052
− 9.4013 − 5.9232 ± 0.0659 − 1.0132 ± 0.0257 3.2647 ± 0.0070
− 10.5938 − 6.2246 ± 0.0927 − 2.1274 ± 0.0449 2.3254 ± 0.0101

Fig. 8  Comparison of different SNR levels
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Fig. 9  Real record processing. a Original record, b wavelet transform, c SST threshold method, and d proposed method
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different dominant frequencies and different intensity noise. 
The results show the training data set used in this paper is 
reasonable. Compared with wavelet transform and the SST 
threshold method, the proposed method achieves a better 
denoising performance and it is more flexible to be used in 
practice.
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Abstract
The Goos–Hänchen (GH) lateral shift has been theoretically simulated and observed in lab. GH lateral shift introduces addi-
tional traveltime and distance when the incidence angles are larger than the critical angle. For seismic wave, this GH shift is 
caused by the total reflection of an incident beam of P-wave from low to high impedance medium at near and post-critical 
angles. Because of its large influences on traveltime and lateral shift displacement, the GH shift should be corrected in normal 
moveout (NMO) correction for wide-angle reflections in seismic data processing. In this paper, we derive the partial deriva-
tives of reflection coefficients (PP- and PSV-wave) with respect to circular frequency using the Zoeppritz equations. Then, 
the delay time and NMO correction term with the behavior of GH lateral shift is derived. The characteristics of delay time 
and GH induced time differences are analyzed. The results show that this GH shift could be either positive or negative and 
the delay on time has large influences on seismic reflections when the incidence angles are larger than the critical angles. The 
efficiency of GH induced NMO correction is tested using synthetic seismic data. The GH induced NMO correction should 
be done for wide-angle reflections during the progress of seismic data processing.

Keywords Delay time · Goos–Hänchen shift · Normal moveout correction · Wide-angle reflections

Introduction

The lateral shift of light was first experimentally observed by 
Goos and Hänchen (1947). They demonstrated that the beam 
of reflected light can shift laterally along the reflected inter-
face. This phenomenon is called as Goos–Hänchen (GH) 
shift (Goos and Hänchen 1949; Ignatovich 2004; Chen et al. 
2013; Araújo et al. 2014). This GH lateral shift was fur-
ther introduced into more physical waves rather than light, 
such as electromagnetic, acoustic wave and so on (Lotsch 
1968; Lakhtakia 2003; Aráujo et al. 2016). In recent years, 
researchers found that GH shift could be negative and its 
direction is the same with the direction of energy flow in 
a negatively refractive medium (Bonnet et al. 2001; Resch 

et al. 2001; Berman 2002; Chen et al. 2007). However, this 
GH lateral shift phenomenon was rarely studied in seismic 
exploration.

Seismic reflection is a method applied in exploring the 
underground using artificially injected waves (Gardner 
1947; Ostrander 1984; Zhang and Wapenaar 2002; Yuan 
et al. 2020). Sometimes, it is difficult to image oil and gas 
reservoirs accurately because of the weak transmission 
energy, which mainly caused by wave scattering, waveform 
conversion or strong absorption of high frequency content 
(Brown 1969; Lin et al. 1997; Brittan and Warner 1997). In 
these areas, the potential ability of wide-angle reflections 
has been proved (Lerche 1990; Zhang et al. 2004; Sun et al. 
2007). However, the lateral shift phenomenon always exist 
for the wide-angle reflections and the seismic data process-
ing results are significantly affected by the GH effect (Leo 
and Kraus 2018). Liu et al. (2008) observed that the delay on 
time is related to the incidence angle, media and frequency. 
They proved that the GH lateral shift induced delay time is in 
the same order of magnitude with the wave period. Seismic 
exploration normally uses low-frequency component which 
means the wave period is large, so the GH shift cannot be 
neglected in the seismic data processing.
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Normal moveout (NMO) correction is an important step 
in seismic data processing, which makes all seismograms 
to zero-offset seismograms (Rupert and Chun 1975; Yilmaz 
1987; Tsvankin 1995; Sedek et al. 2015; Yuan et al. 2019). 
For the conventional NMO, the delay time caused by GH 
lateral shift has not been corrected for wide-angle reflec-
tions. In seismic exploration, the diffraction phenomenon 
is a special case of GH shift. Liu et al. (2012) calculated 
the GH lateral shift displacement of wide-angle reflections. 
Wang (2015) testified the influence of GH effect on seismic 
data processing and AVO inversion in attenuating media. 
Leo and Kraus (2018) derived the closed formulas for the 
GH phase and determined the lateral displacements for the 
solid/liquid and liquid/solid scenarios. Based on the previ-
ous work, we propose to calculate the delay time caused 
by the GH lateral shift and derive the GH induced time 
differences based on NMO correction term for wide-angle 
reflections.

In this paper, we derive the partial derivatives of Zoep-
pritz equations with respect to frequency. In addition, the 
delay on time caused by GH is calculated and the GH 
induced time differences based on NMO correction is 
derived for wide-angle reflections. The effects of GH lateral 
shift on traveltime and NMO correction are analyzed in the 
numerical examples.

Zoeppritz equations

Zoeppritz equations describe the relationship between the 
seismic reflection coefficients (PP and PS) and the elastic 
rock properties (velocities and porosity) (Zoeppritz 1919). 
The Zoeppritz equations for only P-wave incidence are (Aki 
and Richards 2002)

where

where Rpp , Rps , Tpp and Tps are the reflection and transmis-
sion coefficients of P- and SV-wave, respectively. The ele-
ments in matrix A are 

(1)AR = B

(2)R =

⎡
⎢⎢⎢⎢⎢⎣

Rpp

Rps

Tpp

Tps

⎤
⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎣

b1

b2

b3

b4

⎤⎥⎥⎥⎥⎦
, A =

⎡⎢⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤⎥⎥⎥⎦
,

a11 = sin �, a12 = cos �, a13 = − sin ��, a14 = cos ��;

a21 = cos �, a22 = − sin �, a23 = cos ��, a24 = sin ��;

Here, � is the incidence and reflection angle of P-wave; 
� denotes the reflection angle of SV-wave; �′ and �′ are the 
transmission angles of the P- and SV-wave, respectively; 
vpi and vsi denote the P- and SV-wave velocities in layer i, 
respectively; �i is density in layer i. As shown in Fig. 1, the 
subscript i (i = 1, 2) denotes the upper and lower layers, 
respectively.

Derivation of partial derivatives of zoeppritz 
equations with respect to frequency

Letting the circular frequency of seismic wave to be � , kpx 
and ksx to be the x-component of P- and SV-wave vectors, 
respectively. The magnitude of P-wave vector is kp = �

/
vp , 

and the wave propagation direction is the direction of wave 
vector. Thus, we have kpx = kp sin � = (� sin �)

/
vp . The inci-

dence, reflection and refraction angles of seismic waves at 
the interface can be expressed using frequency � . In addi-
tion, the reflection coefficients are dependent on � . So the 

a31 = cos 2�, a32 =
v
s1

v
p1

sin 2�,

a33 = −
�
e2

�
e1

v
p2

v
p1

cos 2��, a34 = −
�
e2

�
e1

v
s2

v
p1

sin 2��;

a41 =
v
2

s1

v
2

p1

sin 2�, a42 =
v
s1

v
p1

cos 2�,

a43 =
�
e2

�
e1

v
2

s2

v
p2vp1

sin 2��, a44 = −
�
e2

�
e1

v
s2

v
p1

cos 2��;

b1 = − sin �, b2 = cos �, b3 = − cos 2�,

b4 =
v2
s1

v2
p1

sin 2� = �2
1
sin 2�.

Fig. 1  Reflection and transmission of only P-wave incidence at an 
interface between two elastic media. n is the normal direction
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partial derivatives of Zoeppritz equations with respect to 
circular frequency � can be expressed as

The reflection coefficient R can be calculated using Zoep-
pritz Eqs. (1), (2). To get �R

��
 , the two remaining parameters 

�A

��
 and �B

��
 need to be calculated. In the following sections, 

these two parameters will be calculated, respectively.
The reflection coefficients will become too complex 

when the incidence angle is larger than the critical angle, 
Rpp = �p + i�p and Rps = �s + i�s , where � and � denote the 
real and imaginary parts of reflection coefficients, respec-
tively. The complex angle of reflection coefficient represents 
the additional phase caused by reflection. The GH lateral 
shift is the main reason to cause this additional phase (Goos 
and Hänchen 1947, 1949), the phase angle of P- ( �p ) and 
SV-wave ( �s ) are

As shown in Fig. 2, the seismic waves propagate from 
point C to points E and D. For a given incidence angle � , the 
phase angle of Rpp and Rps can be calculated.

The reflection coefficients of P- and SV-wave can be 
expressed as Rpp =

Epr

Epi

 and Rps =
Esr

Epi

 , where Epr(r, t) and 

Esr(r, t) are the amplitude of reflected P- and SV-wave, 
respectively. Then, we have

here Epi(r, t) denotes the amplitude of incident P-wave. 
When seismic wave travels from point C to point E and D, 

(3)A
�R

��
= −

�A

��
R +

�B

��
.

(4a)�p = tan−1
�
p

�p
,

(4b)�s = tan−1
�
s

�s
.

(5a)Epr(r, t) = Epie
−i(kr ⋅r)+i(�t−�p),

(5b)Esr(r, t) = Epie
−i(kr ⋅r)+i(�t−�s),

the GH lateral shift induced delay time for P-wave can be 
expressed as

Similarly, the GH lateral shift induced delay time for SV-
wave is

where �
p,�

 and �
p,�

 denotes the partial derivatives of the real 
and imaginary parts of P-wave reflection coefficients with 
respect to frequency � , respectively; �

s,�
 and �

s,�
 are the 

partial derivatives of real and imaginary parts of SV-wave 
reflection coefficients with respect to frequency � , respec-
tively. These parameters can be obtained through solving 
Eq. (3).

The partial derivatives of PP and PS reflection coefficients 
with respect to circular frequency � are

To obtain R
pp,�

 and R
ps,�

 , the partial derivatives �A
��

 and �B
��

 
need to be derived. The seismic wave vectors satisfies 
� = k1x = ksx = kpx = k1 sin � =

�

vp1
sin � , where k1 =

�

vp1
 , 

sin � =
vp1�

�
 and cos � =

√
1 −

(
vp1�

�

)2

. Therefore, we have

(6)

tp =
��p

��
=

�

��

(
tan−1

�
p

�p

)

=
1

1 +
(

�
p

�p

)2

�

��

(
�
p

�p

)

=
�2
p

�2
p
+ �2

p

�p
��

p

��
− �

p

��p

��

�2
p

=
1

�2
p
+ �2

p

[
�p�p,� − �p�p,�

]
.

(7)ts =
��s

��
=

1

�2
s
+ �2

s

[
�s�s,� − �s�s,�

]
,

(8a)R
pp,�

=
�R

pp

��
= �

p,�
+ i�

p,�
,

(8b)R
ps,�

=
�R

ps

��
= �

s,�
+ i�

s,�
.

(9a)
� sin �

��
=

�

��

(
vp1�

�

)
= −

vp1�

�2
= −

sin �

�
,

(9b)

� cos �

��
=
(
v
2

p1
�2
/
�3

)/√
1 −

(
v
p1�

�

)2

=
sin

2 �

� cos �
=

1

�
tan � sin �.

Fig. 2  Sketch of Goos–Hänchen lateral shift of reflected P-and SV-
wave
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According to the Snell’s law, sin � =
vs1

vp1
sin � , sin �� =

v
p2

v
p1

sin �  and sin �� = vs2

vp1
sin �  . Similarly, � sin �

��
= −

sin �

�
 , 

� cos �

��
=

1

�
tan � sin � , � sin �

�

��
= −

sin ��

�
 , � cos �

�

��
=

1

�
tan �� sin �� , 

� sin ��

��
= −

sin ��

�
,� cos �

�

��
=

1

�
tan �� sin ��.

Similarly, sin 2� , cos 2� , sin 2�′ , cos 2�′ , sin 2�′ and 
cos 2�′ can be derived, respectively.

Substituting the above derivatives into the Zoeppritz 
equations, �A

��
 and �B

��
 are

w h e r e  T� =
v
s1

vp1
sin 2�(1 − tan2 �), T�� =

�2vs2

�1vp1

sin 2��

(1 − tan2 ��),T� = −
v2
s1

vp1
sin 2�(1 − tan2 �) and T�� = −

�
2
v
2

s2

�
1
v
p2

sin 2��(1 − tan2 ��) . In this way, the partial derivatives of 
reflection coefficients with respect to frequency ( R

pp,�
 and 

R
ps,�

 ) can be calculated for the further calculation of GH 
lateral shift induced delay time ( tp and ts).

(10a)
� sin 2�

��
= −

sin 2�

�
(1 − tan2 �),

(10b)
� cos 2�

��
= −4 sin �

� sin �

��
=

4

�
sin2 �.

(11a)

�A

��
=

1

�

⎡
⎢⎢⎢⎢⎢⎣

− sin � tan � sin � sin �� tan �� sin ��

tan � sin � sin � tan �� sin �� − sin ��

4 sin2 � T� −
4�2vp2

�1vp1
sin2 �� T��

T� 4vs1 sin
2 � T�� −

4�2vs2

�1
sin2 ��

⎤
⎥⎥⎥⎥⎥⎦

,

(11b)
�B

��
=

1

�

[
sin � tan � sin � −4 sin2 � T�

]
,

The Goos–Hänchen induced normal 
moveout correction

In seismic data processing, the normal moveout (NMO) 
correction is an important procedure. Due to the large 
influences of Goos–Hänchen (GH) lateral shift for wide-
angle reflections, it should be corrected during seismic 
data processing. As shown in Fig. 3, xg denotes the GH 
lateral shift displacement of P- ( xpp ) or SV-wave ( xps ). The 
source is located at point O, and the receiver is located at 
point S. The horizontal distance between O and S is x. The 
traveltime-distance curve for P- and SV-wave without GH 
shift is t1p =

1

Vp1

√
4h2 + x2 and t1s =

1

Vs1

√
4h2 + x2 , where 

Vp1 and Vs1 are the velocities of P- and SV-wave, respec-
tively (Yilmaz 1987). After considering the GH lateral 
shift, the seismic wave propagates from O–C–D to point 
S, the traveltime-distance curve becomes to (GH induced 
NMO correction)

where t2p and t2s are the traveltime of P- and SV-wave with 
the consideration of GH lateral shift.

The normal time differences of P- and SV-wave are 
(Yilmaz 1987)

where (2h)
/
Vp1 and (2h)

/
Vs1 are the zero-offset traveltime 

of P- and SV-wave, respectively. After considering the GH 
lateral shift, the normal time differences can be modified as

where tp and ts can be calculated using Eqs. (6) and (7), 
respectively. Combining Eqs. (6), (7), (13) and (14), the 
GH induced time differences of P- ( �p ) and SV-wave ( �s ) 
(differences of traveltime with and without GH lateral shift 
effect) are

(12a)t2p =
2h

Vp1 cos �
+ tp,

(12b)t2s =
2h

Vs1 cos �
+ ts,

(13a)Δtp =
1

Vp1

√
4h2 + x2 −

2h

Vp1

,

(13b)Δts =
1

Vs1

√
4h2 + x2 −

2h

Vs1

,

(14a)Δtpg =
2h

Vp1 cos �
+ tp −

2h

Vp1

,

(14b)Δtsg =
2h

Vs1 cos �
+ ts −

2h

Vs1

,

Fig. 3  Sketch of ray path of seismic wave (with Goos–Hänchen lat-
eral shift)
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Equation (15) can be used to correct the delay time of 
seismic waves with the consideration of GH effect based 
on NMO. For all seismic waves received by geophone 
located at point S, the geometric satisfies

The lateral shift xg is unique for each incidence angle. The 
beam of acoustic ray path is unique for a given incidence 
angle (propagates along O–C–D–S). The energy center of 
this acoustic wave passes through point S (shown in Fig. 3).

Numerical examples

Characteristics of GH lateral shift

To observe the characteristics and effects of GH lateral shift 
on seismic wave propagation, the delay time for classic mud-
stone–sandstone model is calculated. The elastic parameters 
are Mudstone: vp1 = 1800 m/s, vs1 = 950 m/s, �1 = 2460 kg/
m3; Sandstone: vp2 = 3850 m/s, vs2 = 2300 m/s, �2 = 2650 kg/
m3. The frequencies are 25 Hz and 65 Hz. In this numerical 
example, the contrast of elastic parameters of each medium 
is relatively large and there are two critical angles, the first 
and second critical angles are �c1 = 27.9◦ and �c2 = 51.5◦ , 
respectively.

Figure 4 shows the GH lateral shift induced delay time 
of P- ( tp ) and SV-wave ( ts ) at the mudstone–sandstone inter-
face when the frequencies are 25 Hz and 65 Hz. In Fig. 4a, 
there are two break points at the first and second critical 
angles. For the reflected SV-wave, the delay time is close 
to zero when the incident angle is close to 90◦ . Figure 4b, c 
shows the zoomed in GH shift induced delay time curves of 
reflected P- and SV-wave between the first and second criti-
cal angles. Figure 4d, e shows zoomed in delay time curves 
with GH shift when the incidence angles are larger than the 
second critical angle. In the range of these incidence angles, 
the GH lateral shift induced delay time of P-wave is in the 
same order of magnitude with the wave period and close 
to it. When the incidence angles are larger than the second 
critical angle, the delay time of P-wave becomes smaller and 
smaller. One can observe that there are some negative points 

(15a)

�p = Δtpg − Δtp =
2h

Vp1 cos �
−

1

Vp1

√
4h2 + x2

+
1

�2
p
+ �2

p

�
�p�p,� − �p�p,�

�
,

(15b)

�
s
= Δtsg − Δt

s
=

2h

V
s1 cos �

−
1

V
s1

√
4h2 + x2

+
1

�2
s
+ �2

s

�
�
s
�
s,� − �

s
�
s,�

�
.

(16)x = 2h tan � + xg.

(shown in Fig. 4b, d), which are caused by the negative GH 
lateral shift. This phenomenon has been observed in optics 
through theoretical analysis and experiment (Bonnet et al. 
2001; Resch et al. 2001; Berman 2002). Figure 4f shows the 
ratio of delay time ( tp� = tp,f1

/
tp,f2 and ts� = ts,f1

/
ts,f2 ) when 

the frequencies are f1 = 25 Hz and f2 = 65 Hz, respectively. 
For reflected P- or SV-wave, although the delay time varies 
greatly with different incidence angles, the ratio produced 
by different frequencies is a constant. It is equal to the ratio 
of frequencies of P- and SV-wave. In this specific numerical 
example, tp� = ts� = 65∕25 = 2.6 . The detailed elaboration 
is shown in the discussion part.

Figure 5 shows the GH shift induced displacement of P- 
( xpp ) and SV-wave ( xps ) at the mudstone–sandstone interface 
when the frequencies are 25 Hz and 65 Hz. Liu et al. (2012) 
derived the GH shift induced displacement as

where kpx and ksx denote the x component of P- and SV-wave 
vectors, respectively; xpp and xps are the GH shift induced 
displacement, respectively. Similar with Fig. 4, there are 
two break points at two critical angles. One can observe 
that the influences of GH lateral shift are pretty large and 
it should be corrected for wide-angle reflections during the 
NMO correction.

Figure 6 shows the characteristics of GH shift induced 
time differences for the reflected P- ( �p ) and SV-wave ( �s ) at 
the mudstone–sandstone interface when the frequencies are 
25 Hz and 65 Hz. As shown in Fig. 6a, there are two break 
points at the first and second critical angles, which mean the 
effects of GH shift are pretty large around the critical angles. 
Figure 6b, c are the zoomed in GH shift induced NMO cor-
rections of reflected P- and SV-wave between the first and 
second critical angles, respectively. The differences between 
normal time differences with and without GH shift are larger 
for seismic waves with lower frequencies (for both P- and 
SV-wave). Figure 6d, e are the GH shift induced NMO cor-
rections of reflected P- and SV-wave when the incidence 
angles are larger than the second critical angle. Figure 6f 
shows the ratio of NMO correction with GH lateral shift 
when the frequencies are 25 Hz and 65 Hz, respectively. One 
can also observe that frequency influences the corrections 
of this GH lateral shift. The time differences show similar 
characteristics with the delay time as shown in Fig. 4. As 
shown in Fig. 6d, the correction term �p of reflected P-wave 
decreases continuously when the incidence angles are larger 
than the second critical angle.

(17a)xp = −
1

�2
p
+ �2

p

[
�p

��p

�kpx
− �p

��p

�kpx

]
,

(17b)xs = −
1

�2
s
+ �2

s

[
�s

��s

�ksx
− �s

��s

�ksx

]
,
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Synthetic seismic data

The efficiency of GH induced NMO correction is further 
tested for synthetic seismic data. The elastic parameters are 
Mudstone: vp1 = 1800 m/s, vs1 = 950 m/s, �1 = 2460 kg/m3; 
Sandstone: vp2 = 3850 m/s, vs2 = 2300 m/s, �2 = 2650 kg/m3. 
The frequencies are 25 Hz and 65 Hz, respectively.

Figure 7 compares the GH induced NMO correction 
and conventional NMO correction for P- (Fig. 7a, b) and 
SV-wave (Fig. 7c, d) when the frequency is 25 Hz. Fig-
ure 7a, c shows the seismic gathers with GH induced NMO 
correction, and Fig. 7b, d shows the seismic gathers with 
conventional NMO correction. As shown in Fig. 7a, c, 
the seismic signals of stratigraphy can be corrected to a 
horizontal interface using GH induced NMO correction no 
matter the GH lateral shift exist or not. However, the con-
ventional NMO correction method cannot correct seismic 
signals to a horizontal plane when there is GH lateral shift 
(shown in Fig. 7b, d).

Figure 8 compares the GH induced NMO correction 
and conventional NMO correction for P- (Fig. 8a, b) and 
SV-wave (Fig. 8c, d) when the frequency is 65 Hz. Fig-
ure 8a, c shows the seismic gathers with GH induced NMO 
correction, and Fig. 8b, d shows the seismic gathers with 
conventional NMO correction. Similar with Fig. 7, GH 
induced NMO correction can correct the seismic signals 
to a flat interface. In addition, GH lateral shift with lower 
frequency have larger impacts on seismic waves. It is nec-
essary to correct the time differences of GH lateral shift 
for seismic data with large incidence angles.

Discussion

For total reflection, the Goos–Hänchen (GH) shift or dis-
placement is proportional to the wavelength of the laser 
beam in optics (Alishahi and Mehrany 2010; Araújo et al. 
2013, 2016). GH lateral shift delay time and period are in 
the same order of magnitude (Liu et al. 2008). Therefore, 
GH lateral displacement or delay time changes with the 
change of frequency of seismic wave. Based on Zoeppritz 
equations, the equations of tp and ts cannot be expressed 
explicitly and they are hard to demonstrate theoretically. 
The explicit expression of group time delay of SH- and 
SV-wave is (Liu et al. 2009)

 where n =
Vs2

Vs1

 and m =
√
(n sin �)2−1

cos �1
. One can observe that 

ts and � are in reverse relationship. When �1 , �2 , n and �1 are 
constant, � is the only one to affect the value of ts , then we 
have

It proves that ts� =
ts,f1

ts,f2

=
Tf1

Tf2
 for SH-wave. Similarly, the 

relationship of SV-wave can be demonstrated. The GH shift 
induced delay time does have a quantitative relationship with 
the seismic period. For reflected P- or SV-wave, although 
the delay time varies greatly with different incidence angles, 
the ratio produced by different frequencies is a constant.

Conclusions

In this paper, we derived the partial derivatives of Zoep-
pritz equations with respect to frequency. Then, the delay 
time and Goos–Hänchen (GH) shift induced normal time 
differences were derived for wide-angle seismic reflections 

(17)

t
s
= −

��
s

��
=

2 sin �1

1 +
�
nm�2∕�1

�2
n�2

��1 cos
2 �1

×

⎡
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2 sin �1 cos �1��
n sin �1
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⎤
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,

(18)ts� =
ts,f1

t
s,f2

=
�f2

�f1

=
2�f2

2�f1
=

f2

f1
=

Tf1

Tf2
,

Fig. 4  GH shift induced delay time of P- ( tp ) and SV-wave ( ts ) at a 
mudstone–sandstone interface when the frequencies are 25  Hz and 
65  Hz, respectively. Black dashed line: delay time of P-wave ( tp ) 
when the frequency is 25 Hz; pink dashed line: delay time of P-wave 
( tp ) when the frequency is 65 Hz; red dashed line: delay time of SV-
wave ( ts ) when the frequency is 25 Hz; light blue dashed line: delay 
time of SV-wave ( ts ) when the frequency is 65 Hz

◂

Fig. 5  GH lateral shift induced displacement of P- ( xpp ) and SV-wave 
( xps ) at a mudstone–sandstone interface when the frequencies are 
25 Hz and 65 Hz, respectively. Black dashed line: GH shift displace-
ment of P-wave ( xpp ) when the frequency is 25 Hz; Pink dashed line: 
GH shift displacement of P-wave ( xpp ) when the frequency is 65 Hz; 
Red dashed line: GH shift displacement of SV-wave ( xps ) when the 
frequency is 25 Hz; Light blue dashed line: GH shift displacement of 
SV-wave ( xps ) when the frequency is 65 Hz
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(P- and SV-wave). Numerical examples are carried out to 
show the characteristics of GH lateral shift induced delay 
time and time differences. When the incidence angle is larger 
than the first critical angle, the GH shift induced delay has 

the same order of magnitude with the wave period. For 
reflected P- and SV-wave, the ratio produced by different 
frequencies is a constant. The delay time can become nega-
tive for reflected P-wave at some special incidence angles. 
The results indicate that the delay time influences the results 
of NMO correction severely for wide-angle reflections. In 
addition, the efficiency of GH induced NMO correction is 
further tested for synthetic seismic data. To improve the 
precision of seismic data processing, the correction of GH 
induced delay time is needed for wide-angle reflections in 
the process of NMO correction.

Fig. 6  GH induced time differences of P- ( �p ) and SV-wave ( �s ) at a 
mudstone–sandstone interface when the frequencies are 25  Hz and 
65  Hz, respectively. Black dashed line: GH induced NMO correc-
tion of P-wave ( �p ) when the frequency is 25 Hz; pink dashed line: 
GH induced NMO correction of P-wave ( �p ) when the frequency is 
65  Hz; red dashed line: GH induced NMO correction of SV-wave 
( �s ) when the frequency is 25 Hz; light blue dashed line: GH induced 
NMO correction of SV-wave ( �s ) when the frequency is 65 Hz

◂

Fig. 7  Comparison of GH induced NMO correction (a, c) and NMO correction (b and d) for P- (a, b) and SV-wave (c, d) when the frequency is 
f = 25 Hz
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Abstract
Seismic noise suppression plays an important role in seismic data processing and interpretation. The time–frequency peak 
filtering (TFPF) is a classical method for seismic noise attenuation defined in the time–frequency domain. Nevertheless, we 
obtain serious attenuation for the seismic signal amplitude when choosing a wide window of TFPF. It is an unsolved issue 
for TFPF to select a suitable window width for attenuating seismic noise effectively and preserving valid signal amplitude 
effectively. To overcome the disadvantage of TFPF, we introduce the empirical wavelet transform (EWT) to improve the 
filtered results produced by TFPF. We name the proposed seismic de-noising workflow as the TFPF based on EWT (TFPF-
EWT). We first introduce EWT to decompose a non-stationary seismic trace into a couple of intrinsic mode functions (IMFs) 
with different dominant frequencies. Then, we apply TFPF to the chosen IMFs for noise attenuation, which are selected by 
using a defined reference formula. At last, we add the filtered IMFs and the unprocessed ones to obtain the filtered seismic 
signal. Synthetic data and 3D field data examples prove the validity and effectiveness of the TFPF-EWT for both attenuating 
random noise and preserving valid seismic amplitude.

Keywords Seismic signal de-noising · Time–frequency peak filtering (TFPF) · Empirical wavelet transform (EWT) · 
Preserved valid amplitude

Introduction

Seismic noise attenuation is a fundamental topic in geo-
physical data processing and interpretation, which facili-
tates accurate geologic interpretation (Zhou et al. 2016). In 
recent decades, there are a wealth of effective techniques 
proposed for seismic noise attenuation (Wang and Gao 
2014; Liu et al. 2016c; Zhang et al. 2016; Gemechu et al. 
2017), such as the f–x prediction-based methods (Canales 

1984; Harris and White 1997; Naghizadeh 2012), cur-
velet transform (CLT) and continuous wavelet transform 
(CWT)-based methods (Donoho and Johnstone 1994; Gao 
et al. 2006; Shan et al. 2009), EMD and variational mode 
decomposition (VMD)-based methods (Bekara and van 
der Baan 2009; Han and van der Baan 2013; Chen and Ma 
2014; Chen et al. 2015; Liu et al. 2017; Wu et al. 2019), 
and Bayesian inversion-based methods (Yuan et al. 2012; 
Yuan et al. 2018; Yuan and Wang 2013). These de-noising 
approaches suppress noise contained in seismic data effec-
tively. However, an effective seismic de-noising approach 
should include noise attenuation and valid signal preserva-
tion simultaneously, which is a challenging task for filtering 
seismic data.

TFPF was proposed by Roessgen and Boashash (1994), 
which considers the noisy signal as the instantaneous fre-
quency (IF) of a frequency-modulated signal. Afterward, 
TFPF employs the Wigner–Ville distribution (WVD) 
(Wigner 1932; Ville 1948) to calculate the time–frequency 
(TF) spectrum, whose peak frequency is regard as the fil-
tered signal (Arnold et al. 1994). TFPF could achieve an 
unbiased estimation for the analyzed linear signal with 
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white Gaussian noise (Zahir and Hussain 2000; Yu et al. 
2016). However, the TFPF-based approaches work ineffec-
tively for nonlinear signals (Li and Gao 2016). Moreover, 
the seismic signal is a typical nonlinear and non-stationary 
signal in real applications (Liu et al. 2016a, 2018b). When 
de-noising a non-stationary seismic signal using the tradi-
tional TFPF, the window length of WVD is a key param-
eter. For example, we would attenuate noise effectively 
but achieve a filtered result with an attenuated amplitude 
when selecting a long window width. On the contrary, 
we reserve the valid signal amplitude but achieve a result 
containing too much noise when choosing a short window 
width. Hence, it is a key step for selecting an appropri-
ate window length of TFPF. To overcome this drawback, 
Boashash and O’shea (1994) developed a TF digital de-
noising method employing an invertible wavelet trans-
form (IWT). Lin et al. (2013) built a nonlinearity tool that 
combines TFPF and a weighted frequency reassignment. 
Lin et al. (2014) improved TFPF by building an adaptive 
filtering approach. Liu et al. (2014) combined TFPF and 
EMD (TFPF-EMD) for attenuating noise in seismic data. 
Herein, we focus on the TFPF-EMD in this study. EMD is 
a data-driven algorithm to decompose the analyzed signal 
into several intrinsic mode functions (IMFs) and a residue 
(Huang et al. 1998). Note that the IMFs are supposed to be 
linear. Afterward, TFPF is applied to the selected IMFs. 
Therefore, the TFPF-EMD-based method works well for 
attenuating random noise and reserving valid amplitude. 
Nevertheless, EMD is sensitive to noise (Huang et al. 
1998). Additionally, it is with serious mode-mixing issue 
(Gilles 2013; Li et al. 2018). There are plenty of algo-
rithms proposed for solving the mixing-mode issue, such 
as the ensemble empirical mode decomposition (EEMD) 
(Wu and Huang 2009) and EWT (Gilles 2013). EEMD, an 
extension of EMD, improves the mixing-mode issue but 
still has no mathematical model (Gilles 2013; Colomi-
nas et al. 2014). EWT could decompose a non-stationary 
signal into a couple of band-limited IMFs adaptively. 
Moreover, EWT is with theoretical support (Liu et al. 
2016b). Hence, we aim to develop an improved workflow 
for attenuating seismic noise by incorporating TFPF and 
EWT in this study.

EWT first decomposes a non-stationary seismic signal 
into a set of band-limited IMFs. Then, we calculate the 
cross-correlation coefficients to choose which IMFs needed 
to be filtered. Additionally, we introduce an empirical for-
mula to determine the window width of TFPF. After apply-
ing TFPF to the chosen IMFs, we reconstruct the filtered 
seismic signal by calculating the summation of the de-
noising IMFs and unprocessed ones. To verify the validity 
of TFPF-EWT, we apply it to synthetic data and 3D real 
seismic data.

Method

Time–frequency peak filtering

In this section, we first review TFPF briefly. To explain 
TFPF in detail, we define a noisy signal sn(t) as

Here, s(t) and n(t) are the noise-free signal and random 
noise. Then, TFPF can suppress random noise as a three-step 
procedure:

Step 1: We first obtain the analytic signal zs(t) with a unit 
amplitude by considering sn(t) as the IF of zs(t) , defined in 
Eq. (2):

Note that � is a scaling parameter regarded as the FM 
modulation index (Boashash and Mesbah 2004).

Step 2: As we all know, PWVD provides an effective 
energy concentration around the IF of the signal (Boashash 
2015). Hence, we compute PWVD Wz(t, f ) of zs(t) using a 
window function w(�) as

where (⋅)∗ denotes the complex conjugate.
Step 3: Using PWVD, we then estimate the IF f̂z(t) of the 

analytic signal zs(t) as (Boashash and O’shea 1994)

Thus, we estimate the filtered signal ŝ(t) , which equals 
f̂z(t).

Note that TFPF achieves an unbiased signal estimation 
and effective seismic noise reduction (Lin et al. 2016). 
However, it is difficult to select an appropriate window 
width of the window function w(�) of TFPF (Liu et al. 
2014; Li and Gao 2016). For example, a short window 
width results in reserving the valid amplitude effectively 
but attenuating random noise inadequately, whereas we 
would achieve a destructive valid amplitude but a good 
noise suppression by selecting a long window length. In 
addition, when the IF of a non-stationary signal changes 
rapidly (Liu et al. 2018a), it makes the selection of the 
window length difficult. It may be difficult to obtain an 
unbiased estimation of a non-stationary signal using 
Eq. (4). To overcome these drawbacks, Liu et al. (2014) 
developed a workflow by combining TFPF and EMD. 
EMD decomposes a non-stationary signal into several 
IMFs and a residue (Huang et al. 1998). TFPF-EMD works 
well for attenuating random noise and reserving valid 

(1)sn(t) = s(t) + n(t).

(2)zs(t) = ei2�� ∫ t

0
sn(�)d� .

(3)Wz(t, f ) = ∫
∞

−∞

w(�)zs

(
t +

�

2

)
z∗
s

(
t −

�

2

)
e−i2�f �d�,

(4)ŝz(t) = f̂z(t) =
arg maxf [Wz(t, f )]

𝜇
.
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signal amplitude (Liu et al. 2014). However, EMD suffers 
from the mode-mixing issue (Gilles 2013; Li et al. 2018). 
To avoid the mode-mixing issue, we introduce the empiri-
cal wavelet transform (EWT) instead of EMD, which is 
another approach for decomposing a non-stationary signal 
into several band-limited IMFs (Gilles 2013).

Empirical wavelet transform

EWT decomposes a non-stationary seismic signal into a 
couple of band-limited IMFs by designing an appropri-
ate wavelet filter bank (Gilles 2013). IMFs with different 
frequencies are regarded as stationary (Liu et al. 2016b). 
Using EWT, we calculate the IMF ck(t) as

where W�
s
(n, t) denotes the detailed EWT coefficients, and 

�1(t) and �k(t) denote the empirical scaling function and 
empirical wavelets in Fig. 1 (Gilles 2013). Note that there is 
less mode-mixing of IMFs computed using EWT than those 
computed using EMD (Gilles 2013). Note that we introduce 
the automatic detection strategy (Gilles 2013) for defining 
the number of decomposed IMFs adaptively in this study. 
After achieving stationary IMFs ck(t) , we can apply TFPF to 
the stationary IMFs to suppress random noise. We explain 
the implementation of EWT in Appendix.

TFPF based on EWT

After decomposing a seismic trace into a couple of IMFs 
with different dominant frequencies using EWT, we 
then introduce a reference formula to select the IMFs for 
de-noising processing and then apply TFPF to them to 
suppress noise. Note that we do not apply TFPF to all 
decomposed IMFs by EWT. We calculate the correlation 
coefficients Rckck+1

 of two adjacent IMFs as the reference 
formula, denoted in Eq. (6):

(5)
c0(t) = W�

s
(0, t) ∗ �1(t),

ck(t) = W�
s
(n, t) ∗ �k(t),

where Nt is the time sample number, and Rckck+1
 and ck are the 

reference formula and the kth IMF, respectively. Obviously, 
the correlation coefficient of two valid signals is larger than 
the correlation coefficient of the random noise and valid sig-
nal. Therefore, we set a certain threshold value Γ to choose 
IMFs calculated by EWT to attenuate seismic noise (Liu 
et al. 2014).

In our workflow, we introduce an empirical formula to 
determine the window length Lw of TFPF (Lin et al. 2007), 
denoted in Eq. (7):

(6)Rckck+1
=

∑Nt

j=1

�
ck,j − ck

��
ck+1,j − ck+1

�
�∑Nt

j=1

�
ck,j − ck

�2�∑Nt

k=1

�
ck+1,j − ck+1

�2 ,

(7)Lw ≤ 0.384fs

fd
.

Fig. 1  The empirical scaling 
function �

1
(t) and empirical 

wavelets �
k
(t)

Fig. 2  The workflow of the proposed TFPF based on EWT
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fd and fs are the dominant frequency and sampling frequency 
of the seismic wavelet, respectively. At last, we reconstruct 
the filtered signal by calculating the summation of the de-
noising IMFs and unprocessed ones. The workflow of the 
proposed de-noising workflow is presented in Fig. 2.

Synthetic data examples

First, we apply the proposed de-noising workflow to synthe-
sized signals to compare its de-noising performance with the 
conventional TFPF. Note that Lin et al. (2013) have com-
pared the de-noising effectiveness between conventional 
TFPF- and f–x filtering-based methods (Harris and White 
1997). Hence, we focus on comparing the de-noising effec-
tiveness between a conventional TFPF and the proposed 
workflow in this section. For a fair comparison, we also used 
the empirical formula in Eq. (7) to determine the window 

length of TFPF. Figure 3a presents the noise-free synthetic 
trace (blue line) and noisy synthetic trace (black line) added 
with Gaussian white noise. The dominant frequency of the 
Ricker wavelet equals 30 Hz. The SNR equals 0 dB. We 
apply TFPF and proposed workflow to the noisy synthetic 
trace (black line). Figure 3a shows the filtered traces calcu-
lated using TFPF (green line) and proposed workflow (red 
line), which both suppress the noise successfully. The SNR 
of the filtered traces calculated using TFPF and proposed 
workflow is 6.31 dB and 9.63 dB, respectively. Note that 
the proposed workflow suppresses Gaussian white noise 
more effectively than the conventional TFPF. Moreover, we 
zoom in the plot in Fig. 3a to show the detail of filtered 
traces, as presented in Fig. 3b. The de-noised trace calcu-
lated using the proposed workflow (red line) preserves the 
valid amplitude of the Ricker wavelet more effectively than 
that calculated using TFPF (green line), indicated by the 
red arrow. Additionally, we add Gaussian white noise to the 

Fig. 3  The synthetic trace 
de-noising example. a The 
synthetic traces and de-noising 
traces, b the enlarged traces 
with time duration from 0.4 to 
0.6 s. The dominant frequency 
of the Ricker wavelet is 30 Hz. 
The SNR equals 0 dB. The 
blue and black lines denote the 
noise-free and noisy traces, 
while the green and red lines 
represent the de-noising traces 
calculated using TFPF and 
proposed workflow
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Ricker wavelet with different SNRs. Then, we estimate the 
SNR of the filtered traces computed using TFPF (blue circle 
curve) and proposed workflow (red star curve), as shown 
in Fig. 4. Note that the proposed workflow provides larger 
SNR values than TFPF for each Ricker wavelet with differ-
ent SNR values. The SNR curves in Fig. 4 demonstrate the 
proposed workflow suppresses noise more effectively than 
the conventional TFPF method.

Then, we generate a synthetic model to test the valid-
ity of TFPF-EWT. Figure 5a shows the noise-free synthetic 
model, while Fig. 5b shows the noisy model. The SNR of 
Fig. 5b equals 0 dB. Note that we adopt different Ricker 
wavelets with different dominant frequencies to generate the 
synthetic model in Fig. 5. Actually, we select Ricker wave-
lets with dominant frequencies of 30 Hz, 25 Hz, and 15 Hz 
to generate the first and second seismic events, middle three 

crossed events, and the last horizontal event. Apparently, 
the noise reduces the time resolution of synthetic traces. We 
then apply TFPF and proposed workflow to noisy synthetic 
data. Figure 6a and b shows the de-noising data calculated 
using TFPF and TFPF-EWT. Both approaches suppress seis-
mic noise successfully, especially the simple and horizontal 
events. Afterward, Fig. 6c and d presents the difference pro-
files calculated using TFPF and proposed workflow. Obvi-
ously, the difference profile calculated using TFPF contains 
some valid reflection events in Fig. 6c, especially the bent 
seismic event indicated by red arrows. In contrast, the differ-
ence profile calculated using TFPF-EWT provides no valid 
reflection events in Fig. 6d. The plots in Fig. 6 lead us to 
the conclusion that the proposed workflow not only attenu-
ates noise efficaciously but also reserves the valid amplitude 
effectually.

Fig. 4  The output SNR of 
different filtered traces with 
different SNRs, computed using 
TFPF (blue circle curve) and 
the proposed algorithm (red star 
curve). The abscissa denotes the 
input SNR of original synthetic 
traces added with Gaussian 
white noise, while the ordinate 
denotes the output SNR of the 
filtered traces

Fig. 5  The synthetic model. 
a Noise-free data and b noisy 
data added with Gaussian white 
noise. The SNR of b is 0 dB. 
There are six reflection events 
in the model
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Field data applications

To further verify the validity of TFPF-EWT, we apply it to 
3D field data and make comparisons with TFPF. Figure 7 
shows a horizontal slice of 3D seismic data located in east-
ern China, i.e., Bohai basin. The data set consists of 1001 
Xline and 401 Inline with a time increment of 2 ms, and 
a 25 m by 12.5 m bin size. In this study area, the seismic 
reservoir is controlled by shallow-water deltaic systems 
(Liu et al. 2016a; Liu et al. 2019). The accurate descrip-
tion of geological structures benefits for characterizing 
the disciplinarian of accumulation of oil and gas. The red 
line in Fig. 7 indicates the location of Inline 1740. We then 
apply TFPF and proposed workflow to 3D seismic data 
to enhance the SNR of this seismic data. Figure 8a and b 
shows the filtered horizontal slices calculated using TFPF 
and proposed workflow, respectively. TFPF and proposed 

workflow both suppress random noise successfully. How-
ever, the proposed workflow characterizes fluvial chan-
nels more accurately and more continuously than TFPF 
denoted by red arrows. In addition, green arrows A and 
B in Fig. 8 indicate two clear channels located at Inline 
1740, whose edges are clearer in Fig. 8b than in Fig. 8a. 
Figure 8c and d presents the difference horizontal slices 
calculated using TFPF and proposed workflow, respec-
tively. Obviously, the proposed workflow preserves valid 
seismic amplitude more effectively than TFPF because 
there is less valid seismic amplitude in Fig. 8d than in 
Fig. 8c.

At last, we extract a 2D seismic section to testify the 
de-noising effect of the proposed workflow. Figure  9 
shows the 2D seismic section with the Inline number of 
1740. The filtered seismic sections and difference seismic 
sections are shown in Fig. 10. The proposed workflow in 

Fig. 6  The de-noising profiles 
and difference profiles calcu-
lated using the noisy data in 
Fig. 5b. The de-noising profiles 
calculated using a TFPF and 
b proposed workflow, c the 
difference profile between the 
noisy data and de-noising data 
calculated using TFPF, and d 
the difference profile between 
the noisy data and de-noising 
data calculated using the 
proposed workflow. Two red 
arrows indicate valid seismic 
events contained in the differ-
ence profile
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Fig. 10b filters random noise more effectively than TFPF 
in Fig. 10a. This is because the proposed workflow is 
more appropriate for filtering seismic data than TFPF, 

which is a typical non-stationary and nonlinear signal. As 
a result, the proposed workflow characterizes two fluvial 
channels more precisely than TFPF, indicated by green 
arrows A and B in Fig. 10a and b. Figure 10c and d shows 
two difference sections calculated using TFPF and pro-
posed workflow, respectively. Similarly, there is less valid 
seismic signal in Fig. 10d than in Fig. 10c, especially the 
fluvial channel indicated by green arrow A. This illus-
trates that the proposed workflow preserves valid signal 
amplitude more effectively than TFPF. Therefore, it is 
easy to conclude that TFPF-EWT provides superior noise 
attenuation and preserved seismic valid amplitude than 
TFPF.

Conclusion

In this study, we build a workflow to suppress random 
noise in seismic data, which is called TFPF based on 
EWT. EWT decomposes a non-stationary seismic trace 

Fig. 7  The horizontal slice of 3D seismic data

Fig. 8  The de-noising results of the 3D seismic data. The horizontal 
slices extracted from the filtered data calculated using a TFPF and 
b proposed workflow, c the difference horizontal slice between the 

original seismic data and filtered data calculated using TFPF, and d 
the difference horizontal slice between the original seismic data and 
filtered data calculated using the proposed workflow
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into several band-limited IMFs with different dominant 
frequencies effectively. Each IMF is regarded as station-
ary. After selecting the IMFs using the proposed refer-
ence formula, we apply TFPF to the chosen IMFs to sup-
press random noise. The summation of the de-noising 
IMFs is the filtered seismic trace. Note that we choose the 
same window length defined in Eq. (7) and apply to the 
selected IMFs in this study. In future work, we would like 

to develop TFPF with an adjustable window length for dif-
ferent selected IMFs. For example, we can take dominant 
frequencies of different IMFs into account when selecting 
the window length for different IMFs. Synthetic data and 
filed data applications indicate that the proposed approach 
provides superior noise attenuation and preserved valid 
seismic amplitude, which is with minimal impact on the 
desirable seismic information. The improvements of the 
proposed workflow have the potential to aid in seismic 
data processing and interpretation. We can easily conclude 
that the designed TFPF-EWT would enable the develop-
ment of effective algorithms to address seismic noise 
weakening.
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Fig. 9  A 2D seismic section with the Inline number of 1740

Fig. 10  The de-noising seismic sections and difference profiles of 
Inline 1740. The de-noising seismic sections calculated using a 
TFPF and b proposed workflow, c the difference profile between the 
noisy seismic section and de-noising seismic section calculated using 

TFPF, and d the difference profile between the noisy seismic section 
and de-noising seismic section calculated using the proposed work-
flow
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Appendix: Empirical wavelet transform

To represent EWT, we first define a non-stationary signal 
sn(t) as

where ck(t) and r(t) are the IMFs and residual, respectively. 
Based on Eq. (8), we decompose the non-stationary signal 
sn(t) into a set of IMFs ck(t), k = 1, 2,… ,K and a residual 
r(t).

EWT builds adaptive wavelets capable for extracting 
IMFs using the analyzed signal (Gilles 2013). Each of IMFs 
has a compact support spectrum. EWT aims to separate dif-
ferent portions of the Fourier spectrum, which corresponds 
to different IMFs. After segmenting the Fourier support 
[0,�] into N contiguous segments, we denote �k to be the 
limits between each segment, where �0 = 0 and �K = � . 
Furthermore, each segment is denoted as Λk = [�k−1,�k] . 
Then, EWT is performed in the following steps easily:

(1) We first apply the Fourier transform (FT) to s(t) and 
obtain the Fourier spectrum. We then assume that there 
are maxima 

{
Mk

}
, k = 1, 2,… ,K − 1 of the Fourier 

spectrum.
(2) After obtaining the segments of the Fourier spectrum 

and the set of the boundaries, the boundaries �k of each 
segmentation are defined as

where �0 = 0 and �K = �.
(3) We define the empirical scaling functions �k and empir-

ical wavelets �k in Eqs. (10) and (11):

where �(� ,�k) = �

(
1

2��k

[|�| − (1 − �)�k

])
 . 0 < 𝛾 < 1 

is a parameter for ensuring no overlap between con-
secutive transition phases and �(x) is a function defined 
in Eq. (12):

(8)sn(t) =

K∑
k=1

ck(t) + r(t),

(9)�k =
Mk +Mk+1

2
, k = 1, 2,… ,K − 1,

(10)

𝜙k =

⎧
⎪⎨⎪⎩

1, 𝜔 ≤ (1 − 𝛾)𝜔k,

cos
�
𝜋

2
𝛼(𝛾 ,𝜔k)

�
, (1 − 𝛾)𝜔k < �𝜔� ≤ (1 + 𝛾)𝜔k,

0, otherwise,

(11)

𝜓
k
=

⎧⎪⎪⎨⎪⎪⎩

1, (1 + 𝛾)𝜔
k
≤ �𝜔� ≤ (1 − 𝛾)𝜔

k+1,

cos

�
𝜋

2
𝛼(𝛾 ,𝜔

k+1)

�
, (1 − 𝛾)𝜔

k+1 < �𝜔� ≤ (1 + 𝛾)𝜔
k+1,

sin

�
𝜋

2
𝛼(𝛾 ,𝜔

k
)

�
, (1 − 𝛾)𝜔

k
< �𝜔� ≤ (1 + 𝛾)𝜔

k
,

0, otherwise,

(4) We calculate EWT W�
s
(i, t) by the inner product of s(t) 

with the empirical wavelets �k as

In addition, we calculate the approximation coefficients 
W�

s
(0, t) as

where �1 and �k are defined in Eqs. (10) and (11).
(5) At last, we calculate IMF ck(t)

Moreover, the original signal is reconstructed by

Using Eq. (16), EWT decomposes a non-stationary seis-
mic signal into a couple of band-limited IMFs with differ-
ent dominant frequencies. Then, we could use TFPF-based 
algorithms to the selected IMFs to suppress seismic noise 
in this study.
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Abstract
Wave propagation through porous media allows us to understand the response and interaction that occur between the elastic 
rock matrix and the fluid. This interaction has been described by Biot in his theory of poroelasticity. Seismic wave simulation 
using Biot’s formulations is computationally expensive when compared with the acoustic and elastic cases. This computa-
tional burden can be reduced by reformulating the numerical derivative operators to improve the efficiency. To achieve this, 
we used a staggered-grid finite difference operator to discretize 2D velocity stress equations as given by Biot’s theory. A 
vectorized derivative is applied on the staggered grid by shifting the coordinates. The reformulated equations were applied 
to compute the seismic response of a reservoir, where CO

2
 is being injected and the effect of injected CO

2
 in the formation 

is clearly seen in the synthetic data generated. The algorithm was coded in Python and to test its efficiency, the simulation 
run-time was compared for both serial and vectorized equations, and the speed-up ratio was calculated. Our results show a 
decrease in the simulation run-time for the vectorized execution with over a factor of a hundred percent (100%). We further 
observed that the amplitudes of the events increase with an increase in CO

2
 saturation in the formation. This matches well 

with the real data.

Keywords Poroelasticity · CO2 injection · Staggered grid · Finite difference · Seismic wave

Introduction

The theory of wave propagation in a porous media enables 
us to understand the interaction between the solid matrix 
and the fluid properties. Acoustic and elastic wave equa-
tions consider single-phase medium and have been used 
to solve various geological problems (Sheen et al. 2006). 
However, properties of the fluid in the pore such as viscos-
ity and density of the fluid have been ignored in the single-
phase medium. These fluid properties can be incorporated 
by using Biot’s theory, which predicts the existence of two 

types of compressional waves and one shear wave (Biot 
1956a, b, 1962). The first compressional wave is called the 
“fast p wave,” and the second compressional wave is called 
the “slow p wave.” However, the existence of the second 
type of compressional wave (slow p) was confirmed through 
the experiments carried out with artificial rocks (Berryman 
1980; Plona 1980). Burridge and Keller (1982), Pride et al. 
(1992) and Pride and Berryman (1998) have also shown the 
applicability of the Biot’s model to porous media.

When a seismic wave propagates through a porous 
medium, a pressure gradient is created or we can say a pres-
sure relaxation is achieved. This pressure difference leads 
to fluid flow as the fluid moves in the pores with respect to 
the solid. This process is referred to as wave-induced fluid 
flow, and it is accompanied by the dissipation of energy. The 
wave-induced fluid flow can be used to monitor the time-
lapse seismic response of a reservoir, due to change in the 
fluid properties such as the injection of CO2 into a reservoir 
(Morency et al. 2011).

In a CO2 sequestration project, large amount of CO2 is 
stored in a deep geological formation and to understand the 
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time-lapse behavior of CO2 in the formation, Biot’s equations 
can be used. Several authors Dai et al. (1995), Boutin and 
Bonnet (1986) and Burridge and Vargas (1978) have given 
analytical solutions to the Biot’s equations using simple 
homogeneous poroelastic media. However, a reservoir under 
CO2 injection does not behave like simple media; hence, 
analytical solutions cannot be used. To model a complex 
medium, numerical methods like finite difference method 
(FDM) (Zhu and McMechan 1991; Dai et al. 1995; Wenzlau 
and Muller 2009; Itz et al. 2016; O’Brien 2010; Zhang et al. 
2018), pseudo-spectral methods (Carcione 1996b, a; Ozden-
var and McMechan 1997), finite element method (Roberts 
and Garboczi 2002) and spectral element (Morency 2008) 
have been used. In the present work, we used the FDM to 
solve the Biot’s equations for the poroelastic media.

The simulation of seismic waves in a poroelastic medium 
is computationally intensive. Hence, to overcome this issue, 
it is required to optimize the algorithm for faster compu-
tations. Malkoti et al. (2018) demonstrated a vectorized 
scheme to increase the speed of the elastic wave simula-
tions over the staggered grid. On a similar line in this paper, 
we developed an efficient scheme for simulations of seismic 
waves in a poroelastic media, using vectorized derivative 
operators. Further, we demonstrated the application of this 
algorithm on a model derived from the Sleipner for CO2 
sequestration case.

Theory

Biot (1956a, b, 1962) established the theory of poroelasticity 
with these assumptions: 

1. The fluid phase is continuous
2. The porous medium should be statistically isotropic
3. Seismic wavelength is larger than the pore size
4. Deformations on the elastic rock matrix should be small

The Biot’s poroelastic equations for an isotropic medium 
are given by

where u is the solid displacement and w the displacement of 
the fluid relative to the solid.

The stress and pressure are given by

where eij is the strain tensor, �ij is the Kronecker delta
The physical parameters used in the equations above are 

listed in Table 1.

Discretization of the poroelastic equations

The poroelastic equations can be written using veloc-
ity–stress formation proposed by (Virieux 1984)

(1)𝜌�̈ + 𝜌f�̈ = (𝜆c + 𝜇)∇∇.� + 𝜇∇2
� + 𝛼M∇∇.�

(2)𝜌f�̈ + m�̈ = 𝛼M∇∇.� +M∇∇.� − b�̇

(3)�ij = 2�eij + �ij(�cekk + �Mwk,k)

(4)p = − �Mekk −Mwk,k

(5)v̇i = (m𝜌 − 𝜌2
f
)−1(m𝜏ij,j + 𝜌fp,i +𝜌fbwi)

(6)ẇi = (m𝜌 − 𝜌2
f
)−1(−𝜌f𝜏ij,j − 𝜌p,i −𝜌bwi)

Table 1  Table of constants Name Symbol Units

Density of the solid mineral �s kg∕m3

Density of the fluid �f kg∕m3

Density � kg∕m3 ��s + (1 − �)�f

Effective fluid density m kg∕m3 T�f∕�

porosity �

Fluid viscosity � Pa s
Permeability of the medium � m2

Tortuosity T
Mobility of the fluid b Pa s/m2 �∕�

Lame constant � Pa
Lame constant of the porous medium �c Pa � + �2

M

Shear modulus � Pa
Fluid storage coefficient M Pa Ks (1 − � − Kd∕Ks + �Ks∕Kf)

−1

Coefficient of effective stress � Pa 1 − Kd∕Ks

Solid bulk modulus Ks Pa
Fluid bulk modulus Kf Pa
Drained bulk modulus Kd Pa � + 2∕3�
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The finite difference (FD) method is one of the numerical 
methods frequently applied in geophysical research for wave 
propagation modeling (Virieux 1984, 1986; Bohlen 2002). 
The basic concept of this method is the approximation of the 
differential operators by finite differences on a discrete mesh 
in space and time. In this method, an approximate solution of 
the wave equation is obtained at the mesh grid points. Stag-
gered grids are used to improve the accuracy and efficiency 
of the numerical modeling. The outstanding feature of this 
method is the fact that differential operators are naturally 
centered at the same point in space and time (Sheen et al. 
2006). The poroelastic wave equations (Eqs. 5–8) can be 
discretized after assigning field variables at different posi-
tions on the staggered grid, as shown in Fig. 1.

After assigning the fields variable, the poroelastic wave 
equations can be written as

(7)�̇�ij = 𝜇(vi,j + vj,i) + (𝜆cvk,k + 𝛼Mwk,k)𝛿ij

(8)ṗ = − 𝛼Mvi,i −Mwi,i

(9)
D0

t
vi|n = (m� − �2

f
)−1(mD+

j
�ij|n�ij

+ D−
j
�ij|n(1 − �ij) + �fD

+
i
p|n + �fbwi|n)

(10)
D0

t
wi|n = (m� − �2

f
)−1(�fD

+
j
�ij|n�ij

+ D−
j
�ij|n(1 − �ij) − �D+

i
p|n + �bwi|n)

(11)

D0
t
�ij|

n+
1

2 = �cD
−
k
vk|

(n+
1

2
)
�ij + 2�D−

j
vi|

(n+
1

2
)
�ij

+ �M(D−
k
wk|

(n+
1

2
) + D−

j
wi|

(n+
1

2
))�ij

+ �(D+
j
vi|

(n+
1

2
) + D+

i
vj|

(n+
1

2
)) × (1 − �ij)

(12)
D0

t
p|(n+

1

2
) = − �M(D−

i
vi|

(n+
1

2
) + D−

j
vj|

(n+
1

2
))

− M(D−
i
wi|

(n+
1

2
) + D−

j
wj|

(n+
1

2
))

where the Kronecker delta function is given by

D0
t
 is the time central derivative, D+ and D− are the forward 

and backward spatial derivative operators.
The fourth-order staggered-grid finite difference approxi-

mation centered at location i is given by

The derivative operator can be reformulated in the forward 
and backward derivative operators by shifting the center of 
Eq.  13. This step is required for vectorization that leads to 
an increase in computational speed (Fig. 2).

Defining the shift operator as Δnf (x) = f (x + nΔx) . The 
reformulated operator(s) can be written as

Using the reformulated staggered-grid operator, the entire 
computational domain is considered as a vector, as shown 
in Fig. 3. The top vector is considered as the entire domain, 
and the others are considered as a single derivative operator. 
This formulation enables the entire domain to be updated at 
once and hence leads to an increase in computational speed.

This reformulated scheme can be extended to 2D, but 
the shifts are done in just one direction. The direction of the 
shift is usually the same as the direction of the derivative.

We can relate derivatives on the right-hand side with that 
on the left-hand side shifted coordinates by attaching differ-
ent coordinates to each of the field variables f (i.e., veloci-
ties, stresses, pressure) as Af , as shown in Fig. 2. The grid 
systems are defined by Af (If , Jf ) , where f can be vi,wi, �ij, p . 

�ij =
{1 if i=j

0 if i≠j

(13)
Dxf (i) =

1

Δx

{
9∕8(f (i +

1

2
) − f (i −

1

2
))

− 1∕24(f (i +
3

2
) − f (i −

3

2
))
}

(14)D+f (i) =
1

24
(Δ−1 − 27Δ0 + 27Δ+1 − Δ+2)f (i)

(15)D−f (i) =
1

24
(Δ−2 − 27Δ−1 + 27Δ0 − Δ+2)f (i)

Fig. 1  Staggered-grid finite dif-
ference method for poroelastic 
wave equation



438 Acta Geophysica (2020) 68:435–444

1 3

Four independent grids A1,A2,A3,A4 corresponding to field 
variables are shown in Fig. 2. The poroelastic wave equa-
tions can be written using these independent grids as

(16)

D+
t
vi(I

vi , Jvi ) = (m� − �2
f
)−1(mD+

j
�ij(I

�ij , J�ij )�ij

+ D−
j
�ij(I

�ij , J�ij )(1 − �ij)

+ �fD
+
i
p(Ip, Jp) + �fbwi(I

wi , Jwi ))

(17)

D+
t
wi(I

wi , Jwi ) = (m� − �2
f
)−1(�fD

+
j
�ij(I

�ij , J�ij )�ij

+ D−
j
�ij(I

�ij , J�ij )(1 − �ij)

− �D+
i
p(Ip, Jp) + �bwi(I

wi , Jwi ))

(18)

D+
t
�ij(I

�ij , J�ij ) = �cD
−
k
vk(I

vk , Jvk )�ij

+ 2�D−
j
vi(I

vi , Jvi )�ij + �M(D−
k
wk(I

wk , Jwk )

+ D−
j
wi(I

wi , Jwi )�ij + �(D+
j
vi(I

vi , Jvi )

+ D+
i
vj(I

vj , Jvj ) × (1 − �ij)

Fig. 2  Main computational grid 
and four decomposed simpler 
equispaced subgrid

Fig. 3  Vectorized nodes update
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Absorbing boundary condition

The seismic simulation requires absorbing boundary condi-
tion (ABC) to truncate artificial reflections in an unbounded 
medium. The perfectly matched layer (PML) absorbing 
boundary condition proposed by (Berenger 1994) is derived 
by replacing the coordinate variables in the frequency 
domain with a complex stretched variable defined as

(19)
D+

t
p(Ip, Jp) = − �M(D−

i
vi(I

vi , Jvi ) + D−
j
vj(I

vj , Jvj ))

− M(D−
i
wi(I

wi , Jwi ) + D−
j
wj(I

wj , Jwj ))

Table 2  Poroelastic medium properties (Morency 2008)

Name Symbol/unit Value

Solid density �s (kg∕m
3) 2650

Fluid density �f (kg∕m
3) 880

Porosity � 0.1
Solid bulk modulus Ks (GPa) 12.2
Fluid bulk modulus Kf (GPa) 1.985
Frame bulk modulus Kdry (GPa) 9.6
Shear bulk modulus � (GPa) 5.1
Fast P-wave vf (ms−1) 2339
Slow P-wave vs (ms−1) 960
S-wave vs (ms−1) 1449

Fig. 4  Plots of analytical and vectorized scheme for the model given in Table 2 at (140 m, 250 m). a The normalized vertical solid velocity of 
the vectorized scheme and analytical solution, and b the normalized vertical fluid velocity of the vectorized scheme and analytical solution

(a) (b)

Fig. 5  Snapshots of vertical component of particle velocity, v
x
 at 0.101 s. a Below the Biot’s frequency and b above the Biot’s frequency



440 Acta Geophysica (2020) 68:435–444

1 3

where zi(yi) = 1 −
bi

i�
 , bi is the damping factor, yi is the direc-

tion and � is the temporal frequency. The damping factor 
bi = log(

1

R
)(

3vp

2
)(

i2

L3
)

R is the coefficient of reflection, and L is the thickness of 
the PML. In this study, PML is used to truncate the compu-
tational domain.

Seismic source

An explosion source generates P-wave without S-wave 
assuming the explosion is spherical and the surround-
ing medium is homogenous and isotropic, and can also be 
called the center of compression (Yijie and Jinghuai 2019). 
A Ricker wavelet can be used as a time function in the simu-
lation of poroelastic wave propagation and is defined as

ỹ =
∫

yi

0

zi(yi)dyi

s(t) = (1 − 2�2f 2(t − t0)
2e−�

2f 2(t−t0)
2

)

where f is the source frequency, t is the time, and t0 is the 
time shift. The weights Ms = (1 − �) and Mf = � can be 
used to multiply the moment density sources in the solid 
and fluid phases, respectively, in order to partition it linearly 
(Yijie and Jinghuai 2019).

Where Ms and Mf  are the weighting factor for the 
solid stresses and fluid pressure, � is the porosity. In this 
work, an explosion source is used to generate the source 
vibration.

The above-discussed methodology was used to develop 
an efficient algorithm for simulation of seismic waves in a 
poroelastic media.

Validation of algorithm

A numerical scheme is generally validated by compar-
ing it with an analytical solution. Thus, to validate our 
vectorized scheme, we compared our solution with the 
analytical solution for seismic wave propagation in a 
porous medium, as given by Dai et al. (1995). We con-
sidered a uniform homogeneous model with dimension 
500m × 500m , with the model parameters given in 
Table 2. Ricker wavelet is used as an explosive source 
with a dominant frequency of 30 Hz and a time delay of 
t0 = 0.004 s . The source is located in the middle of the 
grid, that is (x, z) = (250 m, 250 m) . The grid size and time 
step are 2 m and 0.2 ms, respectively.

Figure 4 shows the normalized vertical solid and fluid 
velocities of the vectorized scheme and the analytical solu-
tion. We observed that the vectorized scheme perfectly 
approximates the computed analytical solution. Similarly, 
Fig. 5 shows the snapshot of the vertical component of solid 
particle velocity, vx at 0.101 s , when the diffusive parameter 
b = 0 and b = 4 × 107 , which corresponds to low and high 
frequencies, respectively. Biot (1956a, b) in establishing this 
theory predicts a second type of compressional wave usually 
referred as slow compressional wave. In line with the Biot’s 
theory, this second type of compressional wave is generated 
by our algorithm, as shown in Fig. 5a. This validates the 
application of our algorithm.

Fig. 6  Geological model of Utsira Formation. a, b, c, d, and corre-
spond to the material properties in Table 3 (Carcione et al. 2006)

Table 3  Reservoir properties for Utsira Formation, Sleipner field, Norway

b.1: S
w
− 40% ; b.2:S

w
− 80% ; b.3: S

w
− 100%

Medium �(kg∕m3) �f(kg∕m
3) �s(kg∕m

3) Ks (GPa) Kdry (GPa) Kf (GPa) � (GPa) � T �f (cP) � (Darcy)

a 2097 1030 2600 20 1.50 2.25 0.73 0.32 4 1.2 0.1
b.1 1940 715 2600 40 1.33 0.042 0.85 0.35 2.8 0.3 1.6
b.2 2017 935 2600 40 1.33 0.12 0.85 0.35 2.8 0.7 1.6
b.3 2051 1032 2600 40 1.33 2.61 0.85 0.35 2.8 1.2 1.6
c 2207 1030 2600 20 4.70 2.25 0.99 0.25 5 1.2 0.001
d 2286 1030 2600 20 6.49 2.25 1.16 0.2 5 1.2 0.01
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(a)

(c) (d)

(e) (f)

(b)

Fig. 7  Snapshots of the solid component of particle velocity and seismic response. a, b Represent the pre-injection (100% brine saturated) case, c, d represent first 
monitored case (80% brine saturated) and e and f represent the second monitored case (40% brine saturated)



442 Acta Geophysica (2020) 68:435–444

1 3

Application to a CO
2
 injection monitoring 

case

The developed algorithm discussed above was used to moni-
tor the injection of CO2 into a saline aquifer called the Utsira 
Formation in the Sleipner field, North Sea. The Utsira For-
mation is 800m below the sea and is a highly permeable 
and porous sandstone. We used a geometrical and physi-
cal model of the Utsira Formation given by Carcione et al. 
(2006) for simulation. The model is shown in Fig. 6. The 
alphabets a, b, c, and d correspond to the layer properties, 
as shown in Table 3 (Carcione et al. 2006).

The properties shown in a, b.3, c, and d represent the 
baseline (pre-injection) case, and the properties a, b.1, c, d, 
and a, b.2, c, d correspond to the subsequent monitor cases, 
representing the post-injection scenarios.

Injection of CO2 in Utsira Formation changes the res-
ervoir properties like the density, viscosity, and the bulk 
modulus which in turn will change the velocities. Thus new 
properties are used to model the monitor cases, as shown in 

Table 3. The CO2 is injected at a depth greater than 800 m 
because at such depth CO2 is in the supercritical state, mak-
ing it dense but a liquid with measurable wave speed anoma-
lies (Morency et al. 2011).

For the simulations, we considered a model of dimension 
1.2 km × 1.2 km with 1.5-m grid spacing on both sides and 
a time step of 0.2 ms. The source time function is Ricker 
wavelet with a dominant frequency of 50 Hz. To truncate 
artificial reflections, 40 PML layers were used.

The snapshots of the solid particle velocity component 
and the seismic response are shown in Fig. 7a–f for pre- 
and post-injection scenarios. Figure 7a, b show reflections 
coming from the top of the Ustira model and the shale that 
made up the layers. These events become prominent when 
CO2 is injected into the formation, as can be seen in Fig. 7c, 
d when the formation is saturated partially with CO2 . These 
reflected events are further enhanced as the saturation of CO2 
increases in the formation with time (Fig. 7e, f). This is in 
agreement with what is observed in the real data, as shown 
in Fig. 8a–c.

Fig. 8  Observed data from 
Utsira Sleipner project. a 
Observed data before injection 
in 1994, b observed data after 
injection in 1999 and c observed 
data after injection in 2006. 
From Statoil (now Equinor)
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Test for efficiency

To test the efficiency of the developed algorithm, we com-
pared the total run-time of the simulation (Tsim) using a 
Python platform with the serial execution. The simulations 
were carried out on HP Z420 workstation with Intel Xeon 
3.6 GHz (octa-core) processors. The simulation run-time 
recorded and the speed-up ratio (SPR), which is the ratio of 
the serial execution (SE) to the vectorized execution (VE), 
are listed in Table 4. As observed from Table 4, the vector-
ized execution (VE) performs better than the serial execution 
(SE) as the efficiency is increased by a factor of over 100%.

Conclusions

The seismic wave simulation in a porous media using Biot’s 
theory was carried out using vectorized derivative opera-
tors to improve the efficiency of computation. The devel-
oped algorithm was used to monitor the changes in seismic 
response of the Sleipner reservoir, North Sea. The effect of 

CO2 saturation in the reservoir is picked efficiently by our 
algorithm, and we could see the brightening of reflections 
with an increase in CO2 saturation. These results match well 
with the real data. The simulation run-time for the vectorized 
algorithm was compared with the serial execution (SE), and 
a reduction in run-time for the vectorized execution with 
over a hundred percent (100%) was reported.
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Abstract
Amplitude variation with offset (AVO) inversion is a widely used approach to obtain reliable estimates of elastic parameter. 
Tikhonov and total variation regularization are commonly used methods to address ill-posed problem of AVO inversion. 
However, these model-driven methods are only for special geological structure such as smoothness or blockiness. In this 
letter, a robust data-driven-based regularization method with logarithm absolute error loss function (DDI-Log) for AVO 
inversion is proposed. In DDI-Log, the information of well-log data and the complex geology are considered in a sparse 
representation framework. In pre-stack seismic data, outlier noise can negatively influence inversion results. Thus, different 
from the previous data-driven inversion based on L

2
 norm loss function, we extend the logarithm absolute error function as 

the loss function. In the iteration, a new spectral PRP conjugate gradient method is used to solve the large-scale optimization 
problem. The synthetic data and field data tests illustrate that the proposed approach is robust against outlier noise and that 
the resolution and accuracy of the solutions are improved.

Keywords AVO inversion · Dictionary learning · Logarithm absolute error function

Introduction

Pre-stack amplitude variation with offset (AVO) inversion 
aims to deduce the geological structure and obtain reliable 
estimates of P-wave velocity, S-wave velocity and den-
sity with observed seismic data (Buland and Omre 2003; 
Zhang et al. 2013; Fan et al. 2015; Liu et al. 2015; Zong 
et al. 2017). Typically, the AVO inversion problem can be 
formulated as optimization problem in which the goal is to 
find a model that minimizes the error between the observed 
data and the modeled data. Assuming the seismic data were 

contaminated by Gaussian noise, the optimization problem 
most often formulated as a least-squares problem. That is, 
L2 norm of the error between the observed data and modeled 
data is minimized. However, the performance of the least 
square algorithm degrades severely when the seismic data 
contain outlier noise. On the other hand, the AVO inversion 
is a typical ill-posed problem, and there usually exist sev-
eral solutions that honor the observed data. In order to deal 
with this issue, prior knowledge should be utilized to restrict 
scope of solutions. Therefore, how to design a robust and 
high precision algorithm is vital for the AVO inversion tasks.

In order to estimate reliable elastic parameter, regulari-
zation is one of the most popular method as prior knowl-
edge. Assuming that the stratum satisfies smoothness prior, 
L2 norm-based regularization such as the Tikhonov regu-
larization is often used in seismic inversion (Sen and Roy 
2003). However, the Tikhonov regularization method will 
lead to an over-smoothed solution in the cases of models 
with sharp interfaces. A common alternative to the Tikhonov 
regularization is total variation (TV) regularization which 
is based on L1 norm. The TV regularization is appropriate 
for the seismic inversion problems when the stratum has 
blockiness prior. For example, in full wave inversion (FWI), 
TV regularization was used to capture sharp interfaces 
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(Epanomeritakis et al. 2008 and Anagaw and Sacchi 2011). 
Yuan et al. (2015) presented a L1-norm regularization of 
multitrace impedance to stabilize the inversion, reduce the 
influence of high-wavenumber noise on the inverted result, 
and explore spatial continuities of structures. Gholami 
(2015) utilized TV regularization to recover the impedance 
maps with blocky structures. Yuan et al. (2018) adopted 
simultaneous sparsity constraints of the first-order differ-
ences of signals along the time direction and two spatial 
directions to propose an inversion-based 3-D seismic denois-
ing method. She et al. (2019b) proposed high-order total 
variation regularization for different models. In recent years, 
some more complex mathematical formulas were used to 
tackle complex geological models [e.g., mixed smooth and 
blocky features (Sun and Li 2014) and piecewise smooth 
model (Li et al. 2017)]. However, two main problems are 
still existing for the mixed regularization methods. First, it 
does not make full use of the information of well-log data. 
Second, the aforementioned regularization methods are 
model-driven approaches which rely on mathematical mod-
els from prior information, and they are only suitable for a 
specific geology. That is, they are inappropriate for complex 
area where the features are complex.

Recently, dictionary learning has been extensively studied 
in many fields (Zhou et al. 2016; Siahsar et al. 2017; She 
et al. 2018; Tao et al. 2019). For instance, sparse diction-
ary learning was used in noise attenuation of 3D seismic 
data (Siahsar et al. 2017). She et al. (2018) proposed a data-
driven inversion method for the AVO inversion problem. 
Also, considering that outlier noise can lead to unstable 
results, L1 norm was often used as the loss function because 
the L1 norm is insensitivity to outlier errors (Guitton and 
Verschuur 2004; Pyun et al. 2009; Li and Zhang 2017; Fujin 
and Jiashu 2013). However, these L1 norm inversion methods 
may suffer singularity trouble. Although the iterative algo-
rithm called iteratively reweighted least squares (IRLS) has 
been used to solve L1 norm minimization problems (Zhang 
et al. 2000; Ji 2006; Li and Zhang 2017), the IRLS algorithm 
is time-consuming on updating the re-weighting factors at 
each iteration in large-scale problem.

In summary, we propose a new method for AVO inver-
sion, using dictionary learning-based sparse representation 
framework with logarithm absolute error loss function. The 
dictionary learning-based sparse representation offers a pow-
erful mechanism of combining the information of well-log 
data and complex geology simultaneously. Unlike using the 
previous L2 norm and L1 norm as the loss function, we pro-
pose a robust logarithm absolute error function to cope with 
the outlier errors , and the singularity problem which is not 
differentiable at zero point is also avoided. In addition, we use 
a new spectral Polak–Ribière–Polyak (PRP) conjugate gra-
dient method to solve the large-scale optimization problem 
(Wan et al. 2011). The synthetic data show that the proposed 

algorithm is robust and has higher precision compared with 
the existing state-of-the-art method. Field seismic data tests 
also demonstrate the validity of our algorithm.

Conventional regularization methods

Forward model

As usual, on the basis of the convolutional model and Aki-
Richards approximation equation (Aki and Richards 2002), 
the forward model of the AVO inversion can be expressed as 
a large-scale ill-posed linear equation (Hampson et al. 2005)

where d is the observed seismic data, G is a matrix repre-
senting the forward linearized operator, m represents a vec-
tor of the model parameters to be estimated and n is the 
noise term. Hampson et al. (2005) build the model parameter 
m with a nonlinear transformation of the elastic parameter 
x using the linear relationship between the logarithms of 
elastic parameters (P-impedance, S-impedance and density). 
It is worth noting that vector m ∈ ℝ

3Nlayer ( Nlayer is the num-
ber of each model parameter) is a simple concatenation of 
multiple components

and

Next, we use � to denote positive conversion of elastic 
parameter and model parameter

where ⊗ denotes the element-wise multiplication between 
two vectors. xp, xs, xd represent P-wave velocity vector, 
S-wave velocity vector and density vector, respectively, and 
a , b , c , d are the constant linear fitting coefficients which 
are learned from well-log data set. Similarly, once we get 
the model parameter, the elastic properties xp, xs, xd can be 
obtained from a backward conversion �−1

(1)d = Gm + n.

(2)m =
[
mLP,m�LS,m�LD

]
.

(3)

mLP =
[
mLP

1,… ,mLP
i,… ,mLP

Nlayer

]

m�LS =
[
m1

�LS
,… ,mi

�LS
,… ,m

Nlayer

�LS

]

m�LD =
[
m1

�LD
,… ,mi

�LD
,… ,m

Nlayer

�LD

]

(4)𝜑(xP, xS, x𝜌)

⎧
⎪⎨⎪⎩

mLP = ln(xp ⊗ xd)

m𝛥LS = ln(xs ⊗ xd) − amLP − b

m𝛥LD = ln(xd) − cmLP − d



447Acta Geophysica (2020) 68:445–458 

1 3

Conventional regularization methods

To be concrete, one seeks the perfect estimate of the model 
parameter m from a knowledge of d and G . However, 
the inversion problem is ill-posed, equation (1) is mostly 
inverted by minimizing the following objection function:

where we call the first term the loss function term. �(m) 
is the regularization term and � represents regularization 
parameter. The Tikhonov regularization (TK) and TV regu-
larization are the two most popular regularization methods. 
The Tikhonov regularization approach based on L2 norm can 
exhibit smooth solutions:

By minimizing the L1 norm of the gradient of model m , the 
TV regularization method attempts to obtain solutions with 
block effect

(5)�−1(mLP,m�LS,m�LD)

⎧
⎪⎨⎪⎩

xp = emLP∕xd
xs = em�LS+amLP+b∕xd
xd = em�LD+cmLP+d

(6)J = ‖d − Gm‖2
2
+ ��(m)

(7)J = ‖d − Gm‖2
2
+ �‖Lm‖2

2

where L is the first-order difference operator for the gradient 
of model m . However, there exists two main issues for the 
two popular regularization methods. On the one hand, it does 
not make full use of the information of well-log data. On the 
other hand, these methods are model-driven approaches that 
are only for specific geological structure.

Theory

She et al. (2018) have shown that data-driven inversion 
(DDI) method via learned dictionaries and sparse represen-
tation can offer more promising performance. Since the unit 
of our proposed model is dictionary learning-based sparse 
representation, we will give brief to introduce the data-
driven inversion framework.

Data‑driven inversion

Within a survey area, since the deposition of the subsur-
face layers is relatively stable, the physical properties 
tend to have a certain similarity. Thus, we can make a 

(8)J = ‖d − Gm‖2
2
+ �‖Lm‖1

Fig. 1  The patch-based processing approach schematic diagram
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reasonable assumption that the sparse dictionary learned 
from real well-log data can be used as global sparse dic-
tionary. Next, we will describe the dictionary learning 
method in detail. First, we divide the well-log data into 
small patches as a training set S =

[
s1, s2,… , sn

]
 . n is the 

number of small patches with length of M . The train-
ing data set is generated using patch-based processing 
approach that divides the well-logs into patches. Figure 1 
shows the patch-based processing approach schematic dia-
gram of the P-wave velocity.

Then, the goal of the dictionary learning is to seek the 
over-complete dictionary D and sparse approximation 
A =

[
a1, a2,… , an

]
 . The process can be expressed as

where D̂ and Â are the learned optimal dictionary and sparse 
approximation, respectively. |⋅|0 denotes the L0 norm that 
counts nonzero coefficients in a vector and K represents the 
sparsity level, which is much less than the number of atoms 
in dictionary D . To solve the complex optimization problem, 
we exploit a flexible and highly efficient K-singular-value 
decomposition (K-SVD) algorithm (Aharon et al. 2006).

According to the assumption that is mentioned above, 
once the dictionary is learned, we can represent each 
unknown elastic parameter block using a few atoms (sparse 
approximation coefficients) and the dictionary. Thus, the 
objective function can be described as follows:

where n is the number of patches and the subscripts P , S , 
and � denote the P-wave velocity, S-wave velocity, and den-
sity, respectively. Taking P-wave velocity as an example, 
DP represents the dictionary which is learned through the 
sparse dictionary learning process above. �i

P
 is the sparse 

coding of yi
P
 which is the i th patch of the given P-wave 

velocity, and the same for S-wave velocity and density. In the 
sparse representation process, orthonormal matching pursuit 
(OMP) algorithm is used to get sparse coding �i

P
 . Once the 

sparse coding is done, we can search for dictionary. After 
several iterations, we can obtain appropriate dictionary and 
sparse coding. Ri is a matrix that extracts the i th block from 
the model parameter m . In order to eliminate the equality 
constraints, we use the inverse transformation �−1 . Then, 
the objective function can be rewritten as

(9)

�
D̂, Â

�
= arg min‖S − DA‖2

F

subject to ∀i ∶ ��ai��0 ≤ K(K ≪ L)

(10)

J = ‖d − Gm‖2
2
+ �1

n�
i=1

���DP�
i
P
− yi

P

���
2

2

+ �2

n�
i=1

���DS�
i
S
− yi

S

���
2

2
+ �3

n�
i=1

���D��
i
�
− yi

�

���
2

2

subject to ∀i ∈ {1, 2,… , n} ∶ Rim = �(yi
P
, yi

S
, yi

�
)

where mi
LP

 , mi
�LS

 and mi
�LD

 are the sparse representation 
of the i th patch of model parameters. Ri

LP
 is a matrix that 

extracts the i th block of the logarithm of P-impedance from 
the model parameter m , and similarly for Ri

�LS
 and Ri

�LD
 , and 

�1 , �2 and �3 are the regularization parameters.

(11)

J = ‖d − Gm‖2
2

+ �1

n�
i=1

���R
i
LP
m −mi

LP

���
2

2

+ �2

n�
i=1

���R
i
�LS

m −mi
�LS

���
2

2

+ �3

n�
i=1

���R
i
�LD

m −mi
�LD

���
2

2
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Proposed method

The noise in real pre-stack seismic data can come from 
various sources, such as wind motion, poorly planted 
geophones, or electrical noise, and some of this seismic 
random noise invariably exhibits spike-like characteristics 
(Liu et al. 2009). Although the noise produced in seismic 
data acquisition has been partly eliminated in the denoising 
process, there are also some noise produced in seismic data 
processing, such as normal moveout (NMO) correction. 
The outlier may not get corrected quite enough while its 
neighbors might be slightly NMO over-correction or under-
correction. So, it is important to research robust inversion 
algorithm.

These L2 norm loss function methods for AVO inversion 
usually suffer from drawback that they are highly sensitive 
to outlier errors. Many studies have shown that L1 norm-
based methods are less affected by outlier errors (Li and 
Zhang 2017; Guitton and Verschuur 2004). However, L1 
norm method has singularity problem at zero point. Based 
on the fact above, we propose a new robust data-driven-
based regularization method with logarithm absolute error 
loss function for AVO inversion.

In order to avoid the singularity, we propose the logarithm 
absolute error loss function:

where ei represents the i th component of error vector e , N is 
the length of vector e and 𝛼 > 0 is a design parameter.

Compared to the L1 norm of error vector(i.e., 
‖e‖1 = ∑N

i=1
��ei��1 ), the proposed logarithm absolute error 

loss function introduces a penalty term in L1 norm. From 
Fig. 2a, b, we can see that the logarithm absolute error func-
tion solves the problem of non-differentiable at zero point by 
incorporating the logarithm penalty function into L1 norm.

Now, we rewrite the forward matrix G and seismic data 
d in the following form

where Gi and di represent the i th row of forward matrix G 
and seismic data d , respectively. Thus, we can rewrite the 
error ei as

To be concrete, the proposed objective function for AVO 
inversion is formulated as

(12)�� (e) =

N∑
i=1

(||ei||1 − �ln
(
1 +

1

�
||ei||1

))

(13)
G =

[
G1,G2,… ,GN

]T

d =
[
d1, d2,… , dN

]T

(14)ei = di − Gim

Fig. 3  The flowchart of the whole inversion process
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Minimizing the objective function is difficult because 
of its high nonlinearity. It is well-known that the conjugate 
gradient methods are successful methods for solving the 
large-scale optimization problems due to their simplicity 
and low storage. Recently, the most widely used conjugate 
gradient method is the Polak–Ribière–Polyak (PRP) conju-
gate gradient algorithm. However, the search direction of 
PRP method is not always a descent direction. Therefore, 
to make the proposed scheme tractable, we adopt new spec-
tral PRP conjugate gradient algorithm (Wan et al. 2011) 
to minimize the objective function. More specifically, the 
iterative process is given by

where k denotes the k th iteration, � is iterative step length 
and pk is the search direction defined by

In this search direction, the �PRP
k

∈ ℝ represents PRP conju-
gate gradient parameter

and

(15)
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Fig. 6  The retrieved P-wave 
velocity, S-wave velocity and 
density using a TK, b TV, 
c DDI-L2 and d DDI-Log 
methods. (The blue dotted line 
in each figure shows the true 
parameter, the green solid line 
shows the initial model and the 
red solid line shows the inverted 
parameter)
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where mi
LP(k)

 , mi
�LS(k)

 and mi
�LD(k)

 are the sparse representa-
tion of the i th patch of model parameters at the k th iteration. 
In particular, the low-frequency model (the initial model) is 
very important for geophysical inversion problems, which 
are characterized by ill-posedness (Yuan et al. 2019). Thus, 
to reduce the instability and recover the low-frequency com-
ponents of the models, we use a common strategy to guess 
the initial model m0 from the known well-log data. We will 
find that every iteration needs an OMP operation if we use 
formula (20) to update the model parameters directly. In fact, 
this is time-consuming and unnecessary. Therefore, we 
update the model parameters using internal and outer loop 
manners. That is to say, the update method consists of two 
main loops, an outer loop to update mi

LP(k)
 , mi

�LS(k)
 and 

mi
�LD(k)

 and an inner loop to obtain model parameters using 
the new spectral PRP conjugate gradient algorithm. Assum-
ing that the whole iteration process includes Q outer loop 
iterations and K inner loop iterations, the gradient of q th 
outer loop iteration and k th inner loop iteration can be 
rewritten as

(20)

gk =

N∑
i=1

−Giek,i

� + ||ek,i||
+ �1

n∑
i=1

(Ri
LP
)T(Ri
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mk −mi

LP(k)
)

+ �2

n∑
i=1

(Ri
�LS

)T(Ri
�LS

mk −mi
�LS(k)

)

+ �3

n∑
i=1

(Ri
�LD

)T(Ri
�LD

mk −mi
�LD(k)

)

In the process of updating model parameters, the choice of 
step size is also critical. Small step size will result in low 
steady-state error and slow convergence speed, and large 
step size may lead to fast convergence speed and unsta-
ble convergence results. To ensure convergence, sufficient 
decrease and discard unacceptably short steps, the step 
length � is obtained by the Wolfe-type line search (Sun and 
Yuan 2006):

where 0 < 𝜁1 < 𝜁2 < 1 , ‖⋅‖1 is L1 norm, �1 and �2 are chosen 
as 0.0001 and 0.9, respectively. A flowchart of the whole 
inversion process can be found in Fig. 3.

Numerical examples

In this section, we will compare the proposed data-driven 
inversion method with logarithm absolute error loss func-
tion (DDI-Log) with data-driven inversion with L2 norm 
(DDI-L2), TK and TV methods using synthetic data and 
field data.

Synthetic data examples

First, we use a multiple lithology model (MLM) (She et al. 
2019a) as an example. The MLM of size 160 × 500 con-
sists of three different kinds of lithologies with different 
structural features, including mudstone (block), sandstone 
(smooth) and limestone (linear gradient). As shown in 
Fig. 4, from top to bottom, the lithologies are mudstone, 
sandstone, mudstone and limestone. For each trace, the 
synthetic data are generated by forward model (1) with 
30-Hz Ricker wavelet. In order to test the robustness of 
the proposed method, Bernoulli–Gaussian (BG) noise 
with signal-to-noise ratio (SNR) of 4dB and Pr = 0.05 

(21)
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Fig. 8  The retrieved P-wave velocity, S-wave velocity and density profiles of the MLM. Where a TK, b TV, c DDI-L2 and d DDI-Log
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Fig. 9  The retrieved P-wave 
velocity, S-wave velocity and 
density using a TK, b TV, c 
DDI-L2 and d DDI-Log meth-
ods at the condition of SNR = 5 
Gaussian noise (The blue dotted 
line in each figure shows the 
true parameter, the green solid 
line shows the initial model 
and the red solid line shows the 
inverted parameter)
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is added to the synthetic data. Taking the 128th trace for 
example, the synthetic data are shown in Fig. 5a. As is 
shown in Fig. 5b, the BG noise here is used for modeling 
the outlier noise. This signal is generated as the product 
of a Bernoulli process and a Gaussian process such that 
n(k) = B(k)G(k) , where G(k) is a white Gaussian random 
sequence with a mean of zero and variance �2 , and B(k) 
is a Bernoulli process with the probability mass function 
given as P(B) = 1 − Pr for B = 0 , and P(B) = Pr for B = 1 , 
where Pr is a probability that satisfies values of 0 < Pr ≤ 1.

We adopt the same parameter settings as those in She 
et al. (2018). Considering the MSE and computation cost, 
we finally choose dictionary size 30 × 2000 with corre-
sponding sparsity level K = 1. Also, we set regularization 
parameters �1 , �2 and �3 to be the same (denoted by � ). In 
these methods mentioned above, we employ the L-curve 
criterion to determine the regularization parameter. With 
regard to parameter � , we use a small value 0.001 to avoid 
the singularity problem of L1 norm.

Taking the 128 th trace for example, Fig. 6 displays the 
AVO inversion results for the elastic parameters when 
the synthetic data are contaminated by outlier noise, and 
Fig. 6a–d shows the results of TK, TV, DDI-L2 and DDI-
Log methods, respectively. Curves in blue dotted lines, 
respectively, denote original real P-wave velocity, S-wave 
velocity and density. The green lines and red solid lines 
are initial models and inversion results, respectively. 
As can be seen, the TK and DDI-L2 methods give the 
worst inversion results when the observed data are pol-
luted by outlier noise. The results also indicate that these 

two methods are highly sensitive to outlier noise. On the 
other hand, with the inaccuracy of inversion parameters, 
the sparse representation process cannot accurately affect 
the geological structure. Thus, the inappropriate sparse 
representation in turn affects inversion results. So, we 
will find that the inversion results of DDI-L2 method are 
worse than TK method. The TV regularization method 
can mitigate the outlier noise to some extent. But, this 
TV method is only good for blocky geological structure 
and is inappropriate for geological areas with different 
geological features. Compared to TK, TV and DDI-L2 
methods, the proposed DDI-Log method can suppress 
outlier noise and can protect complex geological struc-
ture characteristics. The MSE (the mean square error of 
model parameters) curves shown in Fig. 7 also indicate 
the proposed method is robust to outlier noise and con-
verges to a satisfying solution. However, the other three 
methods give relatively poor inversion results and conver-
gence performance. Next, we will show profile inversion 
results (shown in Fig. 8) of these four methods. Compared 
with the other three methods, the inversion results of the 
proposed DDI-Log algorithm are significantly better in 
the degree of consistency with the real model.

At last, we will test the robustness of the proposed 
algorithm under the condition of Gaussian noise, because 
the seismic data also contain the frequent occurrence of 
Gaussian noise. As can be seen from the inversion results 
shown in Fig. 9, the DDI-L2 and DDI-Log methods can 
grasp different structures more accurately. The proposed 
algorithm has higher accuracy compared with DDI-L2. 
In addition, Fig. 10 illustrates the statistical performance 
with respect to different noise conditions. It can be mark-
edly noted that the DDI-Log method is better than the 
other three methods.

Field data example

In this section, the field pre-stack seismic data of Anyue 
work area from Western China are used to test the appli-
cability of the proposed algorithm. In this work area, we 
use 12 well-logs to train dictionary. Next, we apply the 
learned dictionary to other trace because of the similar-
ity and lateral continuity within a certain range. First, we 
focus on real well-logs inversion as is shown in Fig. 11. 
It is worth noting that the proposed algorithms have more 
similar trends compared with the other three methods. 
Afterward, we focus on inversion profile. Figure 12 shows 
the inverted P-wave velocity profile, S-wave velocity pro-
file and density profile using (a) TK, (b) TV, (c) DDI-L2 
and (d) DDI-Log methods, respectively. From these inver-
sion results, we will find that the layered structure of TK 
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Fig. 10  A plot of average MSE over 10 runs versus SNR for TK (blue 
circle line), TV (orange star line), DDI-L2 (yellow diamond line) and 
DDI-Log (purple right triangle line)
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Fig. 11  The retrieved P-wave 
velocity, S-wave velocity and 
density using a TK, b TV, c 
DDI-L2 and d DDI-Log meth-
ods, respectively (the blue dot-
ted line in each figure shows the 
true parameter, the green solid 
line shows the initial model 
and the red solid line shows the 
inverted parameter)
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and TV methods is disorganized. Instead, the DDI-L2 
and DDI-Log methods have much better lateral continu-
ity and consistency with the real well-log (black curve). 
However, compared with DDI-L2, the proposed method 
has higher resolution and lateral continuity as shown in 
the black arrows. The inversion results of the proposed 
algorithm can better distinguish the upper and lower 
interfaces of geological bodies. These tests demonstrate 
that the proposed method is effective and reliable.

Conclusion

In this letter, we propose a robust data-driven-based regulari-
zation method with logarithm absolute error loss function for 
AVO inversion. The data-driven-based regularization method 
has drawn a lot of attention because it can tackle complex 
geology. However, the inversion result is instable when the 
pre-stack seismic data are contaminated by outlier noise. 
Thus, we utilize the logarithm absolute error function as the 
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Fig. 12  The inverted P-wave velocity, S-wave velocity, density profile using a TK, b TV, c DDI-L2 and d DDI-Log methods, respectively
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loss function. In addition, the new loss function can avoid 
singularity problem. To minimize this objective function, a 
simplicity and low-storage spectral PRP conjugate gradient 
algorithm is used. The synthetic examples verify that the 
proposed method can address outlier noise problem and can 
improve inversion accuracy. Field seismic data tests also illus-
trate that the proposed method has higher inversion resolution.
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Abstract
Currently, the use of numerical models for reproducing the evolution of river systems and landscapes is part of the day-by-day 
research activities of fluvial engineers and geomorphologists. However, despite landscape evolution modelling is based on 
a rather long tradition, and scientists and practitioners are studying how to schematize the processes involved in the evolu-
tion of a landscape since decades, there is still the need for improving the knowledge of the physical mechanisms and their 
numerical coding. Updating past review papers, the present work focuses on the first aspect, discussing six main components 
of a landscape evolution model, namely continuity of mass, hillslope processes, water flow, erosion and sediment transport, 
soil properties, vegetation dynamics. The more common schematizations are discussed in a plain language, pointing out the 
current knowledge and possible open questions to be addressed in the future, towards an improvement of the reliability of 
such kind of models in describing the evolution of fluvial landscapes and river networks.

Keywords Basin erosion · Landscape evolution model · Numerical modelling · Surface processes · River networks

Introduction

The present paper reviews the state of the art about model-
ling of landscape evolution, with a particular focus on the 
main components typically schematized in numerical codes 
that can be applied for modelling fluvial terrains shaped by 
the interaction of internal and external processes, such as 
precipitation, water flow and sediments, as well as vegeta-
tion and soil properties. Nowadays, often the term “model” 
refers to both the underlying theory and the computer 
programs used to calculate approximate solutions of the 
governing equations, involving possible misunderstand-
ings. Numerical models represent an indispensable tool for 
assisting geomorphologists in reproducing the origins and 
dynamics of surface landscapes, combining a quantitative 
characterization of terrain with various theories describing 
the modification of river system topography by the variety 
of processes that sculpt it (Mark 1975; Tucker and Hancock 
2010; Baas 2017).

In the last decades, the ability of engineers and geomor-
phologists to measure the topography of river beds and 
hillslopes has grown tremendously, moving from topogra-
phy maps, very imprecisely and requiring a massive work 
to be revised, towards digital elevation models and digital 
maps, generally having a higher resolution and covering the 
majority of the emerged landmasses (Gesch et al. 2006), 
and more easily updatable. In addition, the recent develop-
ment of high-resolution mapping tools like laser scanners 
and cameras, as well as satellites, assured a detailed and 
reliable description of the changes of the Earth’s surface, 
also in regions where the access could be more complicated. 
At the same time, theories and models of landscape evolu-
tion have grown, accounting for more processes and for a 
more sophisticated description of them. As recently as the 
second half of the last century, a landscape evolution model 
was intended as the sequential evolution of a landscape over 
the geological time. By the end of the century, this term 
had been associated with a more scientific meaning: a math-
ematical theory describing how the actions of a multitude 
of geomorphic processes interact during the time to shape 
the basin topography.

Aside from their physical meaning, the complexity of 
the governing equations of landscape evolution requires a 
numerical solution method to be solved in a closed form. 
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The growing complexity introduced in landscape evolution 
models, accompanied by the advances in computing tech-
niques and acquisition of topographic data, has revolution-
ized the ability of geomorphologists and fluvial engineers 
to measure and model landforms and their rate of change, as 
well as to investigate and numerically reproduce how such 
forms and dynamics arise from the physics of geomorphic 
processes (Coulthard 2001; Chen et al. 2014; Willgoose 
2018).

In geophysics, primary drivers are generally described by 
means of a system of partial differential equations, which 
originate from the classical mechanical theory (e.g. equa-
tions describing water and sediment transport, rock mechan-
ics, heat transfer, river hydraulics). The scale dependence 
of such processes complicates the analysis of feedbacks and 
interactions between them (Bracken et al. 2015). There-
fore, depending on the representation scale, models can be 
computationally intensive and thus typically limited to a 
small spatial scale of few metres if strictly adherent to the 
theory, or addressing large scales problems like the evolu-
tion of a whole river basin  (102–105 km2) with a reduced 
computational effort, but introducing simplified equations 
(Khosronejad et al. 2014; Larsen et al. 2016). For address-
ing problems acting at the landscape scale and therefore 
involving a great number of coupled state variables, a vari-
ety of approaches and methodologies is nowadays available. 
Currently, in fact, landscape evolution models can combine 
hillslope, channel, tectonic and vegetation processes by 
linking physically based equations, which represent simpli-
fications of the real world (e.g. De St. Venant equations for 
the water flow, geomorphic transport laws, erosion/deposi-
tion and sediment transport equations), with semiempirical 
approaches (e.g. organic accumulation, vegetation growth, 
the presence of external drivers like fire or wind). In addi-
tion, these models are able to couple stochastic (e.g. prob-
abilities of sediment detachment, vegetation encroachment 
and density, distribution of precipitation) and deterministic 
(e.g. water flow velocities, bank failure) dynamics (Will-
goose 2005; Fagherazzi et al. 2012).

Typically, many of the most used landscape evolution 
models are run over large domains and are therefore compu-
tationally intensive (Salles 2016). Consequently, geoscien-
tists are facing the challenge of reducing the computational 
effort to a minimal level for performing more effectively. 
As an example, Stark and Passalacqua (2014) developed a 
simplified landscape evolution model as a set of coupled 
dynamic systems, aiming to evaluate the changes of biomass 
and regolith under mass wasting and run-off erosion. An 
even more simplified approach was proposed by Franzoia 
and Nones (2017) and tested by Nones et al. (2019), who 
described the very long-term evolution of a river watershed 
by applying, at the watershed scale, a 0-D lumped hydro-
morphological model. The popular, alternative strategy of 

cellular automata modelling involves describing the phys-
ics governing fluid flow or sediment transport by means of 
discrete rules that control water, air and sediment transport 
processes on the basis of information from surrounding 
model grid cells (Willgoose et al. 1991; Liu and Coulthard 
2017). This cellular automata strategies have made it pos-
sible to reproduce shallow-water flows for hydrological pur-
poses (Adams et al. 2017; Caviedes-Voullième et al. 2018), 
but also to simulate the development of braided streams 
(Murray and Paola 2003), floodplains (Coulthard and Van 
De Wiel 2006), sand dunes (Zhang et al. 2012), wetland 
landscape pattern (Williams et al. 2016) and river deltas 
(Liang et al. 2016), for evaluating their response to global 
changes and human drivers. Aside from cellular automata, 
precipiton methods can be applied for simulating the evolu-
tion of a river landscape, given their ability in mimicking 
self‐organized emerging properties of geomorphological 
systems, from high‐resolution braided patterns to drainage 
network organization (Davy et al. 2017). Even if based on 
dissimilar approaches, these two methods have multiple sim-
ilarities, like the computational effort needed for simulating 
large domains or the complexity correlated with solving the 
hydrodynamics in detail.

The rationale of the research

In the 1950s and 1960s, the discipline of geomorphology 
turned from a qualitative approach, widely applied at the 
beginning of the XX century, towards a more quantitative 
analysis of landscape evolution (Kamp and Owen 2013). 
Starting from the 1970s, there have been a growing num-
ber of excellent review papers covering landscape evolu-
tion models and various aspects of geomorphic modelling, 
offering a very wide vision on the field (see, among many 
others, Carson and Kirkby 1972; Kirkby 1996; Coulthard 
2001; Martin and Church 2004; Khosronejad et al. 2014) 
and proposing several open questions to be addressed in 
representing the evolution of the Earth’s surface through a 
mathematical model. As stated by Kamp and Owen (2013), 
mathematical models were and are still paramount in under-
standing the landscape processes and the feedback between 
the involved components, and the recent technological devel-
opment contributed in increasing their use worldwide.

The aim of the present paper is to discuss six main com-
ponents usually considered in modelling the evolution of 
river systems, where the major part of sediments generated 
on the hillslopes is transported through the drainage network 
by the water flow. On the one part, river basins are the fun-
damental geomorphic unit (Chorley 1969), and fluvial land-
scapes cover most of the Earth’s surface. On the other part, 
being one of the most human-impacted environments, they 
need particular attention and their future evolution should 
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be addressed with proper methodologies that also account 
for climate change. For better focusing on river basins, are 
here not considered additional erosional systems like eolian 
landscapes, karstified terrains, ocean floors and glacial land-
scapes. The application of landscape evolution models to 
river basins can provide additional insights on the physico-
chemical processes that interact to shape the surface of a flu-
vial system, transferring the mass from one area to another. 
Moreover, the opportunity to have a graphical representation 
of the basin evolution enhances the ability of scientists and 
non-experts to interpret possible changes of the surface and 
to quantify the consequences of various hypotheses about 
fluvial dynamics.

In addition, landscape evolution models can also be 
applied for evaluating the development of specific features 
like passive margins (Tucker and Slingerland 1994; Ruetenik 
et al. 2016; Braun 2018) or mountain chains (Miller and 
Slingerland 2006). Numerical models can be focused on 
the long-term evolution of landscape (Bishop 2007) and 
river systems (Coulthard and Macklin 2001; Di Silvio and 
Nones 2014; Varrani et al. 2019) or on evaluating tectonics 
(Beaumont et al. 2000) and other surface processes. Under 
an environmental point of view, landform evolution models 
can be used as a methodology for evaluating and managing 
degraded landscapes such as abandoned mines (Hancock 
et al. 2000; Hancock and Willgoose 2018) and contaminated 
sites (Evans 2000), or for projects involving landscapes 
affected by disturbance of soil and/or vegetation (Coulthard 
et al. 2002). Because these models allow to visually evalu-
ate the temporal changes of the basin in terms of elevation, 
catchment size and shape, they can also be applied to sup-
port the study of dynamic phenomena like gully network 
development and valley alluviation or river avulsion, which 
is generally not possible with fixed-terrain models based on 
the classic USLE approach (Karydas et al. 2014). In addi-
tion, the flexibility of these models permits to evaluate and 
potentially combine simulations of processes acting at dif-
ferent spatiotemporal scales, spanning from short-term soil 
loss along single hillslopes (Montgomery and Dietrich 1992; 
Hancock et al. 2008) to catchment-scale assessments over 
geologic time (Hancock et al. 2015; Varrani et al. 2019), 
eventually coupling geomorphic and tectonic models (Beau-
mont et al. 2000) or accounting for the mobility of the whole 
river network (Whipple et al. 2017).

Regarding the mathematical description of erosion and 
transport rate adopted in landscape models, in the past, 
Carson and Kirkby (1972) discussed a variety of 1-D mod-
els of hillslope evolution under different geomorphic sce-
narios, while Dietrich et al. (2003) provided an overview 
of rate laws for both hillslope and channel processes. In 
their reviews on landscape evolution modelling, Coulthard 
(2001), Chen et al. (2014) and Willgoose (2018) provided a 
perspective on their strengths and weaknesses, showing that 

several solutions for reproducing the evolution of terrestrial 
landscapes exist. Recently, a thorough review on the fun-
damental equations implied in landscape evolution models 
was provided by Chen et al. (2014), who pointed out that the 
numerical implementation is a non-trivial problem, particu-
larly in simulating water flow and sediment transport in an 
efficient and highly accurate way.

In the past, many contributions were focused on discuss-
ing general and philosophical issues relevant to geomorphic 
modelling. As an example, Carson and Kirkby (1972) firstly 
and then Kirkby (1996) pointed out the theoretical founda-
tions of the modelling approach adopted in several fluvial 
landscape evolution models, showing their role in reducing 
the gap between the theory and the experimental approach. 
Focusing not only on landscape evolution models but also 
on the numerical modelling in general, Oreskes et al. (1994) 
provided a perspective on the codes’ structure and problems 
associated with their verification and validation. Mimicking 
this approach, other works (Martin and Church 2004; Larsen 
et al. 2016) showed the limitation of adopting numerical 
models for describing the nature complexity proposing open 
questions to be addressed in the future by means of new 
methodologies.

Moving from the important review proposed by Tucker 
and Hancock (2010) and maintaining a similar structure 
because of its effectiveness in driving the message, the pre-
sent paper summarized their conclusions on the structure 
and the constitutive equations of landscape evolution mod-
els in a relatively simplified way, using a plain language 
to provide the readers with a general overview rather than 
with a complex mathematical description of the phenomena 
involved, as proposed by Chen et al. (2014). Indeed, the 
review is mostly devoted to students and young researchers 
that want to understand the basic mechanisms of landscape 
evolution models, aiming to design their own approach on 
the problem.

In addition to what was done in previous reviews, this 
work discusses the importance of soil processes and vegeta-
tion dynamics in shaping fluvial landscapes, and the need 
of a deeper understanding of the feedback between all these 
processes for adequately implementing them in a numerical 
code. The next section is divided into six subsections, and 
each component is analysed individually. In detail, being the 
basic component of a landscape evolution model, the con-
servation of mass is firstly reviewed, and then, the hillslope 
processes are addressed. Two of the main components in 
landscape evolution models are the water flow and the sedi-
ment behaviour (erosion/deposition and transport) and are 
discussed in the following two subsections. Aside from 
these four components, which are included in landscape 
modelling since the very beginning of this research field, 
for the future, a major effort should be dedicated to evaluat-
ing the effects of soil properties and vegetation dynamics in 
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changing the Earth’s surface. Final conclusions and open 
questions for researchers and scholars are summarized at the 
end of the manuscript, aiming to provide the readers with 
possible paths to follow in developing landscape evolution 
models more capable to reproduce the variety and feedback 
of mechanisms interrelating in nature.

Simulating the evolution of a river system 
via a landscape evolution model

To simulate the creation and evolution of a river system, 
landscape evolution models can be applied. Based on geo-
metrical, morphometric, hydrological and additional (e.g. 
wind, vegetation, snow, ice, fire, herbivorous) inputs, a 
landscape evolution model combines such quantities for 
simulating the future changes of the Earth’s surface. These 
models are based on a system of equations that schematizes 
the mass continuity, specific geomorphic transport functions 
for describing the generation and movement of sediments 
and solutes on the basin hillslopes, as well as to reproduce 
the erosion phenomenon, the water flow and the transport of 
water–sediment mixtures along the river network (Dietrich 
et al. 2003). Depending on the modellers’ needs and the 
structure of the code, a series of numerical methods can 
be adopted for discretizing the solution in space and time, 
aiming to obtain more or less approximated solutions of the 
governing equations.

For adequately reproduce the evolution of a fluvial land-
scape, the single components should be effectively charac-
terized, as well as the feedback between them. In the fol-
lowing subsections, six main components are described, 
summarizing the results already available in the literature 
and pointing out the opportunity to focus the future research 
on some of them (i.e. vegetation dynamics, soil properties, 
sediment transport), given that classical mechanisms (i.e. 
mass continuity, hillslope properties, water flow) are studied 
since decades (Mark 1975; Tucker and Hancock 2010).

Exchange of mass

Geomorphic systems are rather basic systems, where the 
mass is conserved absolutely. However, in the case of land-
scape evolution, there are examples where the mass is not 
conserved because of sediment detachment, such as mod-
els based on stream power erosion formulas (Warren et al. 
2019). Moreover, the mass of water is not always conserved, 
because it also depends on the flow routing assumptions 
typical of each model. Therefore, in studying the evolution 
of fluvial landscapes, there are many possible frameworks 
for addressing the continuity of the mass, depending on the 
kind of process reproduced, the circumstances under study 
and the numerical scheme adopted. Given that each of these 

possible approaches has its own assumptions and limita-
tions, with their pros and cons, system modelling can be 
considered, to some degree, as a subjective research field. 
In fact, the included components, the adopted methodology 
and technology, as well as the modelling schematization, 
are arbitrarily assumed by the researcher depending on the 
case study and the research aims, as well as the modeller 
experience.

In general, the rate of change in a given control volume 
V can be derived by comparing the mass rate entering the 
volume with the one going out (Fig. 1). In other words, the 
process (rate of change) can be computed as a result of the 
nature and geometry of the idealized model (mass rate dif-
ference in–out).

One of the most common continuity expressions in geo-
morphic models assumes that the control volume can be 
schematized by means of a vertical column of rock and/
or soil. Starting from this general theory, the modeller can 
introduce multiple simplifications related to the density or 
the thickness of the considered material, as well as on its 
porosity and grain size. Several landscape evolution models 
consider that all the surface is composed by rock or by a 
combination of rock and sand. In the first case, assuming 
that the surface height is a single-valued function of the 
horizontal position involves the impossibility to describe 
vertical faces and overhangs. In addition, changes in height 
due to compaction/expansion of the underlying soil are 
generally ignored, as well as variations in the thickness of 
the soil layer. This latter hypothesis means that effects like 
the dependence of sediment transport rate on the regolith 
thickness (Carson and Kirkby 1972; Kirkby 1992; Braun 
et al. 2001; Skinner et al. 2018), the feedbacks between soil 
water storage capacity, the run-off generation and its effec-
tive rate or the weathering and sediment transport processes 
(Kirkby 1976; Saco et al. 2006; Dochez et al. 2014) are 
ignored. On the other part, assuming that a contact between 
the loose, mobile regolith and the underlying rock exists, 
provides a slightly more complete approach, but still many 

Fig. 1  Schematic representation of the mass continuity in volume V 
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simplifications are present (Ahnert 1976, 1987; Heimsath 
et al. 2001; Strudley et al. 2006).

Despite being largely adopted in landscape evolution 
modelling, the vertical-column continuity approach can 
sometimes result in being too much simplistic. In fact, there 
are several landforms that do not fit this framework, such as 
cliffs, waterfalls and gully headscarps, which have vertical or 
overhanging faces. Moreover, the 2-D continuity framework 
commonly implemented in landscape models is often very 
simple and not able to simulate vertical variations in weath-
ering rates, shallow flows and rock properties. For overcom-
ing these limitations, a fully 3-D approach is therefore nec-
essary, subdividing the column vertically and introducing 
additional equations to describe the vertical variations of 
the soil properties (Kirkby 1976; Vanwalleghem et al. 2013). 
Other approaches included the vertical exchange of mass 
flux due to the soil strain and the advection of soil layers 
towards (away from) the eroding (aggrading) land surface, 
or the consideration of additional drivers like gravitational 
compaction or changes in mineralogy and geochemistry 
(Fritsch et al. 2011).

Hillslope erosion processes

Landscape evolution models are based on geomorphic 
transport functions, which, usually, have a rather general 
formulation but adopt site-specific parameters, developed 
for a specific scope (Chen et al. 2014). Moreover, classi-
cal approaches to hillslope erosion processes such as the 
RUSLE (Renard et al. 1997; Nasir and Selvakumar 2018) 
or the WEPP (Flanagan et al 2012; Nearing et al. 2017) 
aggregate various geomorphic processes within a given 
area. (Namely, they can be considered as lumped models.) 
However, for better addressing the physics of landscape 
evolution, geomorphic process regimes like sheet flow and 
gullies should be treated separately (Momm et al. 2018). In 
the following, a brief overview of the main hillslope erosion 
processes is reported, showing the need for addressing every 
single component separately.

Based on long-lasting research, Nearing et al. (2017) 
defined the critical zone as the region between the top of 
the forest canopy and the base of the weathering horizon. 
Processes acting in such zone weaken the rock via mecha-
nisms like mechanical wedging, fracturing, chemical alter-
ation, biological disruption, etc. Although the weathering 
processes are well studied under a qualitative point of view, 
their mathematical representation is a rather new field of 
research, which is mainly focused on predicting rates of 
change and patterns of rock disintegration induced by spe-
cific chemical and physical processes (Cohen et al. 2009; 
Murphy et al. 2016). Moving from the original intuition 
proposed by Gilbert (1877), later revised and analytically 
expressed by Ahnert (1976), one can observe that, assuming 

a constant rate of regolith production from bare bedrock and 
a fixed characteristic decay length scale, under quasi-steady 
conditions (i.e. the regolith thickness varies very slowly 
with respect to the surface erosion), an inverse relationship 
between thickness and erosion rate exists. This relation-
ship has been verified against several field data, resulting 
in being consistent in different environments, ranging from 
semi-arid and coastal environments to high alpine terrains 
(Ahnert 1987; McKean et al. 1993). The mathematical for-
mulation of this process can imply several assumptions, but, 
generally, the obtained decay curve has an exponential trend 
(Anderson 2002; Saco et al. 2006; Strudley et al. 2006). In 
the last century, Kirkby (1985) proposed an alternative to 
the exponential decay models: instead of assuming a sharp 
contact between bedrock and regolith, he described the tran-
sition from rock to regolith as a gradational process having 
the deficit of soil as a state variable. Such a deficit can be 
represented by the fraction of unweathered rock remaining 
at a certain level in the soil profile. He demonstrated that 
this schematization can be more appropriated in effectively 
describing a wide interface region between unaltered mate-
rial and fully weathered soil. Indeed, even if successfully 
verified in several case studies, the exponential decay rules 
cannot be considered as a definitive solution for describ-
ing the observed regolith thickness patterns, but rather just 
a relatively simple and appealing method to be used until 
better approaches will be available. In this sense, further 
research on the physical mechanics and chemistry of weath-
ering processes is needed for obtaining a better mathematical 
relationship to correlate rock disintegration rates to factors 
like subsurface temperature, stresses and mineral alteration 
(Anderson 1998; Fletcher et al. 2006).

As described in detail in the past (Carson and Kirkby 
1972; Tucker and Hancock 2010), to reproduce the long-
term phenomenon of soil creep on low-gradient basins, a 
linear slope-dependent transport function can be adopted 
(Fernandes and Dietrich 1997), accounting for the convex-
upward hillslope profiles. Even if widely and successfully 
applied in many studies since decades, including fault scarps 
and fluvial systems, as well as marine and lake-shore terraces 
(Avouac 1993; Arrowsmith and Rhodes 1994; Pelletier et al. 
2006), and calibrated against field data derived from cosmo-
genic nuclide mass-balance measurements (McKean et al. 
1993; Heimsath and Ehlers 2005), the calibration constant is 
still the main source of uncertainty. In fact, an estimate of its 
magnitude can be obtained from a variety of approaches and 
for specific processes (Kirkby 1971; Black and Montgomery 
1991; Anderson 2002), but, under a general point of view, 
it should be treated as an empirical parameter. Although a 
linear relationship, with a constant parameter, provides reli-
able results, physical considerations suggest that the regolith 
thickness can influence the soil creep equation. Therefore, 
many depth-dependent creep functions have been suggested 
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in the literature (Ahnert 1976, 1987; Strudley et al. 2006), 
spanning from very simplified (Rosenbloom and Anderson 
1994) to more sophisticated (Braun et al. 2001; Anderson 
2002) approaches. However, despite the rising of specific 
studies, it is evident that more research is needed, especially 
considering landscapes having steeper gradients, close to the 
angle of repose for natural soils (Heimsath et al. 2001). A 
few nonlinear relationships were proposed (Ferdowsi et al. 
2018), but, generally, being developed on specific datasets, 
such formulas result too site-related and therefore not appli-
cable in different contexts. For the future, additional studies 
should be performed, also involving new technologies like 
radiometry, laser scanning and micromorphology (Pawlik 
and Šamonil 2018).

Aside from fluvial processes, transport functions adopted 
for describing mass movements like shallow, rapid land-
sliding are more problematic. In fact, there are two general 
approaches that can be adopted for describing these phe-
nomena: flux-based and event-based models. The first type 
approximates a series of events in terms of the long-term 
average rate of mass transfer by means of a transport func-
tion (Kirkby 1987). These models are capable to describe the 
time-averaged sediment transport at a time-scale relevant to 
landform evolution, but only at the very local spatial scale: 
the flux in a specific point is represented as a function of 
the local variables, neglecting the effects of the surround-
ings and the significance of long-distance transport events 
on steep slopes (Howard 1994). In the last decades, multi-
ple attempts were made for incorporating the long-distance 
transport effects into landscape evolution models by account-
ing for the expected flow paths. However, many uncertainties 
are still evident, mainly because of the probabilistic behav-
iour of the sediments and the influence of the soil properties. 
Indeed, the evident connection between transport statistics, 
topography and morphological evolution suggests the use 
of event-based models, but, even if they are more physically 
rooted being grounded on the current knowledge of landslide 
triggering and motion (Tucker and Bradley 2010), at the 
same time, they are computationally not really efficient and 
therefore not widely applied and tested.

Run‑off processes

As well known, the transport of sediment by the flowing 
water is a fundamental feature of the Earth’s processes 
(Lorang and Hauer 2017). Indeed, geomorphic works in 
a drainage basin are mostly correlated with surface water, 
and, therefore, knowing how the water flow is handled in 
landscape evolution modelling represents a central issue. 
Despite the possible spatial discretization methods that can 
be adopted, a common feature between the various models 
is the need to combine short-time scales (minutes to sea-
sons) associated with hydrologic processes with much longer 

timescales (years to centuries) that are related to sediment 
transport and landform evolution.

Typically, in a 2-D model, the flow field is described by 
means of the De St. Venant (shallow-water) equations, which 
represent the vertically integrated form of the Navier–Stokes 
equations for incompressible, free surface flow. They contain 
a description of the continuity of mass and momentum in the 
two horizontal dimensions and a friction function to describe 
the relationship between flow velocity and bed resistance, 
accounting for four main forces: inertia, gravity, fluid pres-
sure and boundary friction. Being these equations highly 
complex and generally not analytically solvable, simplified 
numerical solutions should be applied, accounting for sev-
eral limitations, as pointed out in the following.

Typically, because channelized flows accelerate only 
slowly in space (considering a reach-wise averaged veloc-
ity), the gradually varied flow approximation is introduced, 
assuming that the inertial terms in the momentum equation 
can be neglected. In addition, dropping the time derivative 
yields the diffusion wave approximation, which is valid in 
the case of flows mainly driven by pressure and gravity gra-
dients. In the case of small changes of the flow depth in the 
stream-wise direction with respect to the bed morphology, 
the gravity represents the main driver of the flow, and the 
pressure-gradient term can be neglected for obtaining the 
kinematic-wave equations. In this case, the water gravity-
related acceleration is everywhere balanced by the friction. 
For gravity-driven (kinematic) flows, the local bed shear 
stress can be represented as a function of the fluid density 
(water and sediment mixture), the local water/sediment dis-
charge and the bed slope and friction. In a 2-D schematiza-
tion, this approximation means that the flow lines follow the 
surface topography.

Based on this approach, many landscape evolution mod-
els use a cellular routing algorithm, imposing that the water 
flows from a cell to the adjacent one, following the steepest 
descent. As one can easily figure out, cellular routing algo-
rithms are closely correlated with the spatial discretization 
of the domain. Indeed, in a numerical model, the continu-
ous landscape surface is typically represented by discrete 
elements, which can be square cells, leading to pretty sim-
ple finite-difference solutions. However, in some cases, 
such square cells are not flexible enough for representing 
the computation domains in a proper manner. Therefore, 
to account for more complex domains, triangular elements 
associated with a finite-element solution (Maniatis et al. 
2009) or triangular irregular (unstructured) cells having the 
nodes connected using a Delaunay triangulation and the sur-
face nodes area described via Voronoi or Thiessen polygons 
can be adopted, such as made in common landscape models 
like the CASCADE and CHILD codes (Forte et al. 2016). 
Despite Caviedes-Voullième et al. (2012) demonstrated the 
utility of using triangular unstructured meshes for keeping 
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a low computational cost while ensuring accuracy, only a 
few models allow for using such a structure (Costabile et al. 
2017). The advantages of a cell-routing approach are the 
simplicity and the speed, but many drawbacks are also pre-
sent. Firstly, it is hard to handle diverging flows, which is 
typical of complex river systems. Moreover, the kinematic 
convergence of the flow depends on the width, which can be 
supposed equal to the width of the cells, leading to a grid-
size dependence of water depth and current velocity (Will-
goose et al. 1991). Alternatively, the flow can be assumed 
as confined to sub-grid cell features, which should have a 
predetermined (empirical) width (Howard 1994; Tucker and 
Slingerland 1994). A few landscape models have a less strict 
approach, relaxing the single-flow-direction assumption by 
introducing explicit numerical solutions of the steady 2-D 
kinematic-wave equations (Morgan 1980) or using multi-
ple directions algorithms, which assume that the flow going 
out from a cell is split among the downslope neighbours, 
weighted according to the gradient in each direction. Given 
that this latter type of algorithms provides a better descrip-
tion of shallow overland flow (sheet flow as described by 
Morgan in 1980) on convex hillslopes and fans (Pelletier 
2004), its use is fast spreading. In fact, common and well-
known codes like CAESAR (Van De Wiel et al. 2007) or 
recent examples such as the Landlab (Hobley et al. 2017) 
use multiple flow-direction algorithms, accounting for all 
the possible directions of flow propagation. These models 
provide an effective way to approximate time-varying, 2-D 
flow fields without the computational effort required by the 
traditional solution of the shallow-water equations, which 
could be very high especially for large domains (Garcia-
Navarro 2016; Shustikova et al. 2019). Commonly, cell-
based or kinematic-wave water routing is associated with a 
steady flow. As an example, the SIBERIA and the DELIM 
models compute the water discharge as a power function of 
the watershed area, assuming the local equilibrium between 
rainfall and run-off (Willgoose et al. 1991; Howard 1994). 
However, as Sólyom and Tucker (2004) demonstrated, the 
local geomorphology can highly affect the hydrological 
behaviour. Moreover, many studies pointed out the impor-
tance of the spatial variability of run-off generation, finding 
out that the run-off excess (saturation) tends to enhance both 
the hillslope convexity and the hillslope–channel transitions 
in equilibrium landscapes (Ijjász‐Vásquez et al. 1992).

The kinematic-wave theory represents a reliable approxi-
mation for channelized flows, but some problems arise in 
describing the 2-D evolution of landscapes. Indeed, errors 
can be hindered behind a series of questionable assumptions 
that lead to the right solutions (Izumi and Parker 2000). On 
the one part, the problem of flow convergence along valley 
axes can represent an obstacle to properly capture the tran-
sition from distributed to channelized flow, which can be 
somehow handled only posing major attention on the spatial 

resolution of the model (Kirkby 1994; Perron et al. 2008). 
In fact, to overcome such problems, fine-detailed models 
using the diffusive wave theory can be developed, but there 
is still the need of employing more powerful computers for 
evaluating the long-term evolution of large areas, which can 
hinder their application to real-time forecasts.

Obviously, there are differences in terms of timescale in 
simulating the run-off which could be observed during a 
storm event or the long-term evolution of a river watershed. 
The majority of landscape evolution models deal with this 
aspect imposing a geomorphically effective run-off event 
to describe the basin erosion. Namely, such codes assume a 
single, steady run-off coefficient is equivalent, in terms of 
geomorphic effectiveness, to a series of run-off events. There 
are many examples dealing with this approach, spanning 
from imposing a relationship between a time-averaged sedi-
ment transport discharge and the average water flow peak 
discharge to more complex approaches (Willgoose et al. 
1989). However, all these methods assume that the event 
is somehow stable, while many researchers pointed out the 
need to consider the role of the discharge variability in time 
(Lague et al. 2005; Huang and Niemann 2006; Molnar et al. 
2006). Regardless of the detail of each method, they com-
monly agreed that erosion and transport rates increase with 
the temporal increment in discharge fluctuations, because 
they depend more than linearly on the water discharge. 
While there are several examples for which such effective 
event assumption is reasonable, recent studies proved that 
the time variability in hydrologic forcing can have a great 
impact on the landscape dynamics and, therefore, should be 
incorporated in the landscape evolution modelling, possibly 
through a stochastic description of both the rainfall and the 
run-off events (Tucker and Bras 2000; Whipple and Tucker 
2002; Armitage et al. 2018).

In the future, many challenges related to modelling the 
feedback effects between a changing climate, hydrology 
and landscape evolution in a coupled way should be faced, 
aiming to account for different spatiotemporal scales and 
overcome the simplifications generally applied in practice 
(Sólyom and Tucker 2004; Huang and Niemann 2006; 
Anders et al. 2008). Moreover, the randomness in the tempo-
ral dynamics of run-off processes requires the development 
of new high-flow statistics for better describing the evolu-
tion of landscapes like river floodplains, which are more 
impacted by extreme flows.

Sediment transport from the hillslopes to the river 
system

In shaping a river channel, the water flow erodes the bed with 
a rate limited by the detachment of particles (supply-limited 
systems) or by the capacity of the flow to transport sedi-
ment particles (capacity-limited systems), with a multitude 
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of intermediate behaviours (Carson and Kirkby 1972; Hajig-
holizadeh et al. 2018; Shobe et al. 2018). Thus, each system 
needs a different schematization, and the complexity varies 
depending also on the erosion rate: supply-limited systems 
result in being the simplest in terms of numerical modelling. 
In fact, in such systems, the sediment particles disappear 
as soon as they are eroded (Bagnold 1966; Howard 1994). 
Therefore, in this case, the erosion rate is assumed as a func-
tion of the bed shear stress, which, in its turn, depends on the 
local slope and discharge, giving rise to the so-called stream 
power erosion law (Bagnold 1966; Howard and Kerby 1983; 
Warren et al. 2019). A key property of these systems is the 
wave-like nature: there is a tendency to form erosional fronts 
that propagate upstream (Tucker and Whipple 2002). In the 
case of capacity-limited river systems, the erosion rate is a 
function of the unbalance between sediments entering and 
going out from the system, assuming a local morphological 
equilibrium, where the transport rate is everywhere equal to 
the local carrying capacity. The capacity-based approach is 
most applicable for describing bedload transport in gravel-
bed rivers, given that coarser particles have shorter travel 
distances, so the assumption of immediate adaptation of 
the transport rate to changes of water discharge or slope is 
quite reasonable (Einstein 1950). On the other part, in the 
case of systems mostly driven by the suspended load like 
sandy rivers, this approach tends to fail because it essentially 
ignores the time required for sediment grains to settle in the 
water column in response to transient hydrology. Indeed, 
the mechanism requires to define an equation representing 
the mass continuity for sediments in the water column, as 
well as detachment and settling functions, which are gen-
erally correlated with the local shear stress and grain size 
(Bracken et al. 2015). There are many formulas that can be 
adopted to describe the erosion and sediment transport phe-
nomena in a river system, but, despite this, they perform in a 
very similar manner if looking at the long-term longitudinal 
river-profile evolution under steady conditions (Whipple and 
Tucker 2002; Varrani et al. 2019). However, many differ-
ences arise in applying the models in transient conditions 
(Attal et al. 2008; Franzoia and Nones 2017), suggesting the 
need for using natural experiments to test landscape models 
(Tucker 2009).

For effectively describing the natural environment and 
the formation of a river system, a landscape evolution 
model must correctly reproduce the transition dynam-
ics from the hillslopes to the channel, and the degree to 
which the surface changes as a function of factors like 
relief elevation, local climate and river basin lithology 
(Kirkby 1987; Di Silvio and Nones 2014). The distinction 
between channels and hillslopes can be explicitly treated, 
but introducing hardly describable parameters (Willgoose 
et al. 1991), or representing the channels as sub-grid-scale 
features where the flow width is prescribed in an empirical 

way (Howard et al. 1994; Tucker and Slingerland 1994). 
Depending on the problem under study, models can be 
built for representing large-scale mechanisms without 
requiring a very fine detail (Kooi and Beaumont 1994; 
Lindim et al. 2016) or to reproduce the evolution of small-
scale landforms, implying a grid resolution that can be 
smaller than the channel width (Perron et al. 2008). For 
having the order of magnitude of the scales involved, one 
can consider a regime equation in its original form, cor-
relating the river width with a power of the bankfull dis-
charge (Leopold et al. 1964). One can easily notice that 
channels are typically some orders of magnitude smaller 
than the whole basin, meaning that they can be effectively 
handled as sub-grid features in landscape evolution mod-
els. The channel geometry is paramount in defining the 
volume of sediments available: the narrower is the chan-
nel, the more confined is the flow. Assuming that other 
parameters like the bed slope are constant, a narrow chan-
nel means an increase in the bed shear stress and the unit 
stream power, which translates in a bigger rate of sediment 
detachment and transported by the current (Lague 2014; 
Armitage et al. 2018).

The complexity of fluvial morphodynamics needs to 
be simplified for speeding up the computation, especially 
in the case of large river basins. However, in doing that, 
some models lose their physical meaning, imposing that 
the erosion can be directly computed from the total dis-
charge rather than from the specific one (Willgoose et al. 
1989; Kooi and Beaumont 1994) or assuming empirical 
regime equations (Howard 1994; Tucker and Whipple 
2002) hardly verifiable. On the one part, the use of empiri-
cal scaling laws has the advantage to explicitly calculate 
the cross-sectional averaged shear stress and stream power 
and to permit the application of physically based erosion 
and transport functions that depend on such quantities. On 
the other part, relying on simple scaling laws for describ-
ing the channel geometry has some drawbacks like the 
application of an equilibrium assumption to describe non-
equilibrium dynamics (Nones and Di Silvio 2016) or the 
impossibility to describe rivers affected by external forc-
ing factors like tectonics or lithological discontinuities 
(Nones et al. 2019). In the last years, many models have 
been developed for reproducing bedrock channel evolu-
tion (Stark 2006; Wobus et al. 2008; Langston and Tucker 
2018) and changes in channel width (Attal et al. 2008; 
Nones and Di Silvio 2016), as well as debris and granular 
flows (Howard 1998; Stock and Dietrich 2006), but there 
is ample room for improving them towards a more reliable 
estimate of landscape evolution, accounting for physically 
based laws, as well as spatially and temporally variable 
functions, for better incorporating the geological and cli-
matological variability.
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Soil properties

For terrestrial life, the soil represents one of the most 
important substances, supporting both the life (Lin 2011) 
and being a medium for transport and storage of water and 
gases (Strahler and Strahler 2006). Indeed, hydrological and 
morphological processes are a function of the soil charac-
teristics (Bryan 2000), but also depend on the ratio between 
soil and rock coverage (Poesen and Lavee 1994). Therefore, 
the understanding of the formation, global distribution and 
functional properties of the soil is paramount in catching the 
mechanisms driving the landscape dynamics.

Aiming to link the small scale of soil characteristics to the 
large scale of landscape evolution, in the past years, many 
statistical methods have been developed for determining and 
mapping different soil properties depending on other soil 
characteristics and the basin geomorphology (Behrens and 
Scholten 2006). However, one of the shortcomings of such 
an approach is the need of having a very large and detailed 
dataset of soil attributes, such as the particle size distribution 
or the amount of organic matter, which is needed for predict-
ing hardly measurable soil properties like the water content. 
In fact, even if applicable at the small scale, analyses at large 
(basin-wide) scale require distributed samples, which can 
be prohibitively expensive and definitely time-consuming 
(Scull et al. 2003).

While the spatial mapping of soil properties is impor-
tant, understanding the evolution of these properties and 
processes at the required scale is also fundamental. For 
quantifying such processes and predicting the time evolu-
tion of the soil characteristics, modellers can apply process-
based models (Hoosbeek and Bryant 1992; Minasny et al. 
2008; Schoorl and Veldkamp 2016). On the other hand, the 
most tested but out-of-date process-based models cannot 
be applied to large domains due to an excessive need of 
computational resources; therefore, new methods based on 
state-space matrix methodology were recently introduced 
(Cohen et al. 2009), also accounting for multiple soil layers 
(Welivitiya et al. 2016). These models are able to adequately 
predict the soil properties of an individual pixel, but failed 
in modelling the spatial interconnectivity between the vari-
ous parts of the soil catena that result from transport-limited 
erosion and deposition. To correctly predict the temporal 
changes of the spatially distributed soil properties, since 
the end of the last century, many researchers tried to cou-
ple the soil profile evolution with the landform evolution. 
As an example, Minasny and McBratney (2001) modelled 
the influence of soil and weathering processes on landform 
evolution using a single layer of soil, while Vanwalleghem 
et al. (2013) developed the MILESD code, which accounts 
for four layers (the bottommost bedrock layer and three 
soil layers above it) for reproducing the evolution of land-
forms, with a particular focus on Australia. Recently, the soil 

evolution module adopted in MILESD has been modified 
adding additional layers (Temme and Vanwalleghem 2016). 
Indeed, limiting the description of the topsoil to only three 
layers can hinder the importance of soil characteristics like 
the particle size distribution, which can be an index of vari-
ous soil attributes such as the soil moisture content (Schaap 
et al. 2001; Minasny et al. 2015). As a matter of fact, future 
landscape evolution models should consider soil charac-
teristics like depth and water holding capacity explicitly, 
preferably via a physically based approach, because they 
constrain the grading and amount of material eroded across 
the river basin.

Vegetation dynamics

Both the soil formation and the establishment of vegeta-
tion are paramount in changing the hydrological fluxes by 
accommodating soil moisture and facilitating the formation 
of sub-surface flow paths, affecting the form and the mag-
nitude of erosion, sediment transport (Ebel et al. 2007) and 
deposition (Molina et al. 2009). Therefore, numerical mod-
els devoted to predicting the evolution of landscape features 
are highly dependent on vegetation properties (Casadei et al. 
2003; Collins et al. 2004; Istanbulluoglu and Bras 2005; 
Yetemen et al. 2010). In addition, plants convert solar energy 
into geomorphic forces with very significant impacts from 
the regional to the global scales (Phillips 2009). Amundson 
et al. (2015) summarized the importance of vegetation in 
landscape evolution in a few points: (1) if water is available, 
a world without plants would likely have little or no soil on 
hillslopes; (2) plants may control the soil thickness; (3) soil 
production rates may be very high with respect to outcrop 
erosion rates (around one order of magnitude); (4) given 
that the soil residence times are constrained within a broad 
window of nutrient sufficiency/optimization, environments 
characterized by high weathering and low denudation rates 
can suffer from a deficit of rock-derived elements; (5) local 
feedbacks between plants, nutrients and soil thickness are 
possible; (6) at the very long-term (millennia), the vegeta-
tion evolution can impact (and be impacted by) geomorphic 
conditions.

As for the soil, the inclusion of vegetation dynamics in 
landscape evolution models is related to the spatial scale. 
Indeed, for adequately simulating how soils and biota inter-
act with climate and bedrock (Corenblit and Steiger 2009), 
and, consequently, for modulating the geomorphic response 
at the catchment scale, it is necessary to collect detailed data 
spatially distributed across the basin. To reduce the compu-
tational effort in creating such a dataset, generally spatial 
analyses of remotely sensed images and digital maps of ele-
vation, geology, soils and vegetation in relation to the local 
climate and sediment yield are developed (Newton et al. 
2009). Aside from creating new databases, the attention of 
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geomorphologists and soil scientists is now focused on qual-
itatively and quantitatively understand the effects of vegeta-
tion on the landscape physical processes, aiming to provide 
a more reliable schematization of them to be included in 
numerical codes. In this sense, the present major challenge 
is how to explicitly and quantitatively account for the role 
of biota in the production of soil from bedrock and its trans-
port downslope, investigating the combined evolution and 
feedback of soil, plants, hydrology and climate.

Conclusions and open questions

Using a plain language, the present review proposes a short 
summary about landscape evolution modelling and the main 
components of such codes, showing that, even if character-
ized by a quite long history, this research field is still very 
active and several improvements are forecasted for the future 
for answering to a series of open questions towards a more 
reliable representation of the Earth’s surface (Willgoose 
2018). In fact, the understanding of landscape dynamics 
requires a deeper knowledge of the recursive, multi-scale 
interactions among abiotic and biotic states and processes 
(Phillips and Van Dyke 2017).

As for the geomorphic transport functions, in the future, 
additional research should be performed towards a better 
evaluation of the dynamics associated with sediment char-
acteristics such as a varying grain size distributions, the 
role of the basin lithology and the horizontal movement of 
geomorphic features due to processes like scarp retreat and 
tectonic displacement.

Most importantly, for obtaining a consistent schematiza-
tion of the natural landscape, the dynamics of soils must be 
incorporated in new numerical models, overcoming limita-
tions shown by past codes. In fact, the soil represents one 
of the most important substances found on the Earth, given 
that, covering its uppermost layer, it provides the support 
for all the terrestrial organisms and guarantees the terrestrial 
life (Lin 2011). In the last decade, many tentative were made 
for incorporating the soil behaviour into landscape evolution 
models, as well as in combining soilscape and landscape 
modelling (Ebel et al. 2007; Welivitiya et al. 2019). Indeed, 
on the one part, the soil controls the interaction between 
vegetation and water, as well as the atmosphere in terms 
of carbon and nutrient cycling. On the other part, in com-
bination with the vegetation, the soil determines the rate 
of erosion and deposition and therefore cannot be ignored 
in adequately simulating the long-term dynamics of fluvial 
landscapes (Wilkes et al. 2019).

Aiming to draw a more complete picture of the evolu-
tion of a natural landscape, research should be directed 
also in including the role of biota, the dynamics of stream-
channel adjustment, the erosion and transport of sediments 

and material by means of woody and debris flows or other 
mass movements and the formation and evolution of the 
critical zone (Anderson et al. 2008). In summary, there is 
an evident need for a better understanding of mechanics and 
feedback of the physical, chemical and biological controls 
that can have a role in shaping the landscape forms. Even if 
the importance of the sediment dynamics is well recognized 
(Schumm and Lichty 1965; Robinson and Slingerland 1998), 
a major focus should be posed towards the study of the soil 
properties, improving the understanding on the influence of 
grain size, transport and sorting in shaping river systems, 
given that such aspects received some attention only recently 
(Gasparini et al. 2004; Di Silvio and Nones 2014; Sklar et al. 
2017). Moreover, further research shall be devoted in better 
interpreting and modelling the links between local climate, 
relief and grain size delivery to sedimentary basins, aiming 
to obtain a most reliable estimate of the processes acting at 
the watershed scale. In fact, fluvial transport capacity and 
competence are highly sensitive to grain size composition, 
and, consequently, phenomena like abrasion, weathering and 
armouring can have a significant impact on the transport 
mechanisms (Gasparini et al. 2004; Attal and Lave 2006), 
pinpointing the opportunity to account for them in landscape 
models at the small scale (Willgoose and Sharmeen 2006; 
Román-Sánchez et al. 2019) or to justify their absence in the 
case of basin-wide simplified approaches (Nones et al. 2019; 
Varrani et al. 2019).

The geometry of river represents another challenge for 
landscape evolution modelling given that size and shape of 
a channel controls (and is indirectly controlled by) the dis-
tribution of friction and energy dissipation across its wet-
ted perimeter. There are an increasing number of numerical 
and experimental studies focused on evaluating how the 
channel geometry follows the changes of base-level con-
trols, tectonic tilting and water and sediment supply (Stark 
2006; Finnegan et al. 2007; Wobus et al. 2008; Davy et al. 
2017; O’Hara et al. 2019), but these relationships are far 
to be fully understood. Even if landscape evolution models 
that couple surface changes with vegetation dynamics have 
begun to appear in the last decades and now are becoming 
a major research field (Murray and Paola 2003; Nones and 
Di Silvio 2016), the scientific community has just started to 
find a consensus on the quantitative relationships between 
hydrological, biological and geomorphic processes. In addi-
tion, challenges posed by modelling such mechanisms are 
related also to their spatiotemporal scales, which could be 
significantly different.

Aside from the theoretical and physical understanding 
of the mechanisms involved, as well as their mathematical 
schematization and the associated computing challenges, 
one of the greatest limitations in widely applying landscape 
evolution models is the evident lack of data and methods 
to test them. As stated by Mark (1975), the reliability of a 
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landscape model can be assessed through four ways, depend-
ing on the process under evaluation. First, in the case of rapid 
landform development measurable in timescales of months 
or years, such as in the case of gully formation and post-
mining landscape (Hancock 2006; Hancock et al. 2017), the 
model predictions can be tested against direct observations. 
However, because of uncertainties in understanding delayed 
effects of processes like vegetation encroachment and weath-
ering, problems can arise in extrapolating information from 
such newly created landscapes to the long term (Moliere 
et al. 2002). Second, there are situations where real-time 
measurements of sediment and solute fluxes can provide a 
useful basis for evaluating the model performance, even in 
the case of a slow rate of landform variation (Montgomery 
and Dietrich 1992). Third, the development of landscapes 
can be evaluated by means of scaled experiments, where 
the involved process can be adequately measured in a con-
trolled environment. Since decades, laboratory experiments 
are very helpful in addressing specific issues focusing on a 
few geomorphic features (Hasbargen and Paola 2000; Pel-
letier 2008), but, generally, they perform well only under a 
qualitative point of view. The recent boom in high-speed 
computing resources and digital photogrammetry permits 
to overcome the operative limitations present in the past 
towards a more quantitative estimation of the landscape evo-
lution at the laboratory scale, which could ultimately sup-
port numerical models. Indeed, because of many limitations 
correlated with laboratory tests and parameters uncertainty 
(Skinner et al. 2018), physical experiments and numerical 
model should be combined to adequately reproduce complex 
landscape changes. Fourth, landscape models can be tested 
by comparison with natural experiments, which are case 
studies having sufficiently constraints to allow for a quanti-
tative comparison between field observations and numeri-
cal outputs (Montgomery and Dietrich 1992; Tucker 2009). 
While, since years, there is a great potential in combining 
natural experiments and modelling runs (Hancock and Will-
goose 2001), the need to develop probabilistic frameworks 
and robust statistical measures for discriminating between 
dissimilar natural landscapes and scales remains (Schumer 
et al. 2017).

As visible from the present review, landscape evolution 
models can be extremely complicated, depending on the pro-
cesses considered. In fact, the basin surface is not simply 
shaped by the interaction between water and sediment, but 
also many other factors can play a major role. As an exam-
ple, in different parts of the world, the landscape is shaped 
by wind (Okin and Gillette 2001), snow (Liston and Elder 
2006), ice (Ugelvig et al. 2016) or the fire (Scott 2018) since 
millennia. However, the description of such phenomena is 
outside the scope of the present work and is therefore not 
addressed here.

Human-induced alterations of river channels and basins 
as well as the climate change are actually having a major 
role in reshaping geomorphic systems, altering the natural 
relationship between the components and posing additional 
challenges to river modellers. As suggested by recent stud-
ies, topography and climate are generally coupled, and 
precipitation increases because of orographic effects dur-
ing the uplift of a high mountain till an elevation of about 
1000–2000 m (Bookhagen and Burbank 2006). Therefore, 
altered climatic conditions can drive to a change in precipi-
tation patterns, with consequences on the watershed topog-
raphy. However, the landscape sensitivity to the timescale 
of climatic variations is not yet completely understood and 
represents a hot research topic for the future (Moussirou 
and Bonnet 2018). In addition to the large-scale effects of 
climate change, local changes on the landscape can be also 
caused by the presence of animals like herbivorous. Nowa-
days, the correlation between animals and landscape evolu-
tion is generally studied only at the local level (Butler et al. 
2007), and a general framework is still missing because of 
the high complexity of considering the presence of human 
beings and animals.

The present review showed that substantial progress has 
been made in quantitative modelling the evolution of the 
Earth’s surface in terms of water–sediment–vegetation inter-
actions, but much still remains to be accomplished and there 
are many open questions that can be addressed in the future. 
On the one part, there is the need for refining and testing 
landscape evolution models in a larger variety of cases to 
cover a multitude of spatial and temporal scales, by means of 
new and improved computing techniques. On the other part, 
one of the major challenges lies in developing experimental 
and field-based datasets for testing and validating numeri-
cal models across a wide range of spatiotemporal scales and 
covering different geomorphic environments (Rixhon et al. 
2017).
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Abstract
This study was conducted to prepare a flood susceptibility map in northwest of Hamadan Province, Iran. For this purpose, 
six criteria related to flood (i.e., distance to discharge channel, slope (%), elevation, soil texture and land use, topographic 
wet index, and check dams) were chosen. Then, based on the role of these criteria on degree of flood susceptibility, were 
weighted both in the context of inter-weighting (fuzzy logic) and outer-criteria (Interval Rough Analytic Hierarchy Process). 
Finally, by combining these primary weights by weight overlay method in GIS, the flood susceptibility mapping was pre-
pared in the study area. The resulted map based on K-means clustering and Silhouette function was divided into 9 clusters, 
whereas the lower clusters show low susceptibility to flood and vice versa. To assess the accuracy of the produced map, 102 
flood observation points were overlaid on the clustered flood susceptibility map. The results showed that among these 102 
flood points, 66 points are located in the clusters 8 and 9 and 3 points are located on cluster 7. These values show that the 
produced flood susceptibility mapping has a high accuracy.

Keywords Flood · AHP · Fuzzy logic · IRAHP · K-means

Introduction

Floods are known among the most conventional and dev-
astating natural disaster causes to serious financial and life 
loses throughout the worlds (Kowalzig 2008; Kourgialas and 
Karatzas 2011). Therefore, the flood has been addressed by 
many studies on natural disasters. Since the combination of 
multi-criteria decision analysis (MCDA) and GIS allows the 
management of a large volume of spatial data (Fernández 
and Lutz 2010; Sepehri et al. 2019a), it is regarded as a 
powerful tool for analyzing and controlling natural disasters. 
Smithson (2012) divided the MCDA method into objective 

and subjective categories. In the objective category, the nat-
ural distribution of the criteria is used to assess their effect 
on the study objective. Fuzzy logic is one of the well-known 
broadly used methods in the objective category, used in vari-
ous studies into natural hazards including flood suscepti-
bility mapping (Perera and Lahat 2015; Hong et al. 2018), 
forest fire delineation (Iliadis 2005; Bolourchi and Uysal 
2013), and groundwater contamination (Dixon 2005; Pathak 
and Hiratsuka 2011). For example, Sepehri et al. (2019b) 
used the fuzzy logic to prioritize suburban basins in terms 
of flood severity in Hamadan City. Yazdi and Neyshabouri 
(2014) employed fuzzy logic to identify low impact devel-
opment (LID) strategies for reducing flood consequences. 
Jun et al. (2013) applied a fuzzy multi-criteria approach to 
delineate flood susceptibility mapping of South Korea, con-
sidering the impacts of climate change. Chen and Chang 
(2010) applied and developed fuzzy operators to consider the 
decision-making barriers and limitations in water resource 
redistribution in two neighboring river basins. Kanani-Sadat 
et al. (2019) developed a new approach to delineate the flood 
hazard mapping in ungagged and data-scarce areas based on 
a fuzzy multi-criteria decision approach.
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The major characteristic of fuzzy logic is its inter-criteria 
feature, in that the weight of each criterion is considered 
separately. Since there are several criteria in multi-criteria 
studies (natural hazard studies) with unique weight, inter-
criteria dependencies are regarded as a limitation. To con-
sider the relative weight of the criteria (outer-criteria), it 
is a necessity to use the subjective and objective methods 
together. The analytic hierarchy process (AHP), developed 
by Saaty in 1989, is one of the most popular methods of the 
subjective category used in natural hazard studies.

Mahmoud and Gan (2018) delineated flood susceptibility 
mapping by using 10 criteria in arid regions of the Mid-
dle East. These criteria were weighted based on their roles 
in the flood severity using AHP. Sepehri et al. (2017) used 
the AHP method for flood hazard mapping in Gonbad chi 
region. The AHP method was used to determine the relative 
weights of the flood criteria. Souissi et al. (2019) employed 
GIS-based MCDM-AHP modeling for flood hazard mapping 
using eight flood criteria including elevation, land use/land 
coverage, lithology, and rainfall intensity. Noori et al. (2015) 
used the AHP method to determine the effect Rock check 
dams on flood reducing in Northwest Hamadan.

Since in AHP and other subjective methods, the relative 
weight of the criteria is determined based on the decision 
maker’s preferences, it causes high uncertainty in the final 
objective of the study. Therefore, in recent years, researchers 
have tried to reduce this uncertainty by using interval rough 
numbers (IRN) (Gigović et al. 2017; Pamucar et al. 2017).

This study aimed to make a flood susceptibility map of 
Ilanlu Watershed in Hamadan by integrating interval rough 
AHP (IRAHP) and fuzzy logic and using GIS. It is a highly 
affected region by the flood. Therefore, this study was organ-
ized with five sections. In “Description of the study area” 
section, a brief description of the case and the details of used 
materials and methods are presented. “Methodology” sec-
tion analyzes the employed materials and methods. “Analy-
sis and results” section discusses the results. The final sec-
tion draws a brief conclusion of the study.

Description of the study area

The Ilanlu Watershed, located in Northwest Hamadan Prov-
ince (31°24/45″ to 31°27/29″ north; 41°55/20″ to 41°57/34″ 
east), was selected as the case study because it lacked a flood 
map. This watershed covers an area of about 15 km2 with a 
semi-humid climate. Based on field observations and local 
information, many huge flood disasters occurred in the past 
decades causing substantial economic loss to agricultural 
lands in which approximately 70% of the residents are 
occupationally involved. Due to some features of the case, 
such as rugged topography and geological structures, floods 
are likely to occur. Figure 1 shows features of the case and 

layout of check dams constructed in recent years for flood 
control.

Methodology

For flood susceptibility mapping, it is first necessary to 
define related flood criteria. Next, we investigated the fuzzy 
logic for inter-criteria weighting. Then, the IRAHP method 
was used for outer-criteria weighting. Finally, the flood 
hazard map, made based on the combination of the inter- 
and outer-criteria weights, was classified into flood hazard 
susceptibility areas using K-means clustering and silhouette 
function. The accuracy of the prepared flood hazard map-
ping was assessed using the relative operating characteristics 
(ROC) method. Flowchart of the study stages is shown in 
Fig. 2, which includes the criteria related to flood studies and 
manipulation of them in a GIS environment, multi-criteria 
decision analysis and assessment of the model accuracy.

Preparing the criteria

Based on data availability and literature reviews on flood 
susceptibility mapping (Fernández and Lutz 2010; Gigović 
et al. 2017; Mahmoud and Gan 2018), six criteria that are 
supposed to influence flood process [i.e., distance to dis-
charge channel (C1), slope (C2), elevation (C3), STLU (C4), 
TWI (C5), and check dams (C6)] were selected (Fig. 3). 
Among these criteria, the format of soil texture and land 
use and check dams, that were extracted from 1/250,000 
digital maps of database of department of Natural Resources 
of Hamadan Province, were polygon and point shape files 
(common formats in ArcGIS software), respectively, which 
were converted to raster format. Other criteria were directly 
extracted from The SRTM DEM (30 m) was downloaded 
from United States Geological Survey (USGS) (2011).

Assigning weights and ranking criteria

In the present study, according to the knowledge-based 
method, the weights of criteria (inter-criteria and outer-
criteria) were measured using the fuzzy logic and IRAHP 
methods. Using the fuzzy logic method, both dimensions of 
the criteria that are different were removed and the role and 
importance of the values of each criterion in the context of 
the flood degree were defined. The IRAHP that it is known 
the improved method of AHP allows removing the subjec-
tivity and ambiguity that occurs in group decision making. 
Thus, this method can be considered as a better method for 
reducing the uncertainty of the final flood spatial map.
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Fig. 1  Location of the study are in Iran and Hamadan Province and photos of flood in the case study
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Fuzzy logic method

Fuzzy theory was introduced by Zadeh (1965). The fuzzy 
logic contains all theories that employ the basic concepts 
of fuzzy sets or membership functions. To determine the 
values of a set, the membership function must be defined. 
In the membership function, the values of any criteria can 
vary from 0 to 1. The 0 values mean that the desired value 
has no membership in that set and, on the contrary, the value 
of 1 is completely a member of that set. Other values fall 
between 0 and 1 based on their degree of membership. One 
of the main challenges in fuzzy studies is that there is no 
optimum method for determining the kind of membership 

function and its parameters. These membership functions are 
generally selected based on the priorities of decision makers 
in the field of study (Shahabi et al. 2015).

Therefore, the inter-weighing of all the effective criteria 
in the production of flood maps seems to be more or less 
similar in various studies. In this study, to weight the criteria 
that have a direct relationship with the degree of a flood, 
Eq. (1) was chosen. For other criteria that have an inverse 
relationship with the degree of a flood, the inverse of Eq. 1 
(i.e., Eq. 2) was chosen. Among the applied criteria, the 
check dam’s criteria have two sub-criteria. After assigning 
the weights to each sub-criteria using Eqs. (1) and (2), these 
two sub-criteria are combined using gamma fuzzy (Eq. 3), 

Fig. 2  Flowchart for the prepa-
ration of flood hazard map
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Fig. 3  Images showing the variables incorporated within the model as GIS layers
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which is composed of two sum and product functions (Eq. 3) 
(Ramesh et al. 2016; Sema et al. 2017):

Interval rough numbers (IRN)

In this study, it was tried to measure the uncertainty and 
errors in the data based on a new approach in the theory of 
IRN-based rough numbers. The process of group decision 
making can be accompanied by a series of mistakes and 
subjectivities. In this regard, decision makers face a dilemma 
during assigning a certain value to criteria. Let us assume 
that a feature of the decision must be scored with a qualita-
tive scale that ranges from 1 to 9. Also, assume that there are 
three decision makers in the process of evaluating the crite-
ria. The first decision maker may assume that the desired cri-
teria have a value in the range of 5–6. The decision maker 2 
also believes that this criterion should have a value between 
6 and 7. Finally, the last decision makers based on his knowl-
edge chose a vale in the range of 6–7. Then, using operations 
on the rough numbers (further explanations are provided in 
the next sections), we generate attribute values to explain 
the mentioned ambiguity. Therefore, the ambiguity of deci-
sion maker 1 can be described by IRN ([5, 5.67], [6, 6.67]) 
(Pamucar et al. 2017). Also, for decision maker 2 and deci-
sion maker 3, these values may be ([5. 67, 6], [6.67, 7]), and 
([5. 67, 6], [6.67, 7]), respectively (Pamucar et al. 2017).

Considering the novelty of the IRN methodology, there 
are few studies regarding the application of IRN in multi-
criteria decision making. Therefore, the other objective of 
this study is to encourage other authors for applying IRN in 
multi-criteria decision-making studies, because the benefits 
of IRN method can serve as a strong motivation for its wide-
spread use. Suppose there is a universe set that consists of 
two subsets. The first subset includes K classes that its com-
ponents indicate preferences of the decision makers 
R = (J1, J2,… , JK) with J1 < J2 <,⋯ ,< JK  constraint. 
The other subset also shows K classes of the decision mak-
ers’ preferences R∗ = (I1, I2,… , I3) , where each object class 

(1)f (x;a, b) =
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is displayed as Ii = {Ili, Iui} with the condition of 
Ili ≤ Iui(1 ≤ i ≤ m) and Ili, Iui ∈ R;Ili and Iui represent the 
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tively. If the condition of I∗

l1
≺ I∗

l2
≺,⋯ ,≺ I∗

lj
, I∗

u1
≺ I∗

u2
≺,⋯ ,

≺ I∗
uk
(1 ≤ j, k ≤ m) is established in both limits, then two new 

sets R∗
l
= (I∗

l1
, I∗

l2
, ,… , I∗

lj
) (lower class of object) and 

R∗
u
= (I∗

u1
, I∗

u2
,… , I∗

uk
) (upper class of object) are defined. So, 

for each class of I∗
li
∈ R(1 ≤ i ≤ j) and I∗

ui
= R(1 ≤ i ≤ k) , 

lower approximation I∗
li
 and I∗

ui
 will be (Pamučar et al. 2017):

And upper approximation of I∗
li
 and I∗

ui
 is defined as:

Upper and lower classes I∗
li
 and I∗

ui
 are described by lim(I∗

li
) 

and lim(I∗
ui
) (lower limits) and lim(I∗

li
) and lim(I∗

ui
) (upper 

limits), respectively:

where Ml and M∗
l
 denote the number of objects that are 

located in the lower approximation of the class of objects 
I∗
ui

 and I∗
li
 , respectively.

where Mu and M∗

u
 show the number of objects located in the 

upper approximation of the class of objects I∗
ui

 and I∗
li
 , 

respectively.
The rough boundary interval for I∗

li
 (RB ( I∗

li
)), which 

shows the interval between the upper and lower limits, is 
as follows:

For I∗
ui

 , the rough boundary interval is defined as:

(4)Apr(I∗
li
) = ∪

{
Y ∈ u∕R∗

l
(Y) ≤ I∗

li

}

(5)Apr(I∗
ui
) = ∪

{
Y ∈ u∕R∗

u
(Y) ≤ I∗

ui

}

(6)Apr(I∗
li
) = ∪

{
Y ∈ u∕R∗

l
(Y) ≥ I∗

li

}

(7)Apr(I∗
ui
) = ∪

{
Y ∈ u∕R∗

l
(Y) ≥ I∗

ui

}

(8)Lim(I∗
li
) =

1

ML

∑
R∗
l
(Y)|Y ∈ Apr(I∗

li
)

(9)Lim(I∗
ui
) =

1

M∗
L

∑
Ru(Y)|Y ∈ Apr(I∗

ui
)

(10)Lim(I∗
li
) =

1

Mu

∑
R∗
l
(Y)|Y ∈ Apr(I∗

li
)

(11)Lim(I∗
ui
) =

1

M∗
u

∑
Ru(Y)|Y ∈ Apr(I∗

ui
)

(12)RB(I∗
li
) = Lim(I∗

li
) − Lim(I∗

li
)



483Acta Geophysica (2020) 68:477–493 

1 3

Then, the uncertainty class of objects I∗
li
 and I∗

ui
 , which 

is described by their lower and upper limits, is shown as 
follows:

As can be seen, each class of objects is defined with its 
lower and upper limits forms an IRN, which is described as 
follows:

IR’AHP mathematical model

The AHP developed by Thomas L. Saaty (1980) is one 
of the most comprehensive systems designed for decision 
making with multiple criteria. The AHP is widely used in 
various policy issues, especially in solving problems related 
to determining the weighting of indices. This method pro-
vides the ability to measure the stability of decision makers’ 
preferences in group decision making and allows manipulat-
ing quantitative and qualitative criteria (Papaioannou et al. 
2015; Ghosh and Kar 2018; Radwan et al. 2019). The final 
decision to use the AHP method is based on the judgment of 
the decision maker. Hence, due to the subjectivity and ambi-
guity that occurs in group decision making, this study used 
the combination of IRN with the AHP method to exploit 
that mentality. This combination method can be summarized 
in five steps as follows (Gigović et al. 2017; Pamucar et al. 
2017):

1. Organizing a hierarchical structure of evaluation criteria

At this stage, we chose a group of K experts to select 
the criteria and define the hierarchy of problem. In this 
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hierarchy, the global purpose is placed at the top of this 
hierarchy, and at the lower levels, the selected criteria are 
defined.

2. Filling the paired comparisons matrix

Experts compare the evaluation criteria in pairs to deter-
mine the weight of the criteria. This benchmark of com-
parison is based on Saaty’s 9-level linguistic scale (Table 1). 
Each eth expert exhibits his comparison in the form of a 
matrix (Eq. 17).

In the above matrix, the values related to xk
ij
 and xk′

ij
 are 

based on the Saaty’s 9-level linguistic scale and using K 
expert in order to provide a pairwise comparison of the 
criteria.

If, an expert K has uncertainty toward a pair of criteria (i, 
j) and cannot choose between the Saaty’s 9-level linguistic 
scale, then xk

ij
 ≠ xk′

ij
 is established. On the other hand, if there 

is no uncertainty in decision making of expert k, then this 
expert chooses a number from the Saaty’s 9-level linguistic 
scale (Table 1). In this case, the value of pair comparison of 
the index (i, j) would be xk

ij
 = xk′

ij
.

3. Establishing the weight coefficients of the experts

For each comparative matrix Zk, the consistency of the 
values given by the experts should be determined. In this 
study, the consistency method by Saaty (1980) was used 
in order to determine the consistency of decision making 
by experts. This computational rate consists of two steps.

• Calculating the consistency rate CI = (�max − n)∕(n − 1) , 
where n is related to matrix rank and �max is the maxi-
mum eigenvalue of the comparison matrix.

(17)
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; 1 ≤ i, j ≤ e ≤ k

Table 1  The comparison scale between two criteria (Saaty 1980)

Preference factor Degree of preference Explanation

1 Equally Two factors contribute equally to the objective
3 Moderately Experience and judgment slightly to moderately favor one factor over another
5 Strongly Experience and judgment strongly or essentially favor one factor over another
7 Very strongly A factor is strongly favored over another and its dominance is showed in practice
9 Extremely The evidence of favoring one factor over another is of the highest degree possible 

of an affirmation
2, 4, 6, 8 Intermediate Used to represent compromises between the preferences in weights 1, 3, 5, 7 and 9
Reciprocals Opposites Used for inverse comparison
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• Calculating the consistency rate CR = CI∕RI  , where 
CI and RI are the consistency index and random index, 
respectively. The random index depends on the matrix 
rank and its values are determined by randomly creat-
ing 500 matrices.

• Step 4: Generating an averaged interval rough compari-
son matrix

At this stage, using matrix (17) of all experts, two 
matrices of the sequence of aggregated experts’  X*L and 
X∗�u are obtained as follows:

xL
ij
=
{
x1L
ij
, x2L

ij
,… , xkL

ij

}
 and x�u

ij
=
{
x1

�u
ij
, x2

�u
ij
,… , xk

�u
ij

}
 . 

These matrices are sequences that express the importance 
of the criteria i relative to the criteria j. Then, using 
Eqs. (4–16), each sequence of xk

ij
 and xk′

ij
 is transferred to 

RN(xKL
ij
) = [Lim(xKL

ij
),Lim(xKL

ij
)]  a n d  RN(xK

�
u

ij
) =

[Lim(xK
�
u

ij
),Lim(xK

�
u

ij
)] , respectively, where Lim(xKL

ij
) and 

Lim(xK
�u

ij
) are called lower limits while Lim(xKL

ij
) and 

Lim(xK
�u

ij
) are upper limits of RN(xKL

ij
) and RN(xK�u

ij
) , respec-

tively. Such a rough sequence is defined in matrices 18 and 
19 .  Therefore ,  rough mat r ices  a re  obta ined 
X1L,X2L,… ,XmL for the first rough sequence RN(xKL

ij
) and 

X1�u,X2�u,… ,Xm�u for the second rough sequence RN(xK�u
ij

) , 
where the subindex m expresses the number of experts.

The rough sequence in the first ( X1L,X2L,… ,XmL ) and 
second ( X1�u,X2�u,… ,Xm�u ) groups of rough matrices at (i, 
j )  i s  d e f i n e d  a s  RN(xL

ij
) =

{[
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)

]
,[
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]}
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The average of rough sequences is also calculated using 
the following equations:

(18)
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where e represented the number of experts (e = 1: m) while 
RN(ZL

ij
) and RN(Z�u

ij
) show the lower and upper limit of IRN, 

IRN(zij) =
[
RN(ZL

ij
),RN(Z

�u
ij
)
]
.

Therefore, the matrix z that expresses the average interval 
rough comparison matrix in pairs of evaluation criteria is 
calculated as follows:

5. Calculating the priority vector

The priority vector represents the interval rough 
weight coefficient IRN(wi) , which is determined for each 
n of the evaluation criteria. IRN(wi) is determined using 
Eqs. (23–26). Using Eq. (23), the elements of the z matrix 
are collected through the columns.

Dividing the elements of matrix (22) to the elements of 
matrix (23) gives matrix (24), which is called the normalized 
matrix of weight coefficients w, matrices (25) (26).
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Eventually, for each evaluation criterion, IRN(wi) (rough 
interval weights coefficients) is calculated as:

Weighted overlay method (WOM)

In this study, after assigning weights to criteria earthier by 
inter-criteria (i.e., fuzzy logic) or by outer-criteria (IRAHP), 
for a combination of these criteria and preparing flood sus-
ceptibility map, the WOM was used. One of the most impor-
tant characteristics of this widely used method is its replace-
ment property (Raj and Shaji 2017; Thapa et al. 2017). 
Using this property, a criterion providing lower scores can 
be replaced by another criterion that has a high score. The 
mathematical representation of the WOM method for com-
bining the criteria is as follows:

where wi is the weight of inter-criteria of i index and xi is 
also the weight of outer-criteria of i index.

Determination of the optimal number of flood 
susceptibility map clusters

In this study, the K-Means clustering method was used to 
classify the flood susceptibility map. This clustering method 
has been recently used because of its easy quantification and 
high performance. One of the most important questions that 
should be considered when using K-means clustering is the 
optimal number of clusters (Weatherill and Burton 2009; 
Xu et al. 2018). One of the ways that can be used for deter-
mining the number of clusters is the use of the Silhouette 
function (Eq. 28), which presents a coherent degree of the 
similarity of each object (data) to its own cluster compared 
to the other clusters (Gaitani et al. 2010; Xu et al. 2018).

where ai is equivalent to the distance from ith points from 
other points in the cluster and bi is the mean distance from 
points in the cluster. The optimal number of clusters is deter-
mined when the Si value has the highest mean and lowest 
number of negative numbers.

K‑means cluster analysis

K-means clustering algorithm is a clustering technique that 
attempts to determine a non-overlapping cluster with the 
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(28)Si =
min(bi) − ai
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, i = 1, 2,… , n

goal of maximizing cluster variance and minimizing in-clus-
ter variance (Fernandez et al. 2016; Xu et al. 2018; Malekin-
ezhad et al. 2011). The main steps of the clustering K-means 
algorithm are summarized as follows (Xu et al. 2018):

1. The random start of cluster centers c1, c2,… , ck
2. Estimating Euclidean distance dij between point jth qj 

and cluster center ci (Eq. 29), where n is the number of 
points

3. The movement of each point qj to the nearest cluster 
center

4. Updating cluster centers that the data are disconnected 
or allocated from those center

5. Determination of the objective function j (Eq. 30). If J 
converges, then cluster centers do not change from the 
previous iteration and the algorithm obtains the final 
cluster centers. Steps 2–5 are repeated until the target 
function j converges.

Analysis and results

Floods can be considered as one of the most serious threats 
in areas and countries where natural hazards can occur. The 
flood in the Ilanlu Watershed is affected by these criteria. 
Weighting methods for criteria are:

Inter‑criteria weighting

Distance to discharge channel plays a crucial role in flood 
degree. Based on local reports, the areas near to discharge 
channel have the most susceptibility to flooding degree. 
Therefore, in this criteria, also Eq. (1) was used for inter-
criteria weighting (Sepehri et al. 2019a; Mahmoud and Gan 
2018).

The slope map is used for determining the water velocity 
and flooding potential (Fernández and Lutz 2010). In this 
case study, the values of slope criteria vary from 33% (maxi-
mum value) to 10% (minimum value). The areas with high 
slope located in the northern and middle parts of the case 
study. So, the areas with a low slope have more importance 
on flood degree. Equation (1) was used for assigning the 
inter-criteria weighting of this criterion.

The maximum and minimum values of the elevation cri-
teria in the case study are 1907 and 2170 m, respectively. In 
this criteria like slope map, the lower values of these crite-
ria have more importance on flood degree. Therefore, again 

(29)dji =∥ qj − ci ∥, 1 ≤ j ≤ n and 1 ≤ i ≤ k

(30)J =
∑k

i=1

∑n

j=1

‖‖‖qj − ci
‖‖‖
2

, 1 ≤ j ≤ n&1 ≤ i ≤ k
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Eq. (1) was used for determining of inter-criteria weighting 
(Mahmoud and Gan 2018).

The TWI is a criterion that describes the role of topog-
raphy on the saturation rate. This criterion that is a function 
of flow direction and flow accumulative has a major role in 
flood susceptibility. According to this criterion, areas with 
high values of TWI are more susceptible to flooding. In this 
criterion, which its values vary from − 10 to 25, Eq. (2) was 
used for assigning the scores (Fernández and Lutz 2010; 
Mahmoud and Gan 2018; Ildoromi et al. 2019).

Check dams play an important role in flood control. In a 
local scale, these dams trap the deposits in the upstream area 
of the dam and reduce the flow rate in the downstream area. 
It should be noted that evaluating the effectiveness of check 
dams in local scale is the function of the distance from the 
check dam; thus, the areas closer to check dams are affected 
more than those far away from the dam. Besides, the total 
behavior of every check dam in the watershed scale leads to 
changing in hydrological continuity.

In the present study, the following steps were taken for 
evaluating the role of check dams in flood hazard reduction:

1. Preparing the map of check dams’ performance on a 
local scale and preparing its fuzzy map

The height of the check dams is one of the most important 
characteristics that control their performance on a local scale 
(Hartman et al. 2016). Therefore, in the present research, 
considering the primary data of check dams as point shape 
file format, the inverse distance weighted (IDW) interpola-
tion method was used to prepare a raster map of check dams’ 
performance in local scale. In this method, the location and 
height of the check dam were used as inputs. The IDW is an 
interpolation method in which the value of each pixel is as 
same as adjacent pixels; and with this much similarity with 
the further pixels, it reaches the lowest value. It is of note 
that local-scaled check dams depend on the distance and by 
increasing the distance the performance is reduced. In the 
second step, considering the important role of check dams 
in the reduction of flood hazard, Eq. (2) was used to convert 
the prepared map to a fuzzy map.

Fig. 4  The graphical illustration of flow length index calculation; 
a the attitude map and the corrective operations of an assumed 
hillslope. The color pixels indicate the area with corrective opera-
tions and white pixels are those without any operations; b the map 
of calculating the flow length of each pixel. The value of flow length 
index (for example 2.5) is calculated as an average of all flow length 
in the map; c the way of calculating the flow length index along the 
dash line path. In Fig.  2a, the path length of the flow between two 

consecutive pixels in a given path is determined as the slope length 
determined by the difference in height between the two pixels and 
the horizontal distance between them. The pixel size here is consid-
ered as 1 × 1, so the horizontal distance between two adjacent pixels 
is along with the two main directions as x = 1 and y = 1 and along the 
diameter as  FL0.4 relates to the calculation of flow length pixel with 0 
row and 4 columns coordinates (Mayor et al. 2008)
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2. Preparing the check dams’ performance maps in water-
shed scale and providing its fuzzy map

There are several methods to prepare the hydrological 
continuity map and to evaluate the behavior of the water-
shed-scaled check dams (Mayor et al. 2008). In the present 
study, the flow length index was used for calculating the 
hydrological continuity. One of the most important advan-
tages of flow length index, which is defined as the algebraic 
sum of the distance from the center of each pixel to the adja-
cent pixel along the slope, is its high efficiency in describ-
ing topographic characteristics, vegetation, and corrective 
operations (such as check dams). These factors are weighted 
in the range of 0–1 (1: no vegetation or corrective operations 
(source runoff), other values relate to the weighted value 
of corrective operations or vegetation in runoff reduction 
(sink runoff)) (Mayor et al. 2008) (Fig. 4). Hence, in the 
present study, the flow length index with a weight factor of 
local-scaled check dams sub-criteria was used for calculating 
the hydrological continuity, where the sub-criteria of hydro-
logical continuity are 0–1220 m. Considering that higher 
sub-criteria of hydrological continuity lead to the greater 
amounts of runoff generated and thus more flooding, so 
Eq. (1) was used for fuzzy scoring of the index.

3. Combining two performance sub-criteria of local and 
watershed-scaled check dam

Two sub-criteria of the check dams were combined 
using gamma function. The most important point in using 
the gamma function is the gamma coefficient, which varies 
between 0 and 1 (Ramesh et al. 2016; Sema et al. 2017). 

When the value is close to 0, the gamma function is con-
verted to product function and if the value is close to 1 it 
will be converted to sum function. The product function 
reduces the property; in other words, the final value of fuzzy 
function produced moves from the combination of fuzzy 
indices toward a certain fuzzy function with the minimum 
value across the sun function. In addition, in the sum func-
tion, the final value of the combined fuzzy function moves 
toward a certain fuzzy function with the maximum value. 
Since the check dams are structures built in the drainage 
networks, they receive the maximum score of the index. As 
a result, when the gamma coefficient is assumed to be 0, it 
results in observing the 0 fuzzy number in the whole area 
except draining networks. However, the gamma coefficient 
equivalent to 1 leads to having a fuzzy number higher than 
1 for non-draining network areas. In most of the studies, to 
balance sum and product functions, the gamma coefficient 
has been considered to be between 0.5 and 0.6. In the present 
study, since the importance of check dams role in local scale 
in the reduction of flood hazard and because the check dams 
in watershed scale is a function of local scale, the numerical 
gamma coefficient is considered to be 0.7.

STLU are two main criteria affecting on the infiltration 
and surface runoff (Thapa et al. 2017; Ildoromi et al. 2019). 
Both criteria have low diversity in the case study. So, in the 
present study, we have just two kinds of soil texture (i.e., 
loam and clay loam) and thus they do not play a major role 
in the distribution of the flood characteristics. To overcome 
this problem, the loam soil texture of the case study, based 
on the hydrological condition that is determined by some 
features such as soil depth or surface vegetation cover, 
was divided into two groups: (1) loam soil texture with the 

Table 2  Initial combination of soil texture and land use by permutation law
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Fig. 5  Schematic maps of inter-weighted criteria for the case study
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hydrological status of C and (2) loam soil texture with the 
hydrologic status of D. Next, these two categories based 
on the natural gradient of the slope map (5 slope variation 
were considered in this study) were transferred to 10 dif-
ferent classes. For land use, there exists only rangeland and 
garden coverage. In the case study, a scale ranging from 1 
to 10 was used for assigning a primary score to these land 
use types based on their role on flood degree. The score 1 
means that the lowest impact on flood degree and number 
10 means the most impact on flood degree. Eventually, by 
merging of the soil texture and land use by low of permuta-
tion (Table 2), a map was generated in which the higher the 
values, the stronger their effect is on flood degree, and vice 

versa (Fig. 5). Finally, Eq. (1) was used for inter-weighting 
this criterion.

Outer‑criteria weighting

After inter-criteria weighting, decision makers must con-
sider the relative importance of criteria. Hence, the next 
section examines the weight of the criteria relative to each 
other. In this study, six experts were chosen to evaluate the 
relative importance of criteria (Table 3).

Table 3 presents matrices of experts’ pairwise compari-
son of evaluation criteria. According to that, there is uncer-
tainty in experts’ opinions.

For instance, at the location of C1–C4, Expert 1 is uncer-
tain between choosing the two values of 5 and 6. When there 
was no uncertainty, Expert 1 used a specific value for the 
relative importance of the criteria.

After filling the comparison matrices in pairs for each 
matrix, the consistency ratio was calculated. As in matrix 
(17), there are two values for each position (i, j) and thus two 
consistency ratios were calculated. One of these consistency 
ratios is for lower comparison value  (CRe) and the other is 

Table 3  Matrices of experts’ 
pairwise comparison of 
evaluation criteria

C1 C2 C3 C4 C5 C6

Expert 1
C1 (1; 1) (4; 4) (4; 5) (5; 6) (4; 5) (1; 2)
C2 (0.25; 0.25) (1; 1) (1; 2) (2; 3) (2; 2) (0.5; 0.5)
C3 (0.2; 0.25) (0.5; 1) (1; 1) (2; 3) (2; 2) (0.33; 0.33)
C4 (0.16; 0.2) (0.33; 0.5) (0.33; 0.2) (1; 1) (1; 1) 0.25; 0.33)
C5 (0.2:0.25) (0.5; 0.5) (0.5; 0.5) (1; 1) (1; 1) (0.25; 0.33)
C6 (0.5; 0.1) (2; 2) (3; 3) (3; 4) (3;3) (1; 1)
Expert 6
C1 (1; 1) (4; 5) (4; 5) (5; 6) (4; 5) (1; 2)
C2 (0.2; 0.25) (1; 1) (1; 2) (3; 4) (1; 2) (0.33; 0.5)
C3 (0.2; 0.5) (0.5; 1) (1; 1) (2; 3) (2; 2) (0.25; 0.33)
C4 (0.16; 0.2) (0.25; 0.33) (0.33; 0.5) (1; 1) (1; 2) (0.2; 0.25)
C5 (0.2; 0.25) (0.5; 1) (0.5; 0.5) (0.5; 1) (1; 1) (0.25; 0.25)
C6 (0.5; 1) (2; 3) (3; 4) (4; 5) (4; 4) (1; 1)

Table 4  Consistency ratio for 
comparing the matrices

Expert CRe CRe’ CRe

E1 0.098 0.1 0.099
E2 0.09 0.099 0.094
E3 0.015 0.097 0.05
E4 0.01 0.012 0.01
E5 0.098 0.09 0.094
E6 0.095 0.099 0.097

Table 5  Interval rough average 
matrix

C1 C2 … C5 C6

C1 ([1, 1], [1, 1]) ([2.8, 3.6], [3.2, 4.1]) … ([4, 4.3], [4.7, 5]) ([1.5, 2.5], [2.2, 3.1])
C2 ([0.3, 0.3], [0.3, 0.4]) ([1, 1], [1, 1]) … ([1.4, 1.9], [2.1, 2.6]) ([0.4, 0.5], [0.5, 0.8])
C3 ([0.2, 0.3], [0.3, 0.3]) ([0.5, 0.8], [0.8, 1]) … ([1.4, 1.9], [1.7, 2.3]) ([0.3, 0.4], [0.3, 0.6])
C4 ([0.2, 0.2], [0.2, 0.2]) ([0.3, 0.3], [0.4, 0.5]) … ([0.4, 0.8], [0.6, 1.3]) ([0.2, 03], [0.3, 0.4])
C5 ([0.2, 0.2], [0.2, 0.2]) ([0.4, 0.5], [0.6, 0.8]) … ([1.1], [1, 1]) ([0.3, 0.4], [0.4, 0.7])
C6 ([0.3, 0.5], [0.5, 0.8]) ([1.4, 2.2], [2.1, 2.6]) … ([1.9, 3.4], [2.6, 4.1]) ([1, 1], [1, 1])
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for upper comparison value  (CRe’). Then, the final consist-
ency ratio for each position (i, j) is the average of lower and 
upper consistency ratio  (CRe) (Table 4):

The elements of matrix Zk are transferred to IRN (ze 
ij) based on Table 2 and Eqs. (1–16). It has to be noted 
that 6 IRN (ze ij) were calculated in this study. Then, using 
Eqs. (23) and (24), the average interval rough compari-
son matrix in pair evaluation of the criteria was calculated 
(Table 5).

Matrix w (Table 6), which shows the normalized matrix 
of weight coefficients, is calculated based on Eqs. (26–27) 
and Table 5.

Finally, the interval rough weight coefficients (Table 7) 
for evaluation criteria are obtained using Eq. (29):

Flood susceptibility mapping

Using MCDA and GIS technique, flood susceptibility map-
ping was provided by aggregating criteria in the WOM 
method.

Discussion

The key features of the employed methodology are its sim-
plicity and applicability with a focus on the criteria related 
to control water routing when the peak is higher than the 
drainage network capacity. MCDA is generally used for 

(34)
FH = xDwD + xSwS + xEwE + xSTLUwSTLU + xCheckDamswCheckDams

ranking, accepting, rejecting, and determining the num-
ber of optimal options (Fernández and Lutz 2010). In the 
present study, IRAHP and fuzzy logic used as two MCDA 
methods for criteria weighting.

After weighing the criteria and preparing the flood sus-
ceptibility map in the study area, the optimum number of 
clusters was determined for classifying the prepared map 
using the silhouette function. The optimal number of clus-
ters and the related silhouette value are shown in Fig. 4. The 
analysis of clusters was started with 3 clusters and ended 
with 10 clusters. According to Fig. 4, the mean silhouette 
value is maximum for 9 clusters and their negative numbers 
are minimum. Therefore, nine clusters were used for flood 
risk zoning map, where Clusters 9 and 1 represent the high-
est and lowest flood probability, respectively (Fig. 6).

One of the most important differences between this study 
and other studies (Haghizadeh et al. 2017; Siahkamari et al. 
2018; Darabi et al. 2019; Radwan et al. 2019a) is the differ-
ence in flood susceptible zones. For example, the probable 
overestimation or underestimation of the flood susceptibil-
ity by some studies, depending on their criteria weighting 
method, can result in false precision of flood hazard zoning 
map. There are two main causes of these overestimation and 
underestimation are:

1. Multi-criteria decision methods: The application of the 
subjective methods alone for flood hazard mapping is 
associated with some limitations in weighting indices; 
therefore, it is necessary to classify the criteria into sub-
classes and then give initial weights to these subclasses. 
In this way the variety of spatial distribution of crite-
ria will reduce, resulting in rigid maps (Sepehri et al. 
2019a). In this study, the integration of fuzzy logic and 
IRAHP method, as objective and subjective methods, 
was used to overcome this problem.

2. Classification of final flood hazard mapping: A major 
factor that affects the accuracy of the developed flood 
hazard map, regardless of the classification method, is 
the number of classes in final flood hazard mapping. 
If the number of classes is less or more than optimal 
numbers, the area in flood hazard classes will be over-

Table 6  Normalized matrix of weight coefficients

C1 C2 … C5 C6

C1 ([0.06, 0.05], [0.05, 0.04]) ([0.15, 0.17], [0.15, 0.17]) … ([0.23, 0.21], [0.22, 0.20]) ([0.08, 0.12], [0.11, 0.13])
C2 ([0.04, 0.04], [0.03, 0.04]) ([0.16, 0.13], [0.12, 0.1]) … ([0.23, 0.25], [0.25, 0.25]) ([0.06, 0.06], [0.06, 0.08])
C3 ([0.04, 0.04], [0.04, 0.04]) ([0.10, 0.11], [0.13, 0.12]) … ([0.29, 0.28], [0.28, 0.27]) ([0.06, 0.06], [0.05, 0.07])
C4 ([0.06, 0.05], [0.06, 0.05]) ([0.12, 0.10], [0.13, 0.11]) … ([0.17, 0.25], [0.20, 0.31]) ([0.09, 0.09], [0.09, 0.10])
C5 ([0.06, 0.04], [0.06, 0.04]) ([0.12, 0.10], [0.13, 0.13]) … ([0.29, 0.20], [0.24, 0.16]) ([0.08, 0.09], [0.09, 0.12])
C6 ([0.04, 0.03], [0.04, 0.05]) ([0.15, 0.16], [0.17, 0.15]) … ([0.20, 0.24], [0.21, 0.24]) ([0.11, 0.07], [0.08, 0.06])

Table 7  The interval rough weight coefficients for evaluation criteria

IRN(Wi) Rank

C1 ([0.42, 0.51], [0.5, 0.59]) 1
C2 ([0.13, 0.16], [0.17, 0.21]) 3
C3 ([0.1, 0.14], [0.12, 0.17]) 4
C4 ([0.05, 0.07], [0.06, 0.09]) 6
C5 ([0.07, 0.1], [0.09, 0.13]) 5
C6 ([0.21, 0.31], [0.28, 0.38]) 2
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estimated or underestimated (Xu et al. 2018). Moreover, 
to avoid this problem, the silhouette function was a sta-
tistical method for determining an optimal number of 
classes.

Finally, to verify the accuracy of the map, the flood obser-
vation points were overlaid with the given map. Among 102 
points (Fig. 4), 66 points were in Clusters 8 and 9, 30 points 
in Cluster 7, and 6 points in other clusters. Since the major-
ity of points were in Clusters 7, 8, and 9, the flood hazard 
map achieved acceptable accuracy.

Conclusion

Although prevention of flood occurrence, as the most com-
mon and catastrophic natural disaster, is impossible, the 
use of a suitable method in flood susceptibility mapping 
can predict vulnerable areas while preventing potential 
damage. In the present study, the six most effective flood-
ing criteria selected, including distance to drainage net-
work, slope, elevation, soil texture and land use, TWI, and 
check dams. These criteria were weighted based on their 
effects on flooding using subjective (IRAHP) and an objec-
tive (fuzzy logic) methods. Finally, the weighted criteria 
were overlaid to produce a flood zoning map of the study 
area. The conclusion could be drawn that (1) the distance 

Fig. 6  a The features of the silhouette function (number of Silhouette negative values Si and mean Silhouette values Si) and b flood susceptibil-
ity mapping of the case study
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to drainage network is the most prominent criterion; (2) 
more than 90% of observed flood points are mainly con-
centrated in the high flood susceptibility areas; therefore, 
(3) the integration of IRAHP-Fuzzy logic-GIS has high 
capability in investigation of flood susceptibility zones.

Finally, it must be noted that the flood hazard studies 
consider the physical and climatic features of the study 
case. Therefore, future studies are recommended to pro-
vide good management of land use planning, so as to 
reduce future damages. To this end, it is better to combine 
the social and economic features of the case to make the 
flood hazard maps.
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Abstract
The mean annual, winter half-year and summer half-year flows at 86 water level gauges in the Upper Vistula Basin in the years 
1951–2015 were examined. The Ward’s hierarchical cluster analysis was used for grouping sub-catchments in reference to 
the standardized aforementioned flows. Trends analysis was performed for each cluster of catchments in all combinations of 
periods not shorter than 20 years. Spatial distribution of clusters of catchments has been analysed according to geographical 
locations. There are observed different trends in distinguished groups of catchments, wherein the substantial differences 
concern long-term trends. Changes in trend direction in the years 1951–2015 were revealed, which indicate flow fluctua-
tions. Presumably, physiographical heterogeneity of the Upper Vistula Basin is reflected in no unequivocal trends occurring 
in clusters of catchments. Some similarities were stated in short-term trends occurring in particular groups of catchments.

Keywords River runoff · Cluster analysis · Multitemporal trends · Mann–Kendall statistics · Poland

Introduction

Increase in air temperature and changes in precipitation have 
been noted in many areas but their effect on river flow has 
been difficult to pinpoint. Research on change detection in 
river flow has not revealed convincing and ubiquitous changes 
in Europe and worldwide, and there are no clear indications 
of significant trends of river flow at regional or large scales 
and there is as yet no evidence that the river flow in recent 
years is influenced directly by climate change (Kundzewicz 
ed. 2012; Madsen et al. 2014). Apart from climatic factors, 
there are other important components which may indepen-
dently influence river flow variability, namely changes in land 
cover (reforestation or deforestation, urbanization), capacity 
of river channels, water intake for municipal, agricultural 
and industrial purposes, etc. (Slater et al. 2015). River runoff 
integrates the influence of this complex phenomenon over a 
watershed; hence, the analysis of long time series of river dis-
charge datasets does not result in unequivocal satisfactory and 
expected results. From the other site, the search for trends (or 

lack thereof) in river flow data series has become of scientific 
interest and practical importance in the last decades as it is 
essential for adaptation to climate change, in particular water 
management strategies (Adaptation… 2018).

There are a few studies on long-term river flow trends in 
Europe in last 200 years. Some trends are increasing but not 
statistically significant (Pekarova et al. 2003; Lindstrom and 
Bergstrom 2004). The average annual river flow in the sec-
ond half of the twentieth and at the beginning of the twenty-
first centuries dropped in southern and south-eastern Europe 
and rose in the rest part of Europe (Stahl et al. 2012; Han-
naford et al. 2013).

The analysis of long series of annual river flow showed 
no trends in Poland (Jokiel and Kożuchowski 1989; Miler 
1999; Soja 2002; Stachý 2010), while in the second half of 
the twentieth century positive trends prevailed (Wrzesiński 
2009). The re-analysis of the river flow trends for data on 
the second half of the twentieth and the beginning of the 
twenty-first centuries showed a decrease in river flows, 
with the exception of the Carpathian Mountains rivers 
where an increase in river flow was observed (Piniewski 
et al. 2018). Furthermore, numerous researchers point out 
to a decline in river flow in Europe in the summer half-
year and an increase in the winter half-year (Wrzesiński 
2009; Stahl et al. 2010; Hannaford et al. 2013; Birsan et al. 
2014; Piniewski et al. 2018).
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There is a region influencing considerably water resources 
for more than half of the territory of Poland, i.e., the Upper 
Vistula Basin. There is no detailed study reflecting contem-
porary trends in river flow with the exception of Piniewski 
et al.’s (2018) work related to the whole country area. The 
aim of the paper is an analysis of trends of average annual 
river flow in the Upper Vistula Basin in the years 1951–2015 
and investigation into the spatial differentiation of trends. A 
multitemporal trend approach was applied to trend analysis, 
and trends were fitted to every possible combination of start 
and end years in the time record. This research may partly 
fill the gap in current research on changes in the river flow 
and additionally eliminate the impact of the length of data 
series on the value of calculated trend and is a response 
to the need for comprehensive studies of river flow trends 
(Hannaford et al. 2013; Piniawski et al. 2018). It is worth 
pointing out, however, that multitemporal trend approach 
does not replace the analysis of individual trends, but yet 
may be a complementary part of the study.

Study area

The area of the Upper Vistula Basin (at Zawichost gauge) 
drains a total of 50,731.8 km2 and covers a large part of the 
Southern Poland (Fig. 1). This area is about 25% of the total 
Vistula drainage basin and is shared by Poland (91%), Ukraine 
(5%) and Slovakia (4%). There are located three geographical 
regions: the Carpathian Mountains and their foreland, the Sub-
carpathian Basins and the Lesser Poland Uplands. The high-
est point within the watershed reaches the altitude of 2438 m 
a.s.l. in the Tatra Mountains, whereas the lower one is 134 m 
a.s.l. There are the highest annual precipitations in the Car-
pathian Mountains reaching 1700 mm. This region includes 
headwater of most of the tributaries of the Upper Vistula River. 
Due to significant water resources, the Carpathian Mountains 
secure water for a number of regions far beyond their bounda-
ries being an important water tower for the rest of the country 
(Pociask-Karteczka 2016). The share of the outflow from the 
Upper Vistula Basin in relation to the outflow from the whole 
Vistula basin amounts to 41%, although it occupies only 25% 
of the entire Vistula River Basin (Chełmicki 1991). Hence, 
much of the flood risk in Poland is related to the Upper Vistula 
River Basin, and its right-bank tributaries significantly contrib-
ute to the total flood damage.

Data and methods

The study applied a multitemporal approach, whereby 
trends are fitted to every possible combination of start and 
end years in a record (McCabe and Wolock 2002; Hanna-
ford et al. 2013). The datasets of 86 water gauge stations 

located on 50 rivers in the Upper Vistula Basin with long 
(1951–2015) hydrometric records were used in the analysis. 
The average daily river flow provided by the monitoring net-
work system carried out by the Institute of Meteorology and 
Water Management–National Research Institute (IMGW-
BIP) was used in the study. The prevailing length of indi-
vidual measurement series is 55 years except four records: 
Czarna—Raków, Prądnik—Ojców, Rudawa—Balice with 
45-year series and the Nida—Czarna with a 50-year series.

In the first stage of the study, average annual flow values 
for each year  (SQY), winter half-year  (SQW) and summer 
half-year  (SQS) for each catchment were calculated accord-
ing to the classical formula for the arithmetic mean based on 
daily flow values, creating a data series for each catchment.

In the next step, based on the data series received for each 
catchment, multiannual average flow values for year  (SSQY), 
winter half-year  (SSQw) and summer half-year  (SSQS) were 
calculated (also using the arithmetic mean formula).

Data series created from average annual flow values for 
each year  (SQY), winter half-year  (SQW) and summer half-
year  (SQS) for each catchment were standardized by their 
multiannual mean value (respectively, by  SSQY,  SSQw, 
 SSQS), so that on all subsequent time series plots, annual 
values are shown as a proportion of the long-term mean in 
that indicator. To calculate normalized average flow values 
(STD SQ), the following formula was used:

where n is the certain year of multiannual period.
For the purpose of further calculations, the values 

obtained in the previous step were combined into annual 
data series (S_STD  SQY), winter half-year data series (S_
STD  SQW) and summer half-year data series (S_STD  SQS).

Then, the catchments were clustered into a few regions 
broadly homogenous in terms of standardized annual (S_
STD  SQY), standardized winter half-year (S_STD  SQW) 
and standardized summer half-year (S_STD  SQS) river flow 
series in the studied multiannual period. Cluster analysis in 
each of three groupings was carried out using the agglom-
erative hierarchical Ward method employing the Pearson’s 
distance matrix (1 − r). Ward’s method was used because 
it is one of the most popular and commonly used grouping 
methods in hydrology and meteorology (Hannaford et al. 
2013; Wrzesiński and Sobkowiak 2018). It is worth not-
ing that this method is often used due to simple mathemati-
cal properties and convenient graphical interpretation. The 
optimum number of clusters was determined on the basis of 
the geometry of the dendrogram and the plot of the bind-
ing distance. The number of identified groups was selected 
according to the highest homogeneity in a group in terms of 
interannual variability of average river flows.

(1)STD SQ
n
=

SQ
n

SSQ
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In the next step, the average values from standardized 
flows were calculated for separated groups of catchments 
separately for each year, each winter half-year and each sum-
mer half-year. As a result of this process, average values 
of standardized group flows were obtained for each year 
(GrSTD SQY), each winter half-year (GrSTD SQW) and 
each summer half-year (GrSTD SQS). These calculations 

were carried out in each of the separated groups using the 
formula:

where n is the certain year of multiannual period and m is 
number of catchments in the group for given n.

(2)GrSTD SQ
n
=

∑

STD SQ
n

m

Fig. 1  Research area with locations of water level gauges in the 
Upper Vistula Basin. 1—the Rudawa at Balice, 2—the Szreniawa 
at Biskupice, 3—the Wierna Rzeka at Bocheniec, 4—the Gostynia 
at Bojszowy, 5—the Uszwica at Borzęcin, 6—the Nida at Brzegi, 
7—the Wielopolka at Brzeźnica, 8—the Dunajec at Czchów, 9—
the Biała at Czechowice–Bestwina, 10—the Iłownica at Czecho-
wice-Dziedzice, 11—the Brynica at Czeladź, 12—the Nidzica at 
Dobiesławice, 13—the San at Dwernik, 14—the San at Dynów, 
15—the Biała Przemsza at Golczowice, 16—the Sękówka at Gor-
lice, 17—the Mleczka at Gorliczyna, 18—the Biała at Grybów, 
19—the Tanew at Harasiuki, 20—the Wisła at Jagodniki, 21—the 
Łososina at Jakubowice, 22—the San at Jarosław, 23—the Jasiołka 
at Jasło, 24—the Wisła at Jawiszowice, 25—the Przemsza at Jeleń, 
26—the Skawa at Jordanów, 27—the Ropa at Klęczany, 28—the 
Koprzywianka at Koprzywnica, 29—the Biała at Koszyce Wielkie, 
30—the Wisłoka at Krajowiec, 31—the Wisłok at Krosno, 32—the 
Dunajec at Krościenko, 33—the Wiar at Krówniki, 34—the San at 
Lesko, 35—the Białka at Łysa Polana, 36—the Wisłoka at Mielec, 
37—the Nida at Mniszek, 38—the Raba at Mszana Dolna, 39—the 
Poprad at Muszyna, 40—the Brynica at Namiarki, 41—the Wisznia 
at Nienowice, 42—the Dunajec at Nowy Sącz, 43—the Czarny 

Dunajec at Nowy Targ, 44—the Dunajec at Nowy Targ-Kowaniec, 
45—the Prądnik at Ojców, 46—the Tanew at Osuchy, 47—the Soła 
at Oświęcim, 48—the Nida at Pińczów, 49—the Czarna at Połaniec, 
50—the Raba at Proszówki, 51—the Przemsza at Przeczyce, 52—the 
San at Przemyśl, 53—the Pszczynka at Pszczyna, 54—the San at 
Radomyśl, 55—the Soła at Rajcza, 56—the Czarna at Raków, 57—
the Bukowa at Ruda Jastkowska, 58—the Wieprzówka at Rudze, 
59—the Wisłok at Rzeszów, 60—the Wisła at Sandomierz, 61—the 
Trzebośnica at Sarzyna, 62—the Skawica Dolna at Skawica, 63—
the Wisła at Skoczów, 64—the Biała Przemsza at Sławków, 65—the 
Bobrza at Słowik, 66—the Poprad at Stary Sącz, 67—the Stradomka 
at Stradomka, 68—the Raba at Stróża, 69—the Skawa at Sucha 
Beskidzka, 70—the Biały Dunajec at Szaflary, 71—the Wisła at Szc-
zucin, 72—the Solinka at Terka, 73—the Czarna Nida at Tokarnia, 
74—the Ropa at Topoliny, 75—the Wisłok at Tryńcza, 76—the Wisła 
at Ustroń-Obłaziec, 77—the Skawa at Wadowice, 78—the Wschod-
nia at Wilkowa, 79—the Osława at Zagórz, 80—the Cicha Woda 
at Zakopane–Harenda, 81—the Lubaczówka at Zapałów, 82—the 
Wisła at Zawichost, 83—the Dunajec at Żabno, 84—the Wisłok at 
Żarnowa, 85—the Wisłoka at Żółków and 86—the Soła at Żywiec
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The final effect of the procedure, outlined above, was 
receiving for each group a series of annual data (S_GrSTD 
 SQY), of the winter half-year data (S_GrSTD  SQW) and of 
the summer half-year data (S_GrSTD  SQS).

To check the quality of the data series match, there was 
determined a relationship between group-averages series 
(S_GrSTD  SQY, S_GrSTD  SQW, S_GrSTD  SQS) and stand-
ardized average river flow series in particular catchments 
belonging to a given group (S_STD  SQY, S_STD  SQW, S_
STD  SQS). The coefficient of determination calculated as 
the square of the Pearson correlation coefficient was used 
for this purpose. (Only positive correlation coefficients were 
considered.)

Trend analysis was performed to group-average river 
flows series (S_GrSTD  SQY, S_GrSTD  SQW, S_GrSTD 
 SQS). The nonparametric Mann–Kendall statistic was 
used to test for trends. It identifies monotonic increases or 
decreases in a time series by comparing between succes-
sive values. The Mann–Kendall test has been advocated for 
hydrological applications (Kundzewicz and Robson 2004). 
In order to remove the autocorrelation data from the series, 
the trend-free prewhitening (TFPW) method was used (Yue 
et al. 2002). According to McCabe and Wolock (2002), 
Mann–Kendall’s statistics and its statistical significance 
were calculated for every possible combination of start and 
end years in the record 1951–2015. The minimum length 
of the calculation period was 20 years (Hannaford et al. 
2013).

Results

Annual river flow

The result of cluster analysis is shown in Fig. 2. Most of 
the seven distinguished clusters of catchments are geo-
graphically coherent within the Upper Vistula Basin. The 
homogeneity of clusters (YI − YVII) varies substantially. 
The standardized annual average flow series in particular 
basins (S_STD  SQY) has been explained by the standardized 
group-average annual flow series (S_GrSTD  SQY) from 53% 
(Biała Przemsza–Sławków) to 98% (Brynica–Namiarki). A 
low homogeneity reveals the highest parts of the Upper Vis-
tula Basin: The average annual river flow in the northern 
Tatra Mountains (YIII) and the High Bieszczady Mountains 
catchments (YII) are poorly explained by the group-average 
river flow series (S_GrSTD  SQY)—from 57 to 74%, respec-
tively—in comparison with other catchments within their 
groups.

There are clearly substantial differences between the 
directionality and magnitude of trends over time within 
particular clusters in the Upper Vistula Basin (Fig. 3). The 
YV upland cluster (Brynica River) is characterized by the 

predominant positive trends, while trends in the neighbour-
ing group YVII are mostly negative. Negative trends are found 
also in the group YVI comprising the Oświęcim Basin, the 
Silesian Foothills and the Silesian Beskids Mountains. 
Within the Carpathian Mountains catchments (groups YII 
and YIII), there is a contrast in trend directionality and posi-
tive trends prevail. Fluctuations between positive and nega-
tive trends over a range of periods remain in two groups YI 
and YIV representing mostly lowland catchments.

Trends in all groups are positive up to the second half of 
the 1980s. The decrease in river flow in the following years 
has weakened these trends, especially in mountain and foot-
hill groups (YII, YIII) and upland group (YV). Within the rest 
of groups (YI, YIV, YVI, YVII), there is a very strong contrast 
in trend directionality at the end of the 1980s, when trends 
reversed to negative ending in the end of the 1990s.

Trends after 2000 are mostly positive in the Carpathian 
catchments (YII, YIII, YIV) and Brynica River catchment (YV) 
in contrast to YVI and YVII groups, where negative trends pre-
vail. Trends in the group YI (eastern part of the Sandomierz 
Basin and a part of Roztocze) follow a very different pattern. 
After 2010, trends become weaker.

Trends starting between 1961 and 1981 are all negative 
up to the 1990s in all groups, and they remain negative 
in YIV, YVI and YVII. Groups YII, YIII, YV show the change 
in trend directionality from negative to positive. In the YI 
group, no unambiguous flow trends were found.

For most of the groups, annual river flow trends after 
1981 are predominantly positive to all end years. Negative 
trends over a range of periods after 1991 are common.

Winter half‑year river flow

The eight groups of catchments on the basis of homoge-
neous hydrological behaviour on an S_STD  SQW using 
cluster analysis were formed. The clusters are relatively 
geographically coherent areas within the Upper Vistula 
Basin (Fig. 4). The standardized group averages of winter 
half-year flow series (S_GrSTD  SQW) explain from 33% 
(Biała–Czechowice-Dziedzice) to 97% (Brynica–Nami-
arki) of standardized average winter half-year flow series 
in the catchments (S_STD  SQW).

In the case of drainage catchments, the northern slopes 
of the Tatra Mountains and the Bieszczady Mountains 
(from 51 to 62%) and catchments located within the 
Oświęcim Basin and the Silesian Foothills (from 33 to 
64%) in comparison with winter half-year flow in other 
catchments inside their group were poorly explained by 
their mean group (S_GrSTD  SQW). A considerably low 
homogeneity reveals WVI and WVIII with catchments 
within, respectively, the Oświęcim Basin and the Silesian 
Foothills (from 33 to 64%).
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Overall, the average winter half-year river flows follow 
various patterns in the period 1951–2015 (Fig. 5). Positive 
trends prevail in the Brynica River (WI) and in the Car-
pathian catchments (WII, WIV, WV). River flow in the catch-
ments in upland area (WVII, WVIII) and the Vistula River 
flow (WVI) reveal decreasing trends. In the eastern parts of 
the Sandomierz Basin and Roztocze  (WIII), any dominating 
trend has been observed.

Positive trends prevail strongly up to the second half of 
the 1980s in all groups except WV where this prevailing is 
less apparent. Trends remain positive in the following years 
in WI and WIV and become relatively weaker in WII and WV, 
while there is a strong contrast in trend directionality over 
the time series in the groups WIII, WVI, WVII, WVIII (posi-
tive/negative). Trends starting in the end of the 1990s are 
positive within the WI, WII, WIV and WV groups. However, in 

Fig. 2  Location of the catchments grouped into seven homogeneous clusters according to average annual river flow series (S_STD  SQY) in the 
Upper Vistula Basin

Fig. 3  Multitemporal trend analysis for annual average river flow 
series (S_GrSTD  SQY). X-axis shows start year of trend, and y-axis 
shows end. The corresponding pixel is coloured according to the 

resulting Z statistic (see legend), with red representing positive trends 
and blue representing negative trends
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the group WIII, trend reverses (positive/negative). Negative 
trends are found in the groups WVI, WVII, WVIII until 2015.

All trends starting in 1965–1981 and ending in 
1985–2015 onwards are negative in WVI, WVII, WVIII. In the 
group WIII, trends remain negative to the end of the 1990s 
and then change toward a positive one. There are fluctua-
tions between positive and negative trends in the groups WI, 
WII, WIV, WV until 2000; afterwards, positive trends increase. 

Trends starting between 1981 and 1991 are positive in all 
groups, while those starting after 1991 are mostly negative.

Summer half‑year river flow

The catchments are clustered into eight groups, which are 
broadly homogenous in terms of variability of the summer 
half-year river flow (Fig. 6). Their geographical coherency 

Fig. 4  Location of the catchments grouped into eight homogeneous clusters according to average winter half-year river flow series (S_STD 
 SQW) in the Upper Vistula Basin

Fig. 5  Multitemporal trend analysis for average winter half-year river 
flow series (S_GrSTD  SQW). X-axis shows start year of trend, and 
y-axis shows end. The corresponding pixel is coloured according to 

the resulting Z statistic (see legend), with red representing positive 
trends and blue representing negative trends
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is weaker than in the case of previous grouping. The homo-
geneity of the group SI − SVIII differs substantially. The 
standardized group-average summer flow series (S_GrSTD 
 SQS) explains from 55% (Cicha Woda River—Zako-
pane–Harenda) to 99% (Brynica–Namiarki) standardized 
summer average flows series in catchments (S_STD  SQS). 
A low homogeneity reveals the group SI where the aver-
age summer river flow on the northern slopes of the Tatra 
Mountains has been poorly weakly explained—from 55% 

to 68%—by the standardized group—average summer half-
year flow series (S_GrSTD  SQS).

A very strong contrast in trend directionality over the 
average summer half-year river flow series has been found 
(Fig. 7). Trends in the catchments at the left-bank part of 
the Upper Vistula River (SVI, SVII, SVIII) are predominantly 
negative except the Brynica (SV). At the right-bank part of 
the Upper Vistula River basin (SI, SII and SIII), positive trends 

Fig. 6  Location of the catchments grouped into eight homogeneous clusters according to average summer half-year river flow series (S_STD 
 SQS) in the Upper Vistula Basin

Fig. 7  Multitemporal trend analysis for summer half-year average 
river flow series (S_GrSTD  SQS). X-axis shows start year of trend, 
and y-axis shows end. The corresponding pixel is coloured according 

to the resulting Z statistic (see legend), with red representing positive 
trends and blue representing negative trends
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prevail with the exception of the SIV group, which shows 
negative trends.

Trends in particular groups follow very different patterns. 
Trends of the summer half-year average river flow starting 
between 1951 and 1961 are positive for the groups SI, SII, 
SIII, SV and likewise for the groups SIV, SVI and SVII but only 
until the middle of the 1980s followed then by negative 
trends onwards. In the SVIII until the mid-1980s, there have 
been no trends, while from the second half of the 1980s, 
negative trends have been observed.

Trends starting in between 1961 and 1981 were largely 
negative—up to 2015 in groups SII, SIV, SVI, SVII and SVIII. 
For the SI and SIII, change in trends has been observed from 
negative to positive. The summer half-year average river 
flow in the group SV is firmly dominated by positive trends. 
Negative trends occur merely in periods starting between 
1971 and 1975 and ending in 1995 in this group.

Discussion

The results of multitemporal trend analysis for the annual, 
winter half-year and summer half-year averages river flow 
in the Upper Vistula Basin reveal substantial differences in 
trends in 1951–2015. It is consistent with previous studies 
carried out for rivers in Poland (Bartnik and Jokiel 1997; 
Fal and Bogdanowicz 2002; Wrzesiński 2009; Piniewski 
et al. 2018). Similar findings were observed by Hannaford 
et al. 2013 for other European rivers. Current research allows 
to identify in short river flow records an alternating occur-
rence of periods with positive and negative trends except two 
groups of catchments WIV and WV. A shift from positive to 
negative trends in the first half of the 1960s and the end of 
the 1980s is typical for a multiannual temporal pattern of 
trends over a range of catchments (for the Brynica catch-
ment: 1970s and 1980s, respectively). Apparent short-term 
trends indicate river flow fluctuations as a response of chang-
ing precipitation and air temperature associated with atmos-
pheric circulation over Europe driven by large-scale patterns 
of climatic variability such as the NAO (Pociask-Kartec-
zka et al. 2002–2003; Styszyńska and Tamulewicz 2005; 
Pociask-Karteczka 2006; Wrzesiński 2011; Wrzesiński and 
Paluszkiewicz 2011).

Long-term 40–50-year trends—primarily negative—are 
found in river flow catchments in the highland regions. The 
strong trends in summer half-year average flow prevail in the 
western part of highland region, while those in the eastern 
part are slightly weaker. There is a substantial difference 
in the Brynica River flow, which is dominated by strong 
positive trends in cases of both annual and half-year aver-
age flows. This catchment is strongly anthropogenically 
influenced primarily by Silesian coal mine activity. It was 
reported by Punzet (1973), Dynowska (1984) and Czaja 

(1988) that pumped groundwater discharge to the river hin-
ders a natural variability of river regime flow. Unsurpris-
ingly, the group-average flow explains very poor average 
flows in such catchment as it is similar for the catchments 
on the northern slopes of the Tatras.

Clustering of catchments on the basis of variability of 
annual and winter half-year average river flows allowed to 
distinguish two regions in the Carpathian part of the Upper 
Vistula River basin: the western region and eastern region. 
This is unsurprising given the increase into the east a cli-
matic continentality (Kożuchowski and Marciniak 1992) 
associated with predominance of snow over rain precipita-
tion (Dynowska 1971; Ziemońska 1973). The western region 
spans to the upper part of the Biała Tarnowska River and the 
Dunajec River catchment, as Dobija (1981) and Chełmicki 
et al. (1999) indicated in their research on river runoff pat-
terns and river runoff variability. In the case of the summer 
half-year average river flow, the border spans further to the 
east to the Wisłoka River (Ziemońska 1973) and to the Nida 
River in the northern part of uplands.

Conclusions

The conducted studies provide temporal patterns of trends 
and the evidence of regional hydrological response to the cli-
mate and anthropogenic activity in the Upper Vistula Basin.

Clustering of catchments on the basis of variability of 
annual, winter half-year and summer half-year average river 
flows allowed to distinguish three groups of catchments, i.e., 
YI − YVII, WI − WVIII and SI − SVIII, geographically coherent 
in various degrees.

There are differences between groups of catchments in 
the directionality of trends over time for any one group of 
catchment.

Despite the presence of alternation in short-term trends—
especially evident in the case of average annual trends—
a wide variation in long-term trends was observed in all 
groups. Their spatial distribution is closely related to the 
geographical regions. This may indicate a very strong impact 
of local environmental features on river runoff. This was 
pointed out in his works by Dobija and Dynowska (1975), 
Parajka et al. (2009), Wrzesiński (2017) and Wrzesiński and 
Sobkowiak (2018). Bezak et al. (2015) also referred to sig-
nificance of the environment in identifying trends. Research 
conducted by Gutry-Korycka (1996, 1997) indicated lower 
resistance of lowland rivers to climatic changes compared 
to upland and mountain rivers. This analysis enables to con-
clude that two neighbouring groups of river catchments with 
different environmental conditions may react differently to 
climate changes and, therefore, have a different trend value.

The considerably higher coefficient of determination 
between the groups distinguished with average summer 
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half-year flow likely indicates reasonably higher signifi-
cance of climatic factors such as precipitation and air tem-
perature than another geographical factors such as landforms 
and catchment storage on hydrology in the summer season. 
Further trends in river flow in the future will be dominated 
by increasing precipitation and air temperature as climate 
scenario projects for Poland. Therein, a significant increase 
in river flow will be noted in the winter season (Piniawski 
et al. 2016, 2017). Despite that, Romanowicz et al. (2016) 
signalized lack of tendencies in future river flow trends in 
two catchments in the Upper Vistula Basin and discrepan-
cies in river flow projection for different climate scenarios.

The results of this study indicate considerable variability 
of trends in time according to the length of analysed time 
series. Extending or shortening of the time dataset causes 
strengthening or weakening of trend, or even change in 
the directionality of trend. Hence, an attempt to extrapo-
late river flow into past or future of such a selective view-
point could easily be misleading, as mentioned by Svensson 
et al. (2006), Chen and Grasby (2009) and Hannaford et al. 
(2013). Also the underlying assumption of stationarity of 
river flow should be critically reviewed (Milly et al 2008, 
2015; Piniawski et al 2018).
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Abstract
Soil erosion is one of the most leading environmental and public health problems in the world which dislodges consider-
able volumes of soil annually. In order to control soil erosion, several soil factors should be taken into account. Regarding 
the importance of soil properties on erosion occurrence, it is necessary to focus on soil properties. The aim of this study is 
to evaluate the effect of physical parameters that consist of sand %, silt %, clay %, SP % and stone % along with hydraulic 
properties including theta s, theta r, alpha n and Ks (cm/day) on the amount of soil erosion in Emamzadeh watershed. The 
above-mentioned factors were optimized using response surface methodology. The soil texture in the study area is mostly 
silty clay loam, and the main soil orders are Entisols and Inceptisols. Moreover, the main land use in the study area is for-
est–rangeland. The results proved that both physical and hydraulic valuables illustrated a significant effect on all of the 
independent parameters. The optimized values of different physical parameters were 60.241 for sand, 14 for silt, 41.025 for 
clay, 58.729% for SP and 3.83% for stone. A theta r of 0.09, theta s of 0.457 alpha of 0.014, n of 1.3 and Ks of 46.01 were 
found to be optimal values. The results of this study indicated that at optimal studied parameters, the values of the soil erosion 
before and after application of management scenarios were found to be 11.537 and − 2.253, respectively. Results show that 
both physical and hydraulic parameters have significant effects at the 1% level on the soil erosion before and after application 
of management scenarios. The obtained results could assist policy-makers with decisions aimed at minimizing soil erosion 
in this watershed. In summary, using the simulation–optimization techniques helps to evaluate the effect of management 
scenarios, then select and apply the best one to minimize the soil erosion outcomes.

Keywords D-optimal design · Management scenarios · Optimization · Physical and hydraulic parameters · Response 
surface methodology (RSM)

Introduction

Soil as one of the most important sources of production has 
been demolished with population growth and industrializa-
tion of the world (Meliho et al. 2019). Land degradation 
through human activities such as deforestation, overgraz-
ing, tillage operations, inappropriate agricultural practices 
and land-use changes has negative impacts on soil quality 
indices and soil healthy (Schole et al. 2018; IPBES 2018). 
Soil erosion by water, as the most prevailing factor of soil 

degradation, has several outcomes, including mitigation of 
agricultural productivity, water quality–quantity and envi-
ronmental impacts (Park et al. 2011; Xu et al. 2013; Xiong 
et al. 2019). Therefore, effective planning and implemen-
tation of soil erosion monitoring program are needed for 
understanding and estimating of soil erosion severity (Mon-
dal et al. 2017; Nasiri et al. 2017). Moreover, in order to 
decrease the risk of soil erosion should be considered con-
venient strategies in the management plan (Sherriff et al. 
2018). However, despite widespread researches on soil ero-
sion and conservation (Mhazo et al. 2016), still, there is 
not a precise technique for soil erosion assessment in the 
watersheds; this means that, given the importance of the 
occurrence of erosion processes and the complexity of their 
mechanisms, it is essential to use new software and tech-
niques with the ability to monitoring complex processes 
(Diodato et al. 2012; Corella et al. 2019). A convenient tool 
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to estimate soil erosion–deposition and to understand the 
relations between different effective parameters on soil ero-
sion is the application of soil erosion models. Soil erosion 
models are beneficial tools for analyzing soil erosion pro-
cesses in the watersheds (Laflen and Flanagan 2013). Qian 
et al. (2014) analyzed the relation between water and soil 
erosion using linear and quadratic regression models and 
concluded that the runoff rate had a significant linear rela-
tionship with the rate of sediment loss. The outputs of soil 
erosion models are efficient tools which ultimately can be 
used to provide different scenarios for selecting and imple-
menting a best management practice (Argent et al. 2016). 
Well-developed and properly calibrated models provide 
reasonable estimations of soil erosion risks (Giannecchini 
2006). Generally, using simulation–optimization techniques 
are effective tools for planners, managers and executive units 
which is convenient in achieving management goals. In this 
regard, should provide backgrounds and contexts for best 
application of these techniques in order to eventually adopt 
appropriate management scenarios (Batista et al. 2019).

Regarding the complexity of soil erosion mechanisms 
and due to deficiency of appropriate management strategies, 
it is necessary to apply new techniques for simulation and 
optimization of soil erosion processes (Kirkby et al. 2008; 
Arnold et al. 2015; Shojaei et al. 2019). Response surface 
methodology (RSM) is an appropriate technique for moni-
toring the complicated processes in the watersheds (Chan-
dramohan et al. 2015). The main advantage of RSM is the 
reduction of experiments to evaluate multiple parameters 
and their interactions (). Another advantage of this tech-
nique is the simplification of complex processes, scrutiniz-
ing continuous variables, elimination of problems related to 
the one-factor and determination of response’s sensitivity to 
each factor. The RSM is an efficient experimental strategy to 
run optimal conditions for multivariable systems (Long et al. 
2019). Indeed, the RSM by providing response levels along 
with appropriate statistics and ultimately by optimizing them 
allows selection of the best set of input parameters based on 
the research objectives (Sharma et al. 2019). The RSM is a 
collection of useful statistical and mathematical techniques 
for developing, improving and optimizing processes. It also 
has essential applications in the design, development and 
formulation of new products, as well as in the improvement 
of the existing product designs (Tan et al. 2017). The pri-
mary purpose of the RSM is to optimize the response (out-
put variable), which is influenced by several independent 
variables (input variable) (Kumar et al. 2016). Therefore, 
according to importance of soil against erosive forces, it 
is necessary to use RSM technique for optimization and 
ultimately selection of the best management practices. The 
specific objective of our study was to optimize soil erosion 
using response surface methodology based on soil physical 
and hydraulic parameters which are effective on soil erosion.

Methods and material

Location of the study area

The study area is placed in the northeast of Khuzestan 
Province, Iran country, with the geographical coordination 
of 31° 18′ to 31° 33′ N and 50° 5′ to 50° 13′ E (Fig. 1). The 
area of this watershed is approximately 104 km2 including 
six hydrological parcels. In this area, the total annual pre-
cipitation is around 712 mm, and the average temperature 
is 23 °C. Furthermore, the soil texture in the study area is 
mostly silty clay loam (SiCL), and the main soil orders are 
Entisols and Inceptisols. The main land use in the study 
area is forest–rangeland.

Soil sampling, measurements and analysis

A composite sample (0–20 cm) was obtained by mixing soil 
from five separate sampling points in the watershed. Soil 
samples were air-dried at 20 °C in the laboratory. After-
ward, soil texture was measured using hydrometric method. 
Regarding the heterogeneity of soil texture in different parts 
of study area, soil samples were collected and analyzed. 

Fig. 1  Location of study area on true color composite of Landsat7 
 ETM+ image acquired in March 2018
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In order to measure stone (%) were collected all the stone, 
gravel and pebble in the 1 × 1 square meter area on the 
ground, then weighted. Using these 1 × 1 m2 plots in differ-
ent places, we calculated the average amount of stone on the 
ground in different parcels of watershed. Cation exchange 
capacity (CEC) and exchangeable bases were measured by 
the ammonium acetate method (pH = 7) (Thomas 1982). 
The soil organic matter (SOM) was measured using Walkley 
and Block method. Actually, soil organic matter is a key fac-
tor to prevent the soil against erosive factors. The saturation 
percentage (SP) is an index of soil texture; this parameter 
was measured based on the difference of the soil weight in 
the dry condition and the saturated condition. For all the soil 
samples, this parameter was measured three times to find an 
acceptable average. Albedo coefficient was calculated using 
the climate data, solar radiations and surface characteris-
tics. This parameter depends on solar radiations and surface 
characteristics. For the white and flat surfaces, the Albedo 
coefficient has the highest amount. Compute theta r, theta 
s, alpha, n and  KS through RETC software.

Soil erosion simulation using the WEPP model

The Water Erosion Prediction Project (WEPP) model is 
based on surface water flow hydrology and erosion processes 
which provide the possibility of estimating the spatial and 
temporal patterns of soil erosion and sedimentation in the 
watersheds (Boll et al. 2015; Brooks et al. 2016). In the 
WEPP model, a watershed is defined as one or number of 
hillslopes, which have been drained into one or more chan-
nels (Flanagan and Nearing 1995; Flanagan et al. 2013). In 
this study, the climate simulation was performed using CLI-
GEN module (Kinnell et al. 2018; Anache et al. 2018) with 
data obtained from Izeh synoptic station. Moreover, soil, 
topography and management layers were defined for each 
hillslope (Schaap and Leij 2000; Tiwari et al. 2000). Ulti-
mately, the studied watershed was simulated by hillslopes 
and the hydrographical network to run the model. In this 
study, in 17 hydrological units, the sediment load was con-
verted to soil erosion values in ton/ha using the relationship 
between sediment load, sediment delivery ratio (SDR) and 
soil erosion described in PSIAC (1968) and modifications 
applied on PSIAC (MPSIAC) by Johnson and Gebhardt 
(1982). Sediment delivery ratio for each hydrological unit 
calculated based on the unit area (in  mi2) as above men-
tioned references (Table 1). Hydrological unit sediment 
production was obtained from the ministry of agriculture’s 
hydrometric/sediment gauging stations (2009).

Response surface methodology

The second part of this study is the evaluation and optimiza-
tion of physical and hydraulically parameters effective on 

soil erosion, which was performed using the RSM method. 
Design-Expert version 10 was utilized to generate a regres-
sion model and to perform the statistical analysis. The RSM 
shows the general form of the statistical model for predicting 
the response or dependent variable (Y) based on independent 
variables ( x1, x2,… , xk ) based on Eq. (1). The dependent 
variable is response, and independent variable acts as input 
factors (Muthusamy et al. 2019; Montgomery and Anderson-
Cook 2009).

f is the response function, which will be finally optimized 
by the software, while ɛ shows the variables (error) that are 
effective in y but are not included in f (Najafi et al. 2015). 
The general form of the quadratic polynomial model is 
expressed by Eq. 2:

where Y is the response. α0, �j , �jj and αjl are regression 
coefficients for intercept, linear, quadratic and interaction 
coefficients, respectively (k = 8 levels for each factor). xj and 
xl are independent variables and ɛ unpredicted error (De 
Oliveira Faber and Ferreira-Leitão 2016).

Response surface methodology is a collection of math-
ematical and statistical techniques based on the fit of a poly-
nomial equation to the experimental data, which predict the 
process and optimize the levels of independent variables 
to attain the best level of dependent variables (Keshtegar 
et al. 2016; Bezerra et al. 2008). The RSM includes three 
parts: designing, analysis and optimization (Pattanaik and 
Rayasam 2018). In the first section, were determined the 
independent and dependent variables in two levels (− 1 and 
+ 1) for software, and in the next sections, data analysis 
and optimization were performed (Gao et al. 2016). In the 
analysis section, there is a possibility to choose PTF (pedo-
transfer function) for data analysis and a section dedicated 
to the analysis of variance called ANOVA1 (Rao and Ven-
kaiah 2015). Then, in the next section, the software shows 

(1)y = f
(
x1, x2,… , xk

)
+ �

(2)Y = 𝛼0 +

k∑
j=1

𝛼jxj +

k∑
j=1

𝛼jjx
2

j
+

∑
j<1

k∑
l=2

𝛼jlxjx1 + 𝜀

Table 1  The measured erosion, WEPP predicted and measured SDR 
for hydrological units

N Overall 
SDR

Mean of 
predicted 
erosion 
(ton/ha)

Mean of 
predicted 
erosion 
(ton/ha)

Mean 
hydrologi-
cal units 
SDR

Mean hydro-
logical units 
area

17 30.68 23.04 29.27 61.98 6.15

1 Analysis of variance.
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the relationship between independent and dependent vari-
ables in a way 2D and 3D graphs, contour graphs, one-factor 
graphs and interaction graphs (Podder and Majumder 2015). 
First, each parameter must be defined in the upper limit and 
lower limit for the software. Then, according to the nature of 
each parameter, the goal of optimization has been defined. 
Sometimes, the goal of optimization somehow was adjusted 
that optimization process doing out of this range. But gener-
ally, there are five goals in the optimization process, which 
include: maximize, minimize, target, in rang and equal to 
(Kumar et al. 2018). In the optimization section, there is a 
section called importance, which the value of each optimi-
zation parameters from 1 to 5 plus is determined according 
to the optimization goal. Another part of the optimization is 
related to the solutions step that desirability function shows 
the probability of reaching optimization paths to the whole 
goal of research (Dinarvand et al. 2017). Desirability is a 
goal function that ranges from zero to one at the goal. The 
numerical optimization finds a point that maximizes the 
desirability function. The characteristics of a goal may be 
shifted by regulating the weight or significance. For several 
responses and factors, all goals combine into one desirabil-
ity function. Myers and Montgomery (Chabbi et al. 2017) 
explained a multiple response method called desirability. 
The method using an objective function, D(X), is called the 
desirability function. The desirable range for each response 
(di) is from zero to one. The concurrent objective function is 
a geometric mean of all converted responses (Eq. 3):

n is the number of responses. If any of the responses 
was outside of their desirability range, the overall function 
becomes zero. For synchronic optimization, each response 
must have a low and high value specified to each goal. On 
the worksheet, the “goal” field for responses must be one of 
five choices: “none,” “maximum,” “minimum,” “target,” or 
“in range.” Factors will always be included in the optimi-
zation, at their design range by default, or as a maximum, 
minimum of target goal. For simultaneous optimization, 
all goals have been combined into a desirability function, 
which is expressed by Eq. (4).

The goals of minimum and maximum for defining desir-
ability (di) were obtained using Eqs. (5) and (6), respectively.

(3)D =

(
d1 × d2 ×⋯ × dn

) 1

n =

(
n∑
i=1

di

) 1

n

(4)D =

��
d1
�P1

�
d2
�P2

…

�
dn
�Pn

� 1∑
Pi

=

�
n�
i=1

dPi
i

� 1∑
Pi

.

RSM for soil erosion modeling and optimization

The simulation and optimization processes using RSM 
consist of six consecutive steps (Fig. 2): (1) screening of 
independent factors and defining dependent factors, (2) 
selecting the strategy for experimental design, (3) running 
the experiments and measuring the results, (4) fitting and 
diagnosing mathematical model, (5) confirming the model 
using ANOVA and graphs and (6) determination of optimal 
conditions (Karimifard and Moghaddam 2018). In this study, 
ten parameters (independent variables) were defined at mini-
mum (− 1) and maximum (+ 1) levels for software (Table 2). 
Two responses in the output template (R1 = amount of soil 
erosion and R2 = soil erosion amount after management) 
were determined. The type of applied management scenario 
was a revision of crop cover and exclosure in the watershed. 
In the first step, a design for processing was selected. Then, 
the amounts of each input parameter (independent variables) 
were defined at minimum (− 1) and maximum (+ 1) levels. 
In the next step, the processing was begun after selecting the 
PTF and process order or regression models (mean, linear, 
2FI, quadratic and cubic). In the last section of this stage, the 
software was shown the relationships between parameters 
as individually and interacting effect on the dependent vari-
able (soil erosion) in the form of 2D and 3D graphs. In the 
optimization section, the optimization process was accom-
plished for both of the responses in two ways numerical and 
graphical that different stages of optimization and response 
parameters using RSM are shown (Fig. 2). 

Results and discussion

Statistical analysis of RSM parameters and model 
selection

Our results illustrated a significant relationship between 
all evaluated parameters and soil erosion, before and after 
application of management scenarios. Regarding the possi-
bility of RSM technique to select the best model among all 
assessed models using statistical parameters, the quadratic 

(5)d =

⎧
⎪⎨⎪⎩

0 if: yi ≤ ymin

i�
yi−y

min

i

ymax

i
−ymin

i

�wi

if: ymin

i
≤ yi ≤ ymax

i

1 if: yi ≥ ymax

i

(6)d =

⎧
⎪⎨⎪⎩

1 if: yi ≤ ymin

i�
ymin

i
−yi

ymax

i
−ymin

i

�wi

if: ymin

i
≤ yi ≤ ymax

i

0 if: yi ≥ ymax

i
.
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model was suggested as the best model (Table 3) (select 
the highest-order polynomial where the additional terms 
are significant and the model is not aliased). Based on the 
statistical analysis, the quadratic model was selected as the 
best model; therefore in the ANOVA section, all analyses 
were performed with this selected model. The value of 
“Prob2 > F” was smaller than 0.05, which defined as the α 
value of the test with a confidence interval of 95% (Table 4). 
This means that the quadratic model is significant and inde-
pendent variables (physical and hydraulic properties of soil) 

influenced soil erosion. Also, the F-value of 99.30 implies 
that the model is significant. The values of “Prob > F” less 
than 0.05 indicate that our model is significant, whereas 
the values more than 0.10 stated that the model is not sig-
nificant. Moreover, the R-square of the model with df equal 
to 65 (df = n − 1) was greater than 0.99, and the difference 
between R-square and adjusted R-square was smaller than 
0.01, which illustrated the high accuracy of the obtained 
model. The “Adeq3 Precision” measures the signal to noise 
ratio, and a ratio greater than 4 is desirable (Stat-Ease., 
1998). Our results showed that this ratio was 23.73 which 
confirmed an adequate signal; therefore, this model can be 
used to navigate the design space. Ultimately based on all 
above mentioned statistical parameters, the optimization of 
effective parameters on soil erosion was performed using 
the quadratic model that suggested with the RSM. There-
fore, using the RSM technique (Bezerra et al. 2008), the best 
model with the highest accuracy for simulation–optimization 
process was selected.

Interactive effects of sand and clay on soil erosion 
using RSM

The range of clay content was from 6 to 46%, and for sand 
content was 4 to 64%; therefore, results illustrated that mini-
mum amount of soil erosion occurred in the maximum lev-
els of both clay and sand contents which soil erosion was 
equal to 15.4 ton/ha (Fig. 3a). Also, the maximum amount 

Fig. 2  Steps of experimental 
design in the response surface 
methodology

Table 2  The D-optimal design of the independent variables

Parameters Coded values

Min (− 1) Max (+ 1)

Physical
 Sand − 1.000 = 6.0000 1.000 = 64.0000
 Silt − 1.000 = 14.0000 1.000 = 76.0000
 Clay − 1.000 = 6.0000 1.000 = 46.0000
 SP − 1.000 = 31.6000 1.000 = 68.1000
 Stone − 1.000 = 0.0900 1.000 = 5.2000

Hydraulic
 Theta r − 1.000 = 0.0339 1.000 = 0.0974
 Theta s − 1.000 = 0.3856 1.000 = 0.4874
 Alpha − 1.000 = 0.0052 1.000 = 0.0291
 n − 1.000 = 1.2767 1.000 = 1.6799
 KS − 1.000 = 6.8400 1.000 = 46.0100

2 Probability. 3 Adequate.
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of soil erosion (equal to 24 ton/ha) was at the minimum level 
of clay content and the sand content between 40 and 50% 
(Fig. 3c). According to the high amount of sand and increas-
ing clay content (Fig. 3a), it was expected that soil erosion 
was reduced from 22.8 to 15.4 ton/ha. The main reason for 
this result is the meaningful effect of clay and associated 
organic matter content on soil aggregation compared to silt 
and sand particles (Kumar et al. 2016; Mangalassery et al. 
2019). Therefore, in the soil conservation plan, one of the 
most important parts is the soil properties.

Moreover, according to Russell’s theory, clay particles 
owing to small size with high cation exchange capacity and 
high specific surface area, therefore, enhance soil aggrega-
tion and diminish the soil erosion potential (Shaikh et al. 
2017; Spagnoli and Shimobe 2019). However, based on the 
existing management situations in the studied watershed and 
the interaction effects of sand and clay content, the soil ero-
sion was around 15 ton/ha. To evaluate the effectiveness of 
management scenarios using WEPP model, the effect of the 
applied management strategies including revision of crop 
cover (RC) and exclosure (EX) was assessed as response 
2 (R2) using RSM. Results showed that after the applica-
tion of management scenarios as R2, the soil erosion was 
significantly decreased to around 1–2 ton/ha (Fig. 3b). This 
meaningful declining of soil erosion clearly confirmed the 
positive effects of convenient management strategies on soil 
preserving against erosive forces. Feng et al. (2006) showed 
that the establishment of a vegetation riparian buffer regard-
ing the crop cover revision is an effective scenario to reduce 
the on-site and off-site effects of soil erosion. Indeed, the 
riparian buffer is a permanent vegetation cover which is 
located between erosion site and water bodies with numer-
ous capabilities to mitigate soil erosion potential. Also, as 
Fig. 3b illustrates regarding the effectiveness of the applied 

management scenarios, the amount of deposited soil was 
− 0.06 ton/ha, which means the dramatical effects of the 
applied management scenarios on soil erosion controlling 
in the watershed. Results confirmed that the application of 
convenient management scenarios is able to conserve soil 
against erosive agents, therefore to mitigate on-site and off-
site effects of soil erosion. The evaluated management strate-
gies in our study were non-structural management scenarios 
which covered the purposes of sustainable management.

Interactive effects of sand and Ks on soil erosion 
using RSM

Our results depicted that by increasing the sand content 
and saturated hydraulic conductivity (Ks), the soil erosion 
was at the minimum level, which was equal to 21.7 ton/
ha (Fig. 4a). As Fig. 4a shows by decreasing of sand con-
tent and Ks, the soil erosion potential was enhanced to 
26 ton/ha while when the Ks was between 10 and 25 cm/
day, the soil erosion was at the lowest amount (22 ton/
ha) (Fig.  4c). As our results illustrated the hydraulic 
conductivity and sand content both are effective on soil 
erosion occurrence and this is an interactive effect. Soil 
erosion as a dynamic phenomenon is a function of differ-
ent factors; therefore, despite the increasing of hydraulic 
conductivity, this parameter is not sufficient to enhance 
the resistance of soil aggregates against erosive factors 
(Jarzyna et al. 2019; Barman et al. 2019). Considering 
the complexity of the soil erosion process, the RSM 
technique provides an advanced infrastructural analysis 
to evaluate the interaction effects of different parameters 
on soil erosion. Utilizing the interactive effects of several 
parameters on soil erosion is a suitable tool to select and 
apply the best management practice in the critical area. 

Table 3  Statistical parameters 
of different regression models 
based on dependents variables 
(including R1 and R2)

Additionally, mean ± standard deviation (SDEV) is shown (n = 66)

Source SDEV R-square Adjusted R-square

Response R1 R2 R1 R2 R1 R2

Linear 4.740 2.030 0.2789 0.0911 0.1587 − 0.0604
2FI 3.990 2.100 0.8720 0.7560 0.4027 − 0.1389
Quadratic 0.540 0.260 0.9992 0.9988 0.9892 0.9826 Suggested
Cubic 0 0 1 1 1 1 Aliased

Table 4  The ANOVA analysis 
for response surface quadratic 
model

ANOVA for response surface quadratic model

Source Sum of squares df Mean square F-value p value
prob > f

Response R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

Model 1865.41 270.71 65 65 28.70 4.16 99.30 61.94 < 0.0001 < 0.0001 Significant
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Also, investigation of interactive factors presents a real 
situation of soil erosion occurrence in the watershed.

Results of management scenarios applications on soil 
erosion outcomes illustrated the significant effects of 
management strategies on soil erosion controlling and 
diminishing to 1.7–3 ton/ha (Fig. 4b). Actually, this miti-
gation of soil erosion (at the maximum level, 3 ton/ha) is 
significantly effective on different parts of conservational 
plan and reduces the costs of soil preserving. This result 
confirms the meaningful effects of land use and the type 
of management operations on soil erosion occurrence.

Interactive effects of clay and theta r on soil erosion 
using RSM

The relation between clay and residual moisture (theta r), 
which is associated with clay content increasing and the 
theta r decreasing, is shown (Fig. 5a). As Fig. 5a shows, 
by reducing theta r and clay content, the soil erosion was 
at the maximum level (equal to 25.7 ton/ha), whereas by 
increasing clay content the soil erosion was decreased and 
illustrated the minimum level (equal to 21.7 ton/ha). The 
clay particles have an essential role in soil aggregation pro-
cesses and meaningfully are effective on aggregate stability; 
therefore, with changing the soil clay content, the magnitude 
of soil erosion was varied (Arthur et al. 2019). The theta r as 

Fig. 3  The 3D diagram of clay and sand effects on the soil erosion. a Before application of management scenarios and b after application of 
management scenarios. The contour plot of clay and sand content (c)
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hydraulic parameter depends on soil porosity, and the heavy 
textured soils have higher theta r values. Our results show 
that the theta r is equal to 0.03393 for silty soils (Fig. 5a) 
and regarding the structural properties of silt particles, the 
existence of silt particles in the soil enhanced the soil ero-
sion potential. Also, the interaction between sand particles 
and theta r is same as the interaction between clay particles 
and theta r, because both of them can control the soil ero-
sion occurrence (Wee and Yap 2019). Besides, sand parti-
cles reduced the soil erosion by increasing permeability and 
saturated hydraulic conductivity (Ks) in the critical soils, 
therefore reduce the runoff potential. Based on the modeling 
results, the critical area was recognized; then for those areas, 
the specific management scenarios were defined.

Regarding the effectiveness of those management strategies 
(R2 in the RSM), the soil erosion was decreased to 1.6–3.5 ton/
ha (Fig. 5b). This significant decreasing in soil erosion con-
firmed the positive feedbacks of appropriate management 
scenarios to reduced soil erosion and the off-site effects of 

erosion. Dybkjær et al. (2012) showed the significant effects 
of plant cover properties that consist of density, length and 
width on soil erosion controlling; therefore, the plant opera-
tions in the form of management strategies are effective on 
soil erosional behaviors. Application of RSM technique with 
responses (mainly R2) clearly showed the positive impacts of 
clay particles and management scenarios on soil erosion con-
trolling in the watershed (Fig. 5b). Soil aggregation mainly 
depends on clay content, and beside the soil clay content, land 
use (the applied management scenarios) significantly deter-
mine the soil status against erosive forces.

Interactive effect of clay and theta s on soil erosion 
using RSM

The interaction effects of soil clay content and satura-
tion moisture (theta s) are shown (Fig. 6a). As Fig. 6a 
illustrates, the minimum level of soil erosion was at the 
maximum level of clay content and the minimum amount 

Fig. 4  The 3D diagram of sand content and saturated hydraulic conductivity (Ks) on the soil erosion. a Before application of management sce-
narios and b after application of management scenarios. The contour plot of sand content and saturated hydraulic conductivity (c)
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of theta s. As mentioned in other sections of the paper, 
clay particles are capable of creating and increasing the 
binding in the soil matrix; therefore by increasing the 
clay content individually, the soil erosion was decreased 

(Chen et al. 2014). Our results showed that the theta s 
was equal to 0.38, which means the soil texture could be 
sandy clay and clay, because theta s is an index of soil 
texture therefore could represent the soil hydrological 

Fig. 5  The 3D diagram of clay content and moisture residual (theta r) on the soil erosion. a Before application of management scenarios and b 
after application of management scenarios

Fig. 6  The 3D diagram of clay and saturation moisture (theta s) on the soil erosion. a Before application of management scenarios and b after 
application of management scenarios
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group. These results confirmed the relation and interac-
tion effects of clay content and the hydraulic proper-
ties. Application of RSM technique in the form of R2 
(Fig. 6b), to evaluate the interaction effects of clay con-
tent theta s and the management strategies, illustrated 
the positive effects of management scenarios to reduced 
soil erosion. Generally, the application of convenient and 
adaptive management programs in the watershed plays 
an effective role to diminish soil erosion and deposition. 
This is a milestone of RSM that based on response 2 
(R2) clearly presents the effectiveness of convenient man-
agement operations and is applicable for selecting the 
best management practice in the watershed. Generally, 
interactive effects of soil texture components, hydraulic 
characteristics and land use are effective on soil erosion 
occurrence (Table 5). 

Optimization of effective factors on erosion using 
RSM

The design factors, model responses and optimized values 
are shown (Tables 6, 7). In the optimization phase, the pur-
pose is finding the optimal value of the independent and 
dependent parameters shown in Table 7. In the present 
study, the desirability function was used for the optimiza-
tion (Ardebili et al. 2019). All parameters were weighted 
equally 1:1 with an importance of 3 for each of them other 
than silt and  KS parameters that were set in 4. Also, the 
importance of dependent variables was 5. The bar graph 
is used to display desirability of the results and is shown 
as being a variable from to 1 denoting the vicinity of the 
output. The optimal solution for the problem is achieved 
with the following design parameters, and the entire results 
of the model are close to maximum anticipation set for the 
model (Fig. 7). Finally, the optimal blend was selected based 
on the result of the desirability function that so equals 1. 
This technique shows that by defining the  KS parameter in 
the maximum of goal, silt and dependent variables in the 
minimum of goal, the R1 value is 11.54 ton/ha and R2 is 
equal − 2.25 ton/ha. Thus, the bar graph shows how each 
design factor is optimally set to get requirements, and total 
desirability equal 1 is excellent attainment (Fig. 8) (Pour 
et al. 2018). Therefore, using the RSM technique for selected 
parameters and the real situation in the studied watershed, 
the statistical parameters were obtained to apply the best one 
in the watershed.   

Table 5  The ANOVA result of quadratic model for responses (R1 and 
R2)

Response R1 R2 Response R1 R2

SDEV 0.54 0.26 R-square 0.9992 0.9988
Mean 20.76 1.48 C.V. % 2.59 17.52

Table 6  The range of input parameters and responses for optimization 
using RSM

a The codes of independent variables
b The importance values

Param-
eters

Unit Goal Lower 
limit

Upper 
limit

Importance

Aa: Sand % Is in 
range

6.0000 64.0000 ***b

B: Silt % Minimize 14.0000 76.0000 ****b

C: Clay % Is in 
range

6.0000 46.0000 ***

D: SP % Is in 
range

31.6000 68.1000 ***

E: Stone % Is in 
range

0.0900 5.2000 ***

F: Theta r – Is in 
range

0.0339 0.0974 ***

G: Theta s – Is in 
range

0.3856 0.4874 ***

H: Alpha – Is in 
range

0.0052 0.0291 ***

J: n – Is in 
range

1.2767 1.6799 ***

K: Ks cm/day Maximize 6.8400 46.0100 ****
R1 ton/ha Minimize 14.5900 26.8900 *****b

R2 ton/ha Minimize 0.0900 6.0100 *****

Table 7  The optimal values of input parameters and responses

Parameters Unit Goal Optimum values

A: Sand % Is in range 60.241
B: Silt % Minimize 14.000
C: Clay % Is in range 41.025
D: SP % Is in range 58.729
E: Stone % Is in range 3.830
F: Theta r – Is in range 0.090
J: Theta s – Is in range 0.457
H: Alpha – Is in range 0.014
J: n – Is in range 1.300
K: Ks cm/day Maximize 46.010
R1 ton/ha Minimize 11.537
R2 ton/ha Minimize − 2.253
Desirability – – 1
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Conclusion

RSM as a powerful methodology has high potential and 
optimizes modeling that can gain in more significant and 
comprehensive outcomes. Today, using of response surface 
methodology in optimization processes and analytical meth-
ods is expanding because of its benefits as one-variable-
a-time and providing large amounts of information from 
a small number of experiments. Presentation of several 
optimization scenarios could be ideal for future studies to 
fully to establish the process of optimization in different and 
diverse scopes which could result in a better understanding 
of the process and applicability of the optimization. The pur-
pose of this study was to optimize the physical and hydraulic 
properties of soil, providing the best management practices 

according to optimization results. The results showed that 
changes in physical and hydraulic parameters of soil have 
a significant effect on soil erosion. Also, the effect of the 
physical/hydraulic parameters on response variables was dis-
cussed using ANOVA results of suggested models. Accord-
ing to ANOVA results, it was found that all of the suggested 
models were significant at 1% level and the p value of model 
is equal to 0.0001. The optimized values of different physi-
cal parameters were 60.241 for sand, 14 for silt, 41.025 for 
clay, 58.729% for SP and 3.83% for stone. A theta r of 0.09, 
theta s of 0.457, alpha of 0.014, n of 1.3 and Ks of 46.01 
were found to be optimal values. The results of this study 
indicated that at optimal studied parameters the values of 
the soil erosion before and after management scenarios were 
found to be 11.537 and − 2.253, respectively. Results show 
that both physical and hydraulic parameters have signifi-
cant effects at the 1% level on the soil erosion. The obtained 
results could assist policy-makers with decisions aimed at 
minimizing soil erosion in this watershed.
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Abstract
This study investigated the multifractality of streamflow data of 192 stations located in 13 river basins in India using the mul-
tifractal detrended fluctuation analysis (MF-DFA). The streamflow datasets of different river basins displayed multifractality 
and long-term persistence with a mean exponent of 0.585. The streamflow records of Krishna basin displayed least persis-
tence and that of Godavari basin displayed strongest multifractality and complexity. Subsequently, the streamflow-sediment 
links of five major river basins were evaluated using the novel multifractal cross-correlation analysis (MFCCA) method of 
cross-correlation studies. The results showed that the joint persistence of streamflow and total suspended sediments (TSS) 
is approximately the mean of the persistence of individual series. The streamflow displayed higher persistence than TSS 
in 60% of the stations while in majority of stations of Godavari basin the trend was opposite. The annual cross-correlation 
is higher than seasonal cross-correlation in majority of stations but at these time scales strength of their association differs 
with river basin.

Keywords Streamflow · Multifractal · Sediment · Persistence · Correlation

Introduction

The estimation of local fluctuations and long-term depend-
ency of hydrologic time series is a long standing problem in 
hydrology. Hurst exponent (Hurst 1951) is perhaps one of 
the most debated properties of hydro-meteorological data-
sets, which is mainly used to elucidate the persistence of 
the time series. Mandelbrot (1982) paved the way of exist-
ence of fractal geometry of geophysical fields. Over the 
years, a large number of methods evolved for estimation of 
dependency structure and fractal behaviour of hydrologic 
time series. It includes the rescaled range analysis, double 
trace moments (Tessier et al. 1996), Fourier spectral analy-
sis (Hurst et al. 1965; Pandey et al. 1998), extended self 

similarity principles (Dahlstedt and Jensen 2005), wavelet 
transform modula maxima (WTMM) (Muzy et al. 1991), 
arbitrary order Hilbert spectral analysis (AOHSA) (Huang 
et al. 2011; Adarsh et al. 2018a). Peng et al. (1994) pro-
posed an efficient method namely detrended fluctuation 
analysis (DFA) to perform the fractal analysis based on a 
detrending procedure. Kantelhardt et al. (2002) proposed 
the multifractal extension of DFA procedure now popularly 
known as multifractal DFA (MF-DFA). Multifractal is the 
appropriate framework for scaling fields of time series and 
thus can provide the natural framework for analysing and 
modelling various geophysical processes. For hydrological 
time series, multifractal description can be regarded as a 
‘fingerprint’ and it serves as an efficient nontrivial test bed 
for the performance of state-of-the-art precipitation-runoff 
models (Kantelhardt et al. 2006). Therefore, DFA or MF-
DFA was successfully applied for characterization of differ-
ent hydro-meteorological time series (Yuan et al. 2010; Yu 
et al. 2014; Baranowski et al. 2015; Krzyszczak et al. 2019; 
Adarsh et al. 2019).

Kantelhardt et al. (2003) applied the MF-DFA procedure 
for runoff and precipitation from different parts of globe 
and compared the results with WTMM method. Koscielny-
Bunde et al. (2003) applied DFA, MF-DFA and wavelet 
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analysis to discharge records from 41 hydrological stations 
around the globe for investigating their temporal correlations 
and multifractal properties. The study found that the daily 
runoff records were long-term correlated above some crosso-
ver time in the order of weeks, and they were characterized 
by a correlation function that follow a power-law behaviour 
with exponents varying between 0.1 to 0.9. Kantelhardt et al. 
(2006) studied the multifractal behaviour of 99 long-term 
daily precipitation records and 42 long-term daily runoff 
records from different parts of the world. They found that the 
precipitation records generally show short-term persistence 
while runoff records showed long-term persistence with a 
mean exponent of 0.73. Zhang et al. (2008) applied the MF-
DFA procedure to analyse the multifractal characteristics of 
streamflow from four gauging stations in Yangtze river in 
China. The study detected the non-stationarity of different 
time series and analysed the differences in multifractality 
among the records from stations at upper and lower Yangtze 
basin. Zhang et al. (2009) applied MF-DFA method to study 
the scaling behaviours of the long daily streamflow series 
of four hydrological stations in the mainstream of East river 
in China. The results indicated that streamflow series of the 
East river basin were characterized by anti-persistence and 
showed similar scaling behaviour at different shorter time 
scales. Further their study applied the technique to inves-
tigate the effect of water storage structures on streamflow 
records and found that the streamflow magnitude was mainly 
influenced by the precipitation magnitude while the fluctua-
tions of the streamflow records were affected by the human 
interventions like construction of control structures. Labat 
et al. (2011) applied DFA to investigate the multifractality 
of streamflow series of two karstic watersheds in the south-
ern France, suggesting that the correlation properties exist 
in small scales and anti-correlated properties exist in large 
scales. Hirpa et al. (2010) analysed and compared the long-
range correlations of river flow fluctuations from 14 stations 
in the Flint river basin in the state of Georgia in the south-
eastern USA. The study investigated the effect of basin area 
on the multifractal characteristics of streamflow time series 
at different locations and it was found that in general, higher 
the basin area lower will be the degree of multifractality. 
Rego et al. (2013) applied the MF-DFA to analyse the mul-
tifractality of water level records of 12 principal Brazilian 
rivers, and the results indicated that the presence of mul-
tifractality and long-range correlations for all the stations 
after eliminating the climatic periodicity. Li et al. (2015) 
applied the MF-DFA method to the streamflow time series 
of four stations of Yellow river in China. They detected the 
crossover point at annual scale in all the time series. After 
removing the trend by the seasonal trend decomposition, 
they found that all decomposed series were characterized 
by the long-term persistence. Also the study noted that 
the multifractality of streamflow series was because of the 

correlation properties as well as the probability density func-
tion. Tan and Gan (2017) used MF-DFA for determination 
of multifractal behaviour of 145 streamflow and 100 daily 
precipitation series of Canada. They reported that all pre-
cipitation time series showed long-term persistence (LTP) 
at both small and large time scales, while streamflow time 
series generally showed LTP at large time scales. Recently, 
Adarsh et al. (2018a, b) performed the multifractal analy-
sis of streamflow records of four stations of Brahmani river 
basin and one station of Kallada river basin in India.

Even though many studies performed multifractal charac-
terization of streamflow employing the MF-DFA procedure 
worldwide, according to the author’s knowledge, no com-
prehensive study has been reported considering streamflow 
data from Indian rivers and such an analysis on sediment 
concentration data is really scarce in the literature. The spe-
cific objectives of this paper include: (1) multifractal charac-
terization of streamflow data of different rivers in India; (2) 
investigate the streamflow–suspended sediment link of five 
major basins in India using multifractal cross-correlation 
analysis (MFCCA). The next section presents the theoreti-
cal details on MF-DFA and MFCCA. The details of data 
used in the study are presented in the section thereafter. Sub-
sequently, results of MF-DFA analysis of streamflow and 
MFCCA on streamflow-total suspended sediment (TSS) 
links of five major basins are presented along with relevant 
discussions. Then the major conclusions drawn from the 
study are presented.

Materials and methods

This section presents the theoretical details on the multi-
fractal detrended fluctuation analysis (MF-DFA) and multi-
fractal detrended cross-correlation analysis (MFCCA) used 
in this study.

Multifractal detrended fluctuation analysis 
(MF‑DFA)

The multifractal detrended fluctuation analysis (MF-DFA) is 
a popular tool used for the scaling characterization of non-
stationary time series. The different steps involved in MF-
DFA computational procedure can be described as follows:

Consider a time series X (x1, x2… xN), where N is the 
length of the time series. The accumulated deviation of the 
series (known as ‘profile’) is calculated as:

where i = 1, 2, … , N, k = 1, 2 … , N, x̄ is the mean of the 
series xk.

(1)X(i) =

i∑

k=1

[
xk − x̄

]
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Divide the profile X(i) into Ns = int(N∕s) non-overlapping 
segments of length, here s is the segment sample size (so 
called scale) chosen for the analysis and int (N/s) is the inte-
ger part of (N/s). As N need not be a multiple of s always, 
there is a chance of omission of small portion of the time 
series at the end, and to include such segments, the same 
procedure is repeated starting from the opposite end and a 
total of 2Ns segments are considered in the analysis.

Calculate the local trend for each of the 2Ns segments by 
a least squares fit of the series as:

And

Here xυ(i) is the fitting polynomial in segment υ. Lin-
ear, quadratic, cubic etc., different types of fitting can be 
made and accordingly DFA procedure is named as DFA1, 
DFA2,…..DFAm etc.

Compute the qth order fluctuation function by averaging:

Here the index variable q can take any real value except 
zero and the zeroth order fluctuation function is computed 
by following a logarithmic averaging procedure:

Analyse the scaling behaviour of the fluctuation functions 
developing the log–log plots of Fq(s) versus s for each values 
of q. If the time series is long-range power-law correlated, 
Fq(s) increases as:

Fq(s) ~ sh (q) and h (q), the slope of the plot is referred 
as the generalized Hurst exponent (GHE).For stationary 
time series, 0 < h (q = 2) < 1, is identical to the classical 
Hurst exponent (Hurst 1951). For an uncorrelated series the 
value of Hurst exponent is 0.5. If the Hurst exponent falls 
between 0.5 and 1, it indicates the long-term persistence 
(long memory process) and if it falls between 0 and 0.5, it 
indicates a short-term persistence (short memory process). 
Long-term persistence implies a positive autocorrelation in 
the time series (i.e. the effect of an observation on future 
observations remain significant for a long period of time). 
For example an extreme event would have higher probability 

(2)

F2(s, �) =
1

s

s∑

i=1

{
X[(� − 1)s + i] − x�(i)

}2
for � = 1, 2,… ,Ns

(3)

F
2(s, �) =

1

s

s∑

i=1

{
X
[
N − (� − N

s
)s + i

]
− x�(i)

}2

for � = N
s
+ 1,… , 2N

s

(4)Fq(s) =

{
1

2N

2Ns∑

�=1

[
F2(s, �)

]q∕2
}1∕q

(5)F0(s) = exp

{
1

4N

2Ns∑

�=1

ln
[
F2(s, �)

]
}

being followed by another extreme of same character (i.e. 
a flood followed by another flood). The selection of scale 
(s) or segment sample size, the type of polynomial chosen 
etc., are some of the key issues while applying the MF-DFA 
method. Generally sufficient segments are chosen between 
the bounds (minimum and maximum) scale range. Minimum 
scale can be chosen in such way that it is sufficiently larger 
than the polynomial order chosen to prevent error in compu-
tation of local fluctuations and maximum scale below 1/10 
of the sample size. Also the polynomial order can be chosen 
1–3 probably sufficient to avoid overfitting problems within 
small segment sizes (Ihlen 2012; Oświęcimka et al. 2013).

From the GHE, several other types of scaling exponents 
can also be derived, which is helpful for the multifractal 
characterization of the time series. The q-order mass expo-
nent ( (�(q)) and singularity exponent (α) are derived as 
follows:

And

where f(α) provides the singularity spectrum. The depend-
ency of h(q) on q infer multifractality of the time series and 
the spread of GHE plot ∆h(q) refer the strength of mul-
tifractality (Grech 2016). If the variation of GHE plot is 
steeper the time series is more multifractal (higher degree 
of multifractality) and if it is flatter the series is less mul-
tifractal (lower degree of multifractality). The base width 
of the singularity spectrum (spread of singularity exponent, 
∆α) also reflects the strength of the multifractality of the 
time series. The shape and extent of the singularity spec-
trum curve contain significant information about the dis-
tribution characteristics and the singularity content of the 
time series. A wider singularity spectrum indicates a higher 
degree of multifractality and a narrow width indicates lesser 
degree of multifractality. For a multifractal time series the 
shape of singularity spectrum will be an inverted parabola 
whose right- and left-hand wings correspond to negative and 
positive q, respectively. Asymmetry Index (Aα) is a useful 
parameter for multifractal analysis derived from the proper-
ties of the spectrum. It is obtained by the following relation 
(Drozdz and Oswiecimka 2015):

where Δ�L = �0 − �min and Δ�R = �max − �0 are, respec-
tively, the width of left- and right-hand branches of the 

(6)�(q) = qh(q) − 1

(7)� =
d�(q)

dq

(8)f (�) = q� − �(q)

(9)A� =

(
Δ�L − Δ�R

)
(
Δ�L + Δ�R

)
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multifractal spectrum curve; their values describe the dis-
tribution patterns of high and low fluctuations and α0 is 
the singularity exponent for q = 0. The value of Aα ranges 
from − 1 to 1. It quantifies the deviations of the multifrac-
tal spectrum curve. Aα> 0 suggests a left-hand deviation of 
the multifractal spectrum, likely to have resulted from some 
degree of local high fluctuations; Aα< 0 suggests a right-
hand deviation with local low fluctuations, and Aα = 0 rep-
resents a symmetrical multifractal spectrum. The difference 
∆f(α) between maximum and minimum values of singularity 
provides an estimate of the spread in changes in fractal pat-
terns. Since ∆f(α) denotes the frequency ratio of the largest 
to the smallest fluctuations ∆f(α) > 0 means that the largest 
fluctuations are more frequent than smallest fluctuations.

Multifractal cross‑correlation analysis (MFCCA)

In order to determine the inter-relationships between dif-
ferent hydro-meteorological variables, different statistical 
approaches have been developed and simplest of which 
is the estimation of Pearson correlation coefficient. How-
ever, this coefficient is not robust and can be misleading 
if outliers are present, as in real-world data characterized 
by a high degree of nonlinearity and non-stationarity. The 
Pearson correlation may display the spurious correlations in 
the presence of trend in non-stationary time series. Podob-
nik and Stanley (2008) proposed a new method, detrended 
cross-correlation analysis (DCCA), to investigate power-law 
cross-correlations between two candidate non-stationarity 
time series in a multifractal framework. Podobnik et al. 
(2009a) found that the trends can severely affect the long-
range correlations in the time series, leading to crosso-
vers and other spurious deviations from power laws. To 
circumvent these issues, they proposed a novel statistical 
significance test for the quantitative analysis of power-law 
cross-correlations considering the both local and global 
detrending approaches. Podobnik et al. (2011) presented 
an analytical examination of the above test considering the 
Chinese, USA and German financial indices and proposed 
an improved variant of the statistical test to quantify the 
existence of cross-correlations between two power-law 
correlated time series. Some recent studies made detailed 
comparison on the person correlation and DCCA approach 
(Piao and Fu 2016). DCCA was extended to multifractal 
case and named as multifractal detrended cross-correlation 
analysis (MFDCCA) (Zhou 2008) and multifractal detrend-
ing moving average cross-correlation analysis (MFXDMA) 
(Jiang and Zhou 2011). Later on, Oświȩcimka et al. (2014) 
propounded a more generalized version of cross-correla-
tion analysis namely multifractal cross-correlation analysis 
(MFCCA) which can also incorporate the sign of fluctuation 
function to their generalized moments. DCCA and its vari-
ants have successfully been applied to financial, biomedical 

and meteorological time series (Podobnik et al. 2009a, b; 
Hajian and Movahed 2010; Shi 2014; Vassoler and Zebende 
2012; Jiang et al. 2011; Wu et al. 2018; Dey and Mujumdar 
2018; Wątorek et al. 2019).

The different steps involved in MFCCA computational 
procedure can be described as follows:

For two time series xi and yi (i = 1, 2, …, N); determine 
the profiles as two new series:

and

where i = 1, 2, …, N; ⟨x⟩ and ⟨y⟩ are the mean of the two 
series.

Each series xi and yi are divided into Ns non-overlapping 
segments both in progressive and retrograde directions, to 
avoid any omission of time series data at the beginning or 
end of the series. For each 2Ns segments, local trend of both 
series xj and yj are computed by fitting polynomial of appro-
priate order (m). The subtraction of the fitted polynomial 
from the original segment gives the covariance:

Calculate detrended covariance by summing over all over-
lapping all segments of length n:

F
q

XY
(s) behaves as a power-law function of s (the scaling 

behaviour), where s is the segmental sample size:

The cross-correlation exponent λ(q) similar to the gen-
eralized Hurst exponent h(q) in MF-DFA and it can be 
obtained by observing the slope of log–log plot of F(s) ver-
sus s by ordinary least squares.

Determination of cross‑correlation coefficient (ρXY)

DCCA cross-correlation coefficient is defined as the ratio 
between the detrended covariance function FXY  and the 

(10)X(j) =

j�

i=1

�
xi − ⟨x⟩

�

(11)Y(j) =

j�

i=1

�
yi − ⟨y⟩

�

(12)

f 2
XY
(�, s) =

{
1

s

s∑

k=i

[
(X((� − 1) + k) − pm

X,�
(k))

×(Y((� − 1) + k) − pm
Y ,�
(k))

]}

(13)F
q

XY
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1

2Ns
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f 2
XY
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2
XY
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(14)F
q

XY
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detrended variance functions FX and FY (Zebende 2011; 
Kwapień et al. 2015)

Theoretically the value of ρXY ranges between 
− 1 ≤ ρXY ≤ 1. If the value range between ± 0.666 to ± 1 cross-
correlation it can be considered as strong positive (or nega-
tive); ± 0.333 to ± 0.666 it is medium and ± 0 to ± 0.333 it 
is weak (Brito et al. 2018). The MFCCA analysis facilitate 
the estimation of scale dependent correlation between two 
candidate time series, which can provide better insight into 
the physical association between the variables. It is to be 
noted that in this study MFCCA is retrieved for the moment 
order q = 2.

Study area and data

In this study long-term daily streamflow data of 192 stations 
falling in 13 river basins in India are collected from Water 
Resources Information System (WRIS) India (www.india 
-wris.nrsc.gov.in) operated by the Central Water Commis-
sion (CWC) India, which one of the most reliable database 
pertaining to India. The map showing different major river 
basins is presented in Fig. 1. The data ranging from 1969 to 
2016 are considered for the study. For brevity, the maximum 
and minimum data lengths of the basin along with the maxi-
mum and minimum drainage area of stations of different 
basins are provided in Table 1. As the total suspended sedi-
ment information is really scarce, the streamflow-sediment 
link is investigated in five major basins by considering the 
longest common period for which both the streamflow and 
sediment data are available.

Results and discussions

In this study, first daily streamflow data of different sta-
tions are analysed using the MF-DFA method by selecting 
moment order in the range − 4 to + 4 and minimum scale 
as 10, maximum as N/2, where N is the data length. Six dif-
ferent prominent multifractal properties such as Hurst expo-
nent (H), spread of generalized Hurst exponent plot Δh(q) , 
spread of singularity parameter ∆α (called as spectral width), 
Asymmetry index (Aα), ∆f(α), singularity parameter for zero 
moment order (α0) etc. are evaluated. The spatial distribution 
of the different multifractal parameters is shown in Fig. 2. 
Further, the non-parametric Kernel density estimator (KDE) 
is used to develop the probability density function (PDF) 
and cumulative distribution fuction (CDF) of all the six mul-
tifractal parameters, and the results are presented in Fig. 3. 

(15)�XY =
F
q

XY√
F
q

X
F
q

Y

From the results it is noted that most of the stream-
flow series displayed long-term persistence (71.3%) with a 
mean value of 0.585, which is less than the universal value 
of 0.73 reported by Kantelhardt et al. (2006). Similarly the 
high multifractal width and spread ( Δh(q) ) are noted in the 
database, which shows that there is a large variation in dis-
tribution of high and low fluctuations, indicating irregular 
and non-homogeneous distribution. This is quite obvious 
because of the high intermittent character of river flows 
in the basins considered in the study. It is to be noted that 
the database considered the stations located in the south-
ern/peninsular part of India, where in most of the rivers 
the streamflow is intermittent in nature and comprising 
of continuous zero or very low discharge values. In the 
northern India, abundant alluvial and perennial rivers are 
present, but most of them are trans-boundary in character 
for which the data sharing is not flexible. From Fig. 2, it 
is also noted that river basins Periyar, Cauvery, Pennar, 
Vaippar, which are near to the southern coastal regions 
have high degree of multifractality. The Asymmetry index 
value is positive for most of stations (181 stations out of 
192), which indicates left-hand deviations of the spectra 
with local high fluctuations.

From Fig. 3, it is noted that as expected the distribution of 
spectral width and spread (which convey the similar message 
on degree of multifractality) irrespective of their numerical 
values. The PDF of Hurst exponent shows a density con-
centration around 0.5–0.7, where Hurst exponent lies in this 
range for most of the stations (49%). A near symmetrical 
distribution is noted for the value of Δf (�) and the dominant 
density of α0 is in the range of 0.8–1.2. Now, for a com-
parison of multifractal properties of streamflow of different 
basins, five major basins, namely Godavari, Krishna, Maha-
nadi, West flowing rivers (WFR) from Tadri to Kanyakumari 
(WFR T-K) and Cauvery are considered (for which datasets 
of minimum 10 stations are available). The PDFs and CDFs 
of different multifractal parameters are presented in Fig. 4.

From the PDFs and CDFs of streamflow data of river 
basins it is clear that the data of Krishna has least persis-
tence (followed by Mahanadi) as compared with that of other 
basins. The highest degree of multifractality is noted for the 
streamflows of Godavari basin which is having over 400 
major and minor dams and other regulation structures which 
control the streamflows. From Fig. 4, it is also noted that 
streamflows of Godavari basin has higher α0as compared 
with other basins, which infer the complexity of the series. 
From the plot of α0 it is noted that the streamflow of Krishna 
and WFR T-K has almost similar complexity which pos-
sess finer structure. In the WFR T-K basin, no major flow 
regulation structures are present and the drainage areas of 
different stations are similar in magnitude (varies between 
238 and 5755 km2 from Table 1). To get an insight into the 
effect of drainage area and data length on the multifractality 

http://www.india-wris.nrsc.gov.in
http://www.india-wris.nrsc.gov.in
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and persistence, the plots of drainage area versus H, drainage 
area versus spectral width, data length versus H and data 
length versus spectral width are prepared and presented in 
Fig. 5. 

It is evident from Fig. 5 and it is noted that most of the 
Hurst exponent values are centred around 0.55–0.65 and 
there is no major change in the value of the Hurst Expo-
nent with drainage area. This evidently concludes that 

Fig. 1  Map showing river basins in India
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change in drainage area has no effect on the persistence 
of the different series. No direct conclusions can be made 
from the other two plots except that area and data length 
independently seem to have no significant effect on the 
multifractality and persistence.

MFCCA between streamflow and suspended 
sediment

Multifractal cross-correlation analysis (MFCCA) between 
streamflow and total suspended sediment (TSS) was 

Table 1  Details of streamflow 
data used for the study

S. no. Basin Number of 
stations

Drainage area  (km2) Data length

Minimum Maximum Minimum Maximum

1 Krishna 31 1850 251,360 1095 18,615
2 Brahmani-Baitarani 9 830 33,955 4015 15,330
3 Sabarmati 6 1421 19,636 5840 9490
4 Mahi 7 1510 32,510 3285 13,805
5 Mahanadi 19 1100 124,450 4015 15,695
6 Subarnarekha 5 1330 12,649 6205 14,235
7 Tapi 5 8487 58,400 3285 5110
8 Cauvery 31 258 66,243 2555 16,425
9 WFR Tadri-Kanyakumari 28 238 5755 1460 16,425
10 EFR Pennar-Kanyakumari 13 850 16,230 4015 16,060
11 Godavari 23 2500 307,800 1019 13,111
12 Pennar 7 2486 37,981 1245 10,606
13 WFR-Kutch-Saurashtra-Luni 8 345 6960 6865 15,111
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 (a) Hurst Exponent  (b) ∆ h(q)  (c) Spectral Width

 (d) Assymetry Index  (e) ∆ f(α)  (f) α0

Fig. 2  Spatial distribution of multifractal parameters of streamflow all over India a Hurst exponent; b Δh(q) ; c spectral width; d asymmetry 
index; e ∆f(α); f α0
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Fig. 3  PDF of different multifractal parameters of streamflow data
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Fig. 4  PDFs and CDFs of different multifractal parameters for basin wise analysis of streamflow datasets
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performed for 5 major basins in India—Cauvery, Krishna, 
Godavari, Mahanadi and WFR T-K. Choosing the appro-
priate moment order and scaling ranges are crucial in per-
forming the MFCCA analysis and in this study, we con-
sidered the moment order − 4 to + 4 to avoid any possible 
bias (Drożdż et al. 2019). It is worth mentioning that due to 
the highly intermittent rainfall characteristics, many long 
and continuous zero value stretches may be present in many 
of the streamflow and suspended sediment series. Address-
ing this, the minimum scale is selected as more than the 
length of longest stretch of zero values to avoid any possible 
inconsistencies in the results (Drożdż et al. 2019). From the 
MFCCA, the individual persistence, joint persistence and 
cross-correlation coefficient at annual and the overall cor-
relation are determined for each case. In Cauvery basin, 11 
stations for which long and continuous streamflow and TSS 
data are available are considered for MFCCA analysis. The 
annual cross-correlation coefficient along with Hurst expo-
nents obtained is given in Table 2. Figure 6 shows typical 
plots of multifractal analysis along with the variability of 
cross-correlation with time scale of Kudige station. 

Among the different plots, the fluctuation function plots 
(log (F(q, scale)) versus log (scale)) for q = 2 are presented 

as the representative sample (Krzyszczak et  al. 2019). 
From the plots of fluctuation function, it is inferred that 
a definite crossover is noticed between 350 and 400 days 
(log10(350) − log10(400), i.e. 2.55–2.61) which is corre-
sponding to annual scale. It is to be noted that the multi-
fractal measures are calculated by identifying proper scal-
ing range from the fluctuation function plots. In most of the 
time series considered in the study, proper scaling in the 
fluctuation function is noted up to annual scale. Therefore in 
such series, maximum scale of ~ 365 days was considered in 
estimation of the different multifractal measures. The annual 
scale variations are obvious in the streamflow and sediment 
concentration time series, which could be attributed to the 
precipitation contributions from the catchment. One cannot 
ignore the crossover points at intra-seasonal scale ranges in 
the streamflow and sediment series in certain stations, which 
could be due to the anthropogenic flow regulation activities 
performed at the station. Accordingly, this is purely a data 
dependent property and one cannot generalize the behav-
ioural pattern of the fluctuation function. The scaling expo-
nent plot, mass exponent plot and multifractal spectra of 
the streamflow and suspended sediment time series derived 
from the plots of fluctuation function are also presented 
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in Fig. 6. It can be noted that the scaling exponent plot of 
cross-correlations is located near the middle of the scaling 
exponent plots of individual time series (so called GHE 
plots), which confirms the universal property of the relation 
between the scaling exponents (Hajian and Movahed 2010). 
Results obtained by the MFCCA analysis for streamflow and 
sediment data for Cauvery basin (Table 2) it is noted that the 
persistence of streamflow is more than that of TSS except 
for two stations. At all stations of Cauvery basin, the joint 

persistence is found to be nearly the average of individual 
persistence of streamflow and TSS. The joint persistence is 
found to be strong with a mean value of 0.733. The annual 
correlation is found to be more than 0.5 in five stations, but 
the overall correlation is found to be weak and it is less than 
0.5 in all stations. The mean annual correlation is found to 
be 0.492 while the mean overall correlation is only 0.33. 
On examining the correlations it was found that, 7 out of 11 
stations weak seasonal correlation (at 90 day scale) was also 

Table 2  Hurst exponents of 
streamflow and TSS data of 
Cauvery basin along with the 
cross-correlation

Station Hx (streamflow) Hy (TSS) Scaling Expo-
nent (Hxy)

ρXY (annual) ρXY (overall)

Biligundulu 0.797 0.669 0.733 0.404 0.274
Kodumudi 0.904 0.742 0.823 0.627 0.414
Kollegal 0.736 0.672 0.704 0.428 0.172
Kudige 0.745 0.655 0.700 0.431 0.249
Musiri 0.656 0.641 0.649 0.664 0.504
Muthankera 0.561 0.779 0.670 0.716 0.494
Savandpur 0.752 0.658 0.705 0.450 0.386
T Narasipur 0.781 0.633 0.707 0.208 0.090
TK Halli 0.688 0.673 0.681 0.566 0.415
Tehngudi 0.823 0.883 0.853 0.725 0.360
Thengumarahada 0.839 0.829 0.834 0.241 0.275
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detected in this basin. Except for the data of Savandpur and 
Thengumarahada stations, the annual correlation is found to 
be more than that of seasonal correlation.

The annual and overall correlation along with Hurst expo-
nents of datasets of different stations of Godavari basin is 
given in Table 3.

From Table 3, it is noted that unlike for Cauvery basin, 
for majority of the stations in Godavari basin (i.e. 14 out of 
26), the persistence of TSS is more than that of streamflow. 
The persistence is strong and long term for both streamflow 
and TSS series with a mean of 0.803 and 0.789, respectively. 
There exists a strong annual correlation between streamflow 
and TSS in this basin (mean value of 0.702). The annual 
correlation is greater than 0.5 in 23 cases, out of which in 
17 cases the correlation is more than 0.7. The overall cor-
relation was found to be more than 0.5 in 18 cases out of 
which the association is strong (> 0.4) in four cases. For the 
datasets of Bishnur, Bhatpalii and Satrapur stations, both the 
annual and overall correlation are found to be very weak. 
It was also noted the seasonal correlation (at 3 month time 
scale) was also detectable at 16 out of 26 stations and annual 
correlation was found to be greater than seasonal correlation 

for data of all stations except Satrapur. At all stations of this 
basin, the joint persistence is found to be the average of 
persistence of streamflow and TSS. Figure 7 shows typical 
plots of multifractal analysis along with the variability of 
cross-correlation with time scale of Polavaram station in the 
Godavari basin.

The annual and overall correlation between streamflow 
and TSS along with Hurst exponents of datasets of Krishna 
basin is given in Table 4.

From Table 4, it is clear that for 14 out of 23 stations, the 
persistence of streamflow is more than that of TSS. In this 
case, the joint persistence (with a mean of 0.614) is found 
to be the average of the individual persistence of stream-
flow and TSS. Strong annual correlation (> 0.7) is noted in 
7 cases while it is more than 0.5 in 18 cases. In 9 cases sea-
sonal correlation was also noted and the annual correlation 
is greater than that of seasonal correlation in these stations. 
The overall correlation was found to be weak (with a mean 
of 0.375) and in 5 cases the correlation is found to be more 
than 0.5. Figure 8 shows typical plots of multifractal analysis 
of streamflow and sediment data along with the variability 
of Cholachguda station in Krishna basin. The overall and 

Table 3  Hurst exponents of 
streamflow and TSS data of 
Godavari basin along with the 
cross-correlation

Station Hx (streamflow) Hy (TSS) Scaling expo-
nent (Hxy)

ρXY (annual) ρXY (overall)

Ashti 0.844 0.920 0.882 0.823 0.602
Babli 0.982 0.959 0.970 0.657 0.442
Bamini(Balharsha) 0.727 0.778 0.752 0.691 0.566
Basar 1.00 0.965 0.994 0.588 0.521
Bhatpalli 0.587 0.644 0.615 0.357 0.267
Bishnur 0.739 0.457 0.598 0.231 0.188
Dhalegaon 0.653 0.669 0.661 0.631 0.460
G.R.Bridge 0.767 0.737 0.752 0.714 0.561
Hivra 0.633 0.570 0.601 0.619 0.498
Jagdalpur 0.838 0.882 0.860 0.713 0.530
Konta 0.786 0.845 0.815 0.811 0.548
Kumhari 0.910 0.893 0.901 0.871 0.599
Mancherial 0.860 0.796 0.828 0.518 0.391
Nandgaon 0.724 0.751 0.737 0.768 0.614
Nowrangpur 0.850 0.877 0.864 0.754 0.662
P.G. (Penganga) Bridge 0.489 0.316 0.402 0.710 0.489
Pathagudem 0.822 0.894 0.858 0.886 0.722
Pauni 0.718 0.782 0.750 0.807 0.575
Perur 0.889 0.898 0.893 0.950 0.915
Polavaram 0.908 0.830 0.869 0.932 0.855
Purna 0.782 0.747 0.764 0.722 0.594
Rajegaon 0.998 1.00 1.000 0.908 0.549
Saigaon 0.597 0.562 0.580 0.769 0.584
Satrapur 0.957 0.877 0.917 0.117 0.277
Tekra 0.848 0.867 0.858 0.884 0.685
Yelli 0.942 0.965 0.953 0.809 0.755
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Fig. 7  Plots of multifractal analysis of data of Polavaram station 
along with the variability of cross-correlation a log–log plot of fluc-
tuation function versus scale for q = 2; b scaling exponent plot; c 

mass exponent plot; d multifractal spectrum; e temporal variability of 
cross-correlation coefficient

Table 4  Hurst exponents of 
streamflow and TSS data of 
Krishna basin along with the 
cross-correlation

Station Hx (streamflow) Hy (TSS) Scaling expo-
nent (Hxy)

ρXY (annual) ρXY (overall)

Bagalkot 0.540 0.541 0.540 0.441 0.205
Bawapuram 0.577 0.505 0.541 0.644 0.434
Byaladahalli 0.912 0.870 0.891 0.813 0.607
Cholachguda 0.597 0.682 0.639 0.808 0.660
Haralahalli 0.751 0.683 0.717 0.383 0.296
Honnali 0.967 1.027 0.997 0.589 0.194
Huvanahedgi 0.721 0.650 0.685 0.241 0.174
K Agraharam 0.713 0.621 0.667 0.677 0.430
Karaad 0.480 0.449 0.465 0.659 0.346
Keesara 0.591 0.548 0.569 0.570 0.302
Kurundwad 0.420 0.487 0.453 0.938 0.795
Malkhed 0.655 0.639 0.647 0.721 0.210
Mantralayam 0.559 0.557 0.558 0.575 0.353
Marol 0.525 0.578 0.552 0.396 0.143
Pondugala 0.645 0.857 0.751 0.337 0.112
Yadgir 0.490 0.392 0.441 0.686 0.524
Warunji 0.655 0.654 0.654 0.731 0.493
Wadanapalli 0.675 0.750 0.713 0.572 0.336
Wadakbal 0.582 0.558 0.570 0.617 0.484
Vijayawada 0.656 0.590 0.623 0.702 0.330
Takli 0.468 0.365 0.416 0.504 0.232
Shimogs 0.557 0.628 0.592 0.917 0.686
Sarati 0.421 0.446 0.434 0.523 0.320
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annual cross-correlation coefficient along with Hurst expo-
nents of datasets of Mahanadi basin is given in Table 5. 

From Table 5, it is noticed that in 81% of stations (i.e. 
13 out of 16) the persistence of streamflow is more than 
that of TSS. The seasonal correlation was detected only at 

Basantpur and Tikarapara stations. The cross-correlation 
coefficient is more than 0.7 at all stations except Kesinga 
indicating very strong positive correlation between the 
parameters in the basin and reasonably good overall cor-
relation (> 0.4) is noted at 14 stations. The mean value of 
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Fig. 8  Plots of multifractal analysis of data of Cholachguda sta-
tion along with the variability of cross-correlation a log–log plot of 
fluctuation function versus scale for q = 2; b scaling exponent plot; c 

mass exponent plot; d multifractal spectrum; e temporal variability of 
cross-correlation coefficient

Table 5  Hurst exponents of 
streamflow and TSS data of 
Mahanadi basin along with the 
cross-correlation

Station Hx (streamflow) Hy (TSS) Scaling expo-
nent (Hxy)

ρXY (annual) ρXY (overall)

Andhiyarkore 0.527 0.341 0.434 0.721 0.490
Bamnidhi 0.517 0.506 0.512 0.759 0.489
Baronda 0.498 0.416 0.457 0.757 0.423
Basantpur 0.691 0.701 0.696 0.816 0.552
Ghatora 1.000 0.991 1.00 0.782 0.629
Jondhra 0.537 0.505 0.521 0.801 0.513
Kantamal 0.538 0.415 0.477 0.726 0.489
Kesinga 0.99 1.000 1.00 0.316 0.364
Kurubhata 0.573 0.571 0.572 0.892 0.740
Manendragarh 0.665 0.777 0.721 0.779 0.528
Rajim 0.499 0.396 0.448 0.700 0.379
Rampur 0.483 0.378 0.430 0.835 0.484
Salebhata 0.462 0.386 0.424 0.763 0.453
Simga 0.487 0.400 0.444 0.720 0.403
Sundaragarh 0.465 0.387 0.426 0.833 0.574
Tikarapara 0.762 0.721 0.741 0.765 0.420
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annual correlation is found to be 0.748 while it is 0.495 for 
overall data. The correlation plot and multifractal plots of 
Basantpur station are presented in Fig. 9.

The results of MFCCA of streamflow and TSS of WFR 
Tadri-Kanyakumari (WFR T-K) are given in Table 6. From 
Table 6, it is clear that the persistence of streamflow is more 
that of sediment for nine stations. The joint persistenceis 
nearly the mean of the individual persistence of streamflow 
and TSS stations of different stations. There exists reason-
ably good correlation at annual scale with a mean correlation 
of 0.75 and the overall correlation was also more than 0.5 
in 14 cases. The seasonal association was detectable at nine 
stations and the annual scale correlation is greater than the 
seasonal correlation for all the stations except for the data 
of Kumbidi station. The annual cross-correlation is greater 
than 0.5 in 18 cases out of which in 14 cases the correlation 
is found to be > 0.7. Figure 10 shows the multifractal plots 
of Ramamangalam station.

In general, in most of the stations (57 out of 95 stations) 
the persistence of streamflow is greater than that of TSS. In 
Godavari basin, majority of the stations the persistence of 
TSS is more than that of streamflow. The human interven-
tions and flow regulations might have influenced the per-
sistence and multifractality of streamflow in this basin to 
a great extent. The investigation using MFCCA provides 

the time (scale) dependent information of the association 
between streamflow and TSS against the unique and tradi-
tional linear correlation between them, i.e. even though the 
overall correlation between the two are less, at specific time 
scale the association could be of considerable magnitude. 
In 45 stations, seasonal (intra-annual) association between 
streamflow and TSS are also noticed, among which high-
est number of stations (18 stations) are located in Godavari 
basin. This also infers the role of flow regulations in stream-
flow-TSS links of this basin. Even though streamflow-TSS 
association varies with temporal scales and there is no sys-
tematic pattern in this variation for the datasets of different 
basins. But it is noted that the strength of their association 
could vary significantly with time scale and their associa-
tion could significantly depend on the basin and climatic 
(precipitation) characteristics.

Conclusions

This study first investigated the multifractality of stream-
flow of 192 stations falling in 13 river basins in India 
using the multifractal detrended fluctuation analysis (MF-
DFA). Subsequently, the multifractal cross-correlation 
analysis (MFCCA) is employed for investigating the 
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Table 6  Hurst exponents of 
streamflow and TSS data of 
WFR Tadri to Kanyakumari 
basin along with the cross-
correlation

Station Hx (streamflow) Hy (TSS) Scaling expo-
nent (Hxy)

ρXY (annual) ρXY (overall)

Ambarampalayam 0.963 0.648 0.806 0.431 0.368
Arangaly 0.500 0.665 0.582 0.855 0.611
Ayilam 0.605 0.558 0.582 0.749 0.581
Bantwal 0.391 0.517 0.454 0.866 0.710
Erinjipuzha 0.722 0.686 0.704 0.897 0.669
Kalampur 0.585 0.636 0.611 0.786 0.564
Kallooppara 0.522 0.593 0.557 0.783 0.420
Karathodu 0.717 0.776 0.747 0.834 0.701
Kidangoor 0.594 0.803 0.699 0.657 0.348
Kumbidi 0.733 0.772 0.752 0.714 0.637
Kuniyil 0.584 0.626 0.605 0.711 0.589
Kuttyadi 1.000 0.997 1.00 0.595 0.415
Malakkara 0.560 0.645 0.603 0.678 0.533
Neeleswaram 1.00 0.916 0.956 0.858 0.615
Pattazhy 0.695 0.685 0.690 0.641 0.555
Perumannu 0.881 0.764 0.822 0.904 0.695
Pulamanthole 0.844 0.772 0.808 0.810 0.621
Ramamangalam 0.681 0.663 0.672 0.782 0.501
Thumpamon 0.595 0.674 0.634 0.730 0.483
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streamflow-sediment link in a multifractal perspective. From 
the results it is noted that the streamflow datasets of dif-
ferent river basins displayed multifractality and long-term 
persistence with a mean exponent of 0.583. The streamflow 
records of Krishna basin displayed least persistence and that 
of Godavari displayed strongest multifractality and complex-
ity. The streamflow-sediment links of five major river basins 
evaluated using MFCCA showed that the joint persistence is 
nearly the mean of the persistence of individual series. The 
streamflow displayed higher persistence than total suspended 
sediment in majority of the stations except that in Godavari 
basin. The annual cross-correlation between streamflow and 
sediment is higher than seasonal and overall cross-correla-
tion but the strength of their association differs with river 
basin.
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Abstract
The calibration of any hydrological model in any river basin is generally performed using a single hydrological variable. 
Spatially distributed hydrological modeling provides an opportunity to enhance the use of multi-variable calibration models. 
The objective of this study is to test the efficiency of satellite-based actual evapotranspiration in the HBV hydrological model 
to render the catchment water balance using multi-variable calibration in the upper Omo-Gibe basin in Ethiopia. Five years 
(2000–2004) meteorological data, streamflow, and actual evapotranspiration (ETa) based on remote sensing were used for 
calibration and validation purposes. The performance of the HBV model and the efficiency of SEBS–ETa were evaluated 
using certain calibration criteria (objective function). The model is first calibrated using only streamflow data to test HBV 
model performance and then calibrated using a multi-variable (streamflow and ETa) dataset to evaluate the efficiency of 
SEBS–ETa. Both model setups were validated in a multi-variable evaluation using streamflow and ETa data. In the first 
case, the model performed well enough for streamflow and poor for ETa, while in the latter case, the performance efficiency 
of SEBS–ETa and streamflow data shows satisfactory to good. This implies that the performance of hydrological models is 
enhanced by employing multi-variable calibration.

Keywords Evapotranspiration · Ethiopia · Hydrological model · Multi-variable · Streamflow

Introduction

Knowing the reliable information on the components of the 
water balance equation is crucial for water management in 
a river basin system. Hydrological modeling is an important 
tool for knowledge grasping on the hydrological responses 
of the catchment area (Kim et al. 2018) and is a challenging 
task (Romanowicz et al. 2013). In a conceptual rainfall–run-
off model, it is challenging to measure different parameters 
directly. It requires the optimization of some hydrologi-
cal variables through calibration in order to achieve good 
correlation and closely to match between simulated and 
observed variables. Calibration with historical data is the 

most common method for the identification of an optimized 
model parameter set (Wagener et al. 2003; De Vos et al. 
2010).

In hydrological modeling, an integrated response param-
eter streamflow is commonly used for model calibration. 
However, the use of streamflow compels the assessment of 
model performance, since the deviation between simulated 
and observed matching parts comes from different possible 
reasons. Some of the causes are errors as a result of lack of 
complete representations of hydrological data, for instance, 
evapotranspiration and precipitation, the incorrectness of 
parameter values, deficiencies in model structure, and error 
due to observations of calibration variables. Furthermore, 
sources of error related to the use of boundary fluxes and 
model initialization to permit water to pass through the 
boundaries of the model are other causes (Carrera and Neu-
man 1986; Boulet et al. 2002). To overcome these errors for 
the solution of a practical problem, all of the hydrological 
models should be calibrated (Gupta et al. 1998). The pro-
cess of hydrological model calibration can take place either 
manually or automatically. The former one is done manu-
ally using a trial-and-error parameter correction process for 
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reducing the error of objectives, while in the latter case, 
according to a specific search scheme for optimization of 
objective functions, parameters that measure the simulation 
model goodness of fit are automatically adjusted. Refsgaard 
(1997) and Wagener et al. (2001) stated that the automated 
calibration employed without enough hydrological know-
how could result in incorrect parameter values, which could 
lead to an unrealistic model response system that is uncon-
trolled by measurements. In addition, however, the models 
are calibrated well in terms of an independent verification 
dataset parameter values that cannot yield good performance 
(Shafii et al. 2014).

In rainfall–runoff models, problems with the amendment 
of parameters can be attributed to different factors. As stated 
in Gupta et al. (1998), during the calibration period combi-
nation of all the remaining parameters into a single objec-
tive function does not demonstrate the insufficiency of the 
model. For instance, in a single objective function, there is 
difficulty in differentiating between recession and high-flow 
model behavior. In this regard, understanding the limitation 
of single objective function encourages to adopt multi-cri-
teria calibration approaches (Franks and Beven 1997; Gupta 
et al. 1998; Yapo et al. 1998; Legates and McCabe 1999; 
Madsen 2000; Beven and Freer 2001; Shafii et al. 2014; 
Poméon et al. 2018). Multi-objective calibration methods are 
designed to identify certain parameters that better reproduce 
multiple outputs from the system. Multi-criteria calibration 
utilizes multi-index to define the features of the error vector 
resulting from the corresponding set of the multi-objective 
equivalence optimal parameter values and an objective func-
tion interchange curve. In addition, the process of a charac-
teristic multi-criteria calibration model can be able to consist 
of multiple probability functions utilized for several sets of 
measurements, such as sediment, discharge, evapotranspira-
tion, snow. However, to simulate a single output flux, the 
model assessment could be assumed to be of inherently 
many criteria (Gupta et al. 1998).

Multi-objective calibration of the model varies from 
a one-objective calibration of the model. To reproduce a 
record of single independent observation based on the abili-
ties of the model traditional single form of objective calibra-
tion attempts to define the model parameter sets (Mccabe 
et al. 2005). By utilizing both groundwater level and runoff 
observation based on a modeling system called MIKE SHE, 
Madsen (2003) suggested a general multi-objective struc-
ture of an integrated and distributed hydrological model for 
automatic calibration. In which case, to optimize the catch-
ment runoff performance index in a multi-objective opti-
mization framework, individual groundwater well’s perfor-
mance indices were grouped into a single certain calibration 
criterion. Meixner et al. (2002) employed a multi-criteria 
algorithm to calibrate the hydrochemical model. For assess-
ing the performance of this model, a total of 21 chemicals 

and hydrological criteria were obtainable. Also, various 
researchers use a second set of the variable for model output. 
Such variables are soil moisture or groundwater hydraulic 
heads for assessment of determining rainfall–runoff model 
data (Gupta et al. 2008; Khu et al. 2008); graphs of ground-
water piezometer (Fenicia et al. 2005; Khu et al. 2008); 
soil wetness index or simple soil moisture storage indicator 
(Downer and Ogden 2003); and satellite-based soil moisture 
estimates (Campo et al. 2006). In addition to streamflow 
data for 320 Austrian catchments, Parajka et al. (2007a, b) 
utilized daily snow cover data for the calibration of a con-
ceptual hydrological model. The concept of most hydrologi-
cal models combination is to combine state variables with 
streamflow. It has been pointed out that the combination has 
an indirect impact on closure of water balance term in the 
rainfall–runoff model. Since the performance evaluation of 
these procedures is constrained, there is the uncertainty of 
how best the model reproduces the performance of the water 
balance of the study area.

Commonly in hydrological modeling, evapotranspira-
tion is assessed through meteorological data, which helps 
to evaluate reference evapotranspiration  (ET0) and direct 
measurement data. Since those data may have compara-
tively insufficient spatial coverage for larger areas of 
the catchment, it is necessary to substitute data sources, 
which enhances the spatial coverage of the large area. In 
general hydrological model requires large numbers of 
spatiotemporally distributed datasets to characterize the 
major catchment hydrological processes and its climate. 
This introduces remote sensing data as a possible source 
for this model (Chen et al. 2005; Montzka et al. 2008). 
Remote sensing is utilized to find hydrological parameters; 
such parameters are rainfall (Wang et al. 2001; Haile et al. 
2013; Rientjes et al. 2013a), soil moisture (Hollenbeck 
et al. 1996; Kim and Barros 2002), and potential evap-
otranspiration (Stisen et al. 2008). It also distinguishes 
areal phenomena, such as clouds (Ouillon et al. 1997), 
inundated areas (Islam and Sado 2002), and snow cover 
(Tait et al. 2000).

Based on observed values of ground temperature, 
latent heat, sensible heat, and soil moisture data, the Bio-
sphere–Atmosphere Transfer Scheme was calibrated by 
Gupta et al. (1999). In their study, they identified that to 
simulate accurate multi-variant, single output variable 
calibration is not sufficient. Crow et al. (2003) reported 
that, relative to individual variable calibration, multi-var-
iable calibration reduces 20% calibration error in actual 
evapotranspiration (ETa). Also, to calibrate the semi-dis-
tributed variable infiltration capacity (VIC) hydrological 
model, they used streamflow and space-borne radiometric 
surface temperature data. In the Krishna basin of south-
ern India, Immerzeel and Droogers (2008) incorporated 
evapotranspiration based on remote sensing into Soil 
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and Water Assessment Tool (SWAT) model calibration. 
In their analysis, they compare the monthly sub-basins 
output of remote sensing-derived ETa and ETa simu-
lated by the physically based hydrological model. In the 
upper Bhima catchment of southern India, Immerzeel 
et al. (2008) combined remote sensing data and output 
of the SWAT model to assess productivity and the use of 
water. They found that in the watershed, evapotranspira-
tion is the significant water loss term. In the Luangwa 
River Basin in Zambia using remote sensing ETa in a con-
ceptual semi-distributed hydrological model, Winsemius 
et al. (2008) measured the values of a land surface-related 
parameter. To improve the simulation of discharge based 
on the energy balance approach in a controlled water 
system, Hartanto et al. (2017) integrate remote sensing-
based ETa data with a spatially distributed hydrological 
model in a low-lying reclamation area of the Rijnland area 
in the Netherlands. They compared integrated modeled 
and remote sensing-based ETa to simulated data without 
integration between modeled and RS ETa. Herman et al. 
(2018) examined the overall performance improvement of 
the SWAT model by utilizing integrated satellite-based 
ETa with the spatially distributed dataset of the hydro-
logical model. They calibrated the model using spatially 
distributed ETa in Creek Watershed, in Michigan, and a 
particular record of point streamflow for the Honeyoey 
Creek-Pine, USA. To calibrate the model, they employed 
a multi-variable and genetic algorithm. They found that 
there is a great improvement in the performance of the 
hydrological model since the integration of satellite-based 
and spatially distributed hydrological data combines with 
the right calibration method.

Since actual evapotranspiration is part of water balance 
terms in hydrological studies, it has not been paying more 
attention while performing a multi-variable calibration 
for water balance studies. For this study, the performance 
evaluation of hydrological studies was accomplished 
through a multi-variable calibration technique, which 
utilizes two water balance terms. These water balance 
terms are satellite-based ETa and streamflow. Within a 
multi-variable calibration formulation, the hydrological 
process is likely to be satisfactory for an initial assess-
ment of more than a single uncertainty-based calibration 
technique. Moreover, this study estimates and tests the 
utilization of a second calibration variable called satellite-
based actual evapotranspiration and gives possibility as the 
water balance with its model performance. This study aims 
to test the efficiency of satellite-based actual evapotran-
spiration in the semi-distributed HBV hydrological model 
to render the catchment water balance by utilizing daily 
remote-sensed actual evapotranspiration data and daily 
streamflow. The HBV light hydrological model (Seibert 
1996) was applied to the upper Omo-Gibe basin, Ethiopia.

Materials and methods

Study area background

The upper Omo-Gibe basin (UOGB) covers an area of around 
33,276 sq. km including some parts of Southern Nations, 
Nationalities, and People Regional State (SNNPRS) and 
some parts of the Oromia region and located between 6° 51′ 
55.81″ and 9° 22′ 26.05″ N latitude and 35° 31′ 49.63″–38° 23′ 
43.85″ E longitude. The location map of the UOGB is shown 
in Fig. 1. Based on data collected from the National Meteoro-
logical Agency of Ethiopia, the annual rainfall in the UOGB 
ranges from approximately 2050 mm per year in the Bonga and 
Wushwush stations to less than 400 mm per year in the Indibir 
region over the 34 years of recorded data for the twenty-three 
rain gauge stations. Approximately 58% of the average annual 
rainfall values occur in the rainy season, and its peak values 
found in the month of July. In addition, the mean annual tem-
perature in the basin varies from around 16 °C in the highlands 
of the north near the Gedo rain gauge station to 21 °C near the 
Areka station, whereas the mean monthly temperature is also 
higher during the short rainy season (March through May) and 
lowers during the rainy season (June to mid-September).

The basin topography, all in all, is characterized by envi-
ronmental variation. The main gorges of the basin are mostly 
unpopulated and sustain the silvopastoral and silvicultural 
cover. The southern part of the basin has a higher population 
of natural vegetation with more sparsely populated, whereas 
the eastern part of the basin was intensively cultivated and 
most densely populated areas (Nesru et al. 2020). At the 
same time, the major soil types found in the basin are Ali-
sols, Leptosols, Luvisols, Nitosols, and Vertisols (data from 
the Ministry of Water, Irrigation and Energy of Ethiopia).

The UOGB is divided into four sub-catchments based 
on streamflow measuring station to set up the HBV light 
hydrological model (Fig. 2). The largest and smallest sub-
catchment is Abelti and Wabe, respectively. At the outlets 
of each of the four sub-catchments, the mean daily stream-
flow varies from 2.89 to 4.53 m3/s for the year 2000–2004. 
Abelti, Wabe, and Gojeb sub-catchments receive stream-
flow from the upstream of the basin, while Gibe sub-catch-
ment receives from those three sub-catchments.

Methods

Surface energy balance system (SEBS) and actual 
evapotranspiration

SEBS

To estimate bi-weekly ETa from January 1, 2000, to October 
31, 2004, SEBS developed by Su (2002) was used. SEBS 
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converts satellite radiance into land surface characteristics 
such as vegetation index, surface albedo, leaf area index, 
and surface temperature. The collected daily meteorological 
data and land surface characteristics were used to solve the 
energy balance equation, which is read as:

(1)�E = Rn − G0 − H

where λE, Rn, G0, and H are the latent heat flux, net radiation 
flux at the surface, soil heat flux, and the sensible heat flux 
to the air, respectively. (All terms are in W/m2.) The Rn was 
determined by subtracting all outgoing radiant fluxes from 
all incoming radiant fluxes and is written as:

(2)Rn = R↓

s
− �R↓

s
+ �a.�.T

4
a
− �0.�.T

4
s

Fig. 1  Location of upper Omo-Gibe basin

Fig. 2  Sub-catchment and 
selected meteorological and 
stream gauging station for 
UOGB
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where R↓
s
 is the incoming short wave radiation (W/m2), σ is 

the Stefan–Boltzmann constant (W/m2 K4), α is the surface 
albedo (–), εa is the air emissivity (–), Ta is the air tempera-
ture (K), ε0 is the surface emissivity (–), and Ts is the surface 
temperature (K). The soil heat flux is empirically calculated 
as G0/Rn fraction or is written as:

where Γc is the ratio of soil heat flux to net radiation, which 
is assumed that 0.315 for bare soil (Kustas and Daughtry 
1990) and 0.05 for full vegetation canopy (Monteith 1973), 
and fc is the fractional vegetation cover, which can be deter-
mined from RS data. Using the fc value interpolation is then 
performed between the case of full vegetation and bare soil. 
The value of H is calculated using air to surface temperature, 
estimated surface roughness, and observed wind speed. The 
equation of sensible heat flux reads as:

where Cp is the specific heat of the air (J g−1 K−1); dT 
is the near-surface and air-temperature difference (K) 
(dT = Ta − Ts); ρair is the air density (kg m−3), and rah is the 
aerodynamic resistance to heat transfer (s m−1) over the ver-
tical distance. To estimate ETa, SEBS utilizes evaporative 
fraction. By knowing sensible, latent, and soil heat flux, it is 
possible to calculate evaporative fraction Λ (dimensionless). 
Since there is a related uncertainty in the evaporative frac-
tion and derived latent heat of flux, the sensible heat flux is 
unconstrained by the available energy. Thus, the meteorolog-
ical conditions at surface temperature and reference height 
were used to determine the sensible heat flux. However, this 
uncertainty is limited in the energy budget consideration at 
the limiting case in the SEBS algorithm. The sensible heat 
flux at the dry limit (from available energy) and the wet 
limit (resulting from a combination equation) constrains the 

(3)G0 = Rn

[
Γc +

(
1 − fc

)(
Γs − Γc

)]

(4)H = �air.Cp

dT

rah

range of actually sensible heat flux (Su 2002). The relative 
evaporation Λr (dimensionless) is derived by utilizing the 
sensible heat flux and the calculated sensible heat flux at 
the dry and wet limits (Su 2002). The relative evaporation 
Λr and the evaporative fraction Λ, respectively, are written 
as (Eqs. 5, 6):

SEBS has various applications in the river basins in dif-
ferent parts of the world. For instance, it is used to estimate 
ETa over the Heith River Basin in China (Qin et al. 2008), 
the Yellow River Delta wetland (Jia et al. 2009), in the 
Karkheh River Basin in Iran (Muthuwatta et al. 2010), the 
Nagqu River Basin of the Northern Tibetan Plateau (Zhong 
et al. 2019), the Haihe River Basin in China (Zhao et al. 
2019). Also, Wang and Li (2011) used SEBS to estimate the 
sensible heat flux in the Arou area. Furthermore, Wu et al. 
(2015) used SEBS to estimate irrigation water efficiency in 
the Heihe River in northwestern China. In addition, SEBS 
was used in the upper Omo-Gibe basin in Ethiopia (Nesru 
et al. 2020) to estimate ETa for assessing the availability of 
water for crop production.

Time series trends of actual evapotranspiration

For the present study to estimate daily ETa from the 
period of January 2000 to October 2004, 145 cloud-free 
calibrated radiance MODIS Level 1B (MOD021KM) with 
their corresponding geo-location files (MOD03), with a 
daily temporal and spatial resolution of 1 km2 collected 
by the Terra (EOS AM) satellite in the MODIS sensor 
launched in December 1999, were used (Table 1) (source: 

(5)Λr = 1 −
H − �Ewet

Rn − Go

(6)Λ =
�E

Rn − Go

=
Λr.�Ewet

Rn − Go

Table 1  Acquisition dates of 
TERRA-MODIS images in the 
upper Omo-Gibe basin for the 
study period. Source: http://
ladsw eb.modap s.eosdi s.nasa.
gov/

Month 2000 2001 2002 2003 2004

Jan 06, 18, 23 17, 23, 28 01, 04 04
Feb 28 03, 14, 28 02, 11, 27 05, 18, 21 05
Mar 04, 13,22 07, 09, 16 29, 31 06, 16, 25 08
Apr 05, 14, 30 08, 17, 26 07, 13, 23 01, 14, 23 09, 25
May 09, 14, 25 03, 15, 19, 24 15, 25, 31 02, 09, 18 04, 27
Jun 01, 13, 26 02, 04 03, 05, 23 01, 10, 26 12, 28
Jul 01, 24, 30 11, 13 02, 12, 23 17, 28 14
Aug 02, 27 12, 19, 25 13, 22, 29 04, 18 31
Sep 03, 09, 16 10, 24, 27 5, 14, 30 05, 12, 19, 30 16
Oct 02, 11, 29 03, 10, 19, 26 16 07, 16, 23 02, 18
Nov 03, 19, 26 02, 11, 18, 27 01, 05, 14, 26 01
Dec 05, 22, 31 04, 18, 27 05, 12, 26 03

http://ladsweb.modaps.eosdis.nasa.gov/
http://ladsweb.modaps.eosdis.nasa.gov/
http://ladsweb.modaps.eosdis.nasa.gov/
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https ://ladsw eb.modap s.eosdi s.nasa.gov/searc h/). Due to 
cloud coverage over time, the collected imageries were 
irregularly distributed. Moreover, for the HBV hydrologi-
cal light model to estimate reference evapotranspiration 
 (ET0), the Penman–Monteith equation was used. Likewise, 
to estimate ETa in the spatial and temporal variability, the 
SEBS model developed by Su (2002) has been applied. 
The meteorological data used to estimate ETa in this RS 
model were recorded at 3:00 local time, which is near 
the time of satellite overpass (i.e., between 2:10 and 2:55 
local time). Using the SEBS model, evaporation cannot 
be estimated for an entire twelve-month period because 
of cloud-free imageries that cannot be found during the 
rainy seasons. Accordingly, to calculate ETa for all day 
without satellite imagery, meteorological data and the 
Penman–Monteith equation were employed (Bastiaanssen 
and Bandara 2001; Immerzeel and Droogers 2008). For 
this purpose, meteorological data for 23 stations on wind 
speed, precipitation, relative humidity, and temperature 
were used. Then, using surface energy balance algorithms 
and MODIS images, the latent heat flux (λE) is calculated. 
For days when satellite imageries were obtainable, the val-
ues of surface resistance (rs) were inversely determined 
by replacing λE in the Penman–Monteith equation. For 
days without satellite imagery rs value was determined 
through the preceding imagery of rs value with recorded 
daily weather data to all day within the consecutive image-
ries. The Penman–Monteith equation is given by:

where (es − ea) (kPa) is the vapor pressure deficit of the air, 
Δ (kPa/K) is the slope of the saturated vapor pressure curve, 
ρa (kg/m3) is the moist air density, ra, and rs (s/m) are aero-
dynamic and surface resistances, respectively, and Υ (kPa/K) 
is the psychometric constant, and the remaining parameters 
are described in Eq. 1. To estimate Rn at a daily time, step 
G0 is assumed to be zero, and sunshine hours can be used. 
The difference between ETa and  ET0 is controlled by rs, 
which means the reference evapotranspiration lies above 
actual evapotranspiration, and rs surpasses a particular 
minimum value (Bastiaanssen and Bandara 2001). Also, rs 
can be explained concerning solar radiation, vapor pressure 
deficit, soil moisture, and air temperature (Jarvis 1976). For 
estimating all values in Eq. 1 except the aerodynamic and 
surface resistances, local daily measurements of wind speed, 
sunshine hours, minimum and maximum temperature, and 
relative humidity were obtained from the National Mete-
orological Agency of Ethiopia. Hence, for all days without 
satellite imagery, calculating daily values of ra and rs permits 
for ETa estimation.

(7)�E =

Δ
(
Rn − G0

)
+ �aCp

(es−ea)
ra

Δ + �

(
1 +

rs

ra

)

From the evaporating surface to the air, the transfer of 
water vapor and heat can be determined by ra and is written 
as:

where Zm, d, and Zh (m), respectively, are the height meas-
urements of the wind speed, the zero displacements, and 
humidity. Zoh and Zom (m), respectively, are the roughness 
length governing heat and vapor transfer and the momen-
tum transfer, uz is the wind speed at height z (m/s), k is the 
von Karman’s constant (–), and Ψh and Ψm (–), respectively, 
are the stability correction functions for heat transport and 
momentum. The roughness for momentum can be calcu-
lated through an experimental relation suggested by Su et al. 
(2001) and is written as:

To determine the value of Zoh, the dimensionless quantity 
 kB−1 has been developed through the relationship between 
roughness length for momentum and heat and vapor transfer. 
Brutsaert (1982) assigns a value of 2.3 for  kB−1. The equa-
tion reads

In this study, the estimated SEBS–ETa from Nesru et al. 
(2020) was used to taste the efficiency of remote sensing ETa 
in the HBV hydrological model. A detailed explanation and 
procedure for the estimated SEBS–ETa for the production 
of crops were described there.

Hydrological model

For the simulation of the streamflow using rainfall, potential 
evapotranspiration, and temperature as input, a modified ver-
sion of the conceptual semi-distributed hydrological model 
was selected for this study, which is an HBV light model 
(Seibert 1996). This model uses sub-basins as the most fun-
damental units of hydrology. The distribution of lakes, for-
ests, glaciers, open areas, and area elevation is also consid-
ered in the HBV model. The sub-basins are considered in the 
spatial variation of different properties, such as the physical 
properties or meteorological properties of the basin. The 
HBV model consists of six different routines; such routines 
are precipitation accounting routine representing snowmelt, 
rainfall, and snow accumulation; soil moisture routing where 
surface and overland flow and actual evapotranspiration are 
calculated as a function of actual storage of water; a quick 

(8)ra =

ln
[
(Zm−d)
Zom

− Ψm

]
ln
[
(Zh−d)
Zoh

− Ψh

]

k2u2

(9)Zom = 0.005 + 0.5

(
NDVI

NDVImax

)2.5

(10)Zoh =
Zom

exp
(
kB−1

)

https://ladsweb.modaps.eosdis.nasa.gov/search/
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runoff routine representing river discharge, subsurface flow 
which is represented by the base flow routine; a transforma-
tion routine for flow attenuation and delay and a routing 
routine (Bergström 1992).

The aim of selecting this simplified version of the HBV 
model is due to comparatively low demand with low com-
plexity for input data and produces better simulation results 
(Bergström and Forsman 1973). Meanwhile, there have been 
relatively large sub-catchments in the study area; the trans-
formation function that smoothens the streamflow is not uti-
lized. Even if there were well-known methods for estimation 
of potential evapotranspiration (Lindström et al. 1997; Merz 
and Blöschl 2004), the standard Penman–Monteith equation 
is employed for evaluation of potential evapotranspiration 
(Allen et al. 1998). The HBV light model was applied in 
the upper Omo-Gibe basin for each of the given four sub-
catchments. Commonly, many years of data on flow, tem-
perature, and precipitation for model calibration are needed 
for the application of hydrological modeling, but these data 
are not sufficiently available for all catchments worldwide 
(Etter et al. 2018). Nowadays, some studies have shown that 
calibration and validation analysis is carried out over a few 
years of data (Madsen 2000; Wagener et al. 2003; Rientjes 
et al. 2013b; Ha et al. 2018; Mohaideen and Varija 2018). 
For this study, depending on a separate sample test for the 
periods from January 1, 2000, to December 31, 2002, the 
model has been calibrated and verified for the periods from 
January 1, 2003, to December 31, 2004. Figure 3 shows the 
schematization of the HBV model structure.

General calibration criteria (objective function) Y has 
been used to test the overall model performance for simulat-
ing the behavior of observed streamflow (Akhtar et al. 2009), 
which combines the relative volume error (RVE) and the 
Nash–Sutcliffe efficiency coefficient (NSE) (Nash and Sut-
cliffe 1970). Compared to the measured data variance NSE 
calculates the relative magnitude of residual difference. NSE 
refers to the degree to which the plot of the simulated against 
observed data matches the one-to-one line. One parameter 
set may show good correlation according to the criterion of 
NSE but may imply a weak relationship for RVE and vice 
versa (Seibert 1999). A combination of values of these par-
ticular calibration criteria is difficult because various objec-
tive functions are not directly comparable. The equations of 
objective functions are written as:

(11)Y =
NSE

1 + |RVE|

(12)NSE = 1 −

∑n

i=1

�
Qsi − Qoi

�2

∑n

i=1

�
Q0i − Q0

�2

In Eqs. (11)–(13) Qs and Qo are simulated and observed 
discharge, respectively, i is the time step, N is the total num-
ber of time steps, and Q0 is the mean of Qo over the cali-
bration or verification period. The efficiency value of RVE 
should be close to zero, and the value of Y and NSE should 
be close to 1 for satisfactory model performance. In addition 
that as stated by Bergström (1992), NSE values tend to one 
indicating a perfect fit for the simulation and observation 
value, while values approach zero, indicating that simula-
tions are as poor or good as the constant value prediction, 
and also, the values less than zero indicate a very poor fit for 
the simulation and observation value. The value of Y ranges 
from 0 (meaning the model performs poorly) to 1 (mean-
ing the model performs well), with typical values up to 0.6 
considered poor to satisfactory and higher values indicating 
less error variance (Rientjes et al. 2013b).

In this study succeeding (Harlin and Kung 1992; Seibert 
1999; Wagener et al. 2003; Choi and Beven 2007; Booij and 
Krol 2010), Monte Carlo simulation (MCS) procedure is 
employed for parameter optimization to four sub-catchments 
of the UOGB. In MCS, to evaluate the model performance, 
a multitude of parameter sets is generated and performed 
randomly. In the MCS approach, along with various simu-
lations of the model, preeminent objective function values 
are selected by utilizing randomly generated parameters 
within the predefined space of the model parameter. Essen-
tial characteristics of MCS frameworks are the choice of 
the objective function(s), the determination of the number 
of simulations to be performed, the determination of prior 
parameter spaces, the choice of parameters for calibration, 
and choosing the likelihood distribution for the calibration 
parameters.

For calibration of the time series of actual daily evapo-
transpiration and daily streamflow, parameters have been 
estimated. Meanwhile, both ETa and Q are major water bal-
ance terms to the hydrological model matching each other 
directly affects one another. Winsemius et al. (2008) stated 
that estimated HBV-ETa through employing the lumped 
HBV model is representatives for the sub-catchment scale. 
To come to the corresponding estimates for comparison 
SEBS–ETa with HBV-ETa over the sub-catchments, all 
pixel estimate values are averaged. In order to support irri-
gation from river discharge channels, estimated ETa are used 
instead for water abstraction. Hence, for the calibration of 
the streamflow model, time series of streamflow at the catch-
ment outlets has been used.

Two model calibration cases were defined for this study. 
The first case is the most common scenario where opti-
mization and calibration of the model parameter are on 

(13)RVE =

∑N

i=1

�
Qsi − Qoi

�

∑N

i=1
Qoi
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streamflow. Performance measures are merely applied to 
evaluate how well matches SEBS–ETa with HBV-ETa. In 
the last case, to optimize the parameter values in model cali-
bration, both actual evapotranspiration and streamflow are 
used simultaneously. Preference-based objective functions 
are used for evaluating model performance, which simulta-
neously reduces the deviation between particular variables.

For HBV hydrological models the selection of sensitivity 
parameters was based on studies and simple manual sensi-
tivity of Seibert (1997, 1999), Booij (2005), Götzinger and 
Bárdossy (2005), Wale et al. (2009), Booij and Krol (2010), 
and Deckers et al. (2010) for the degree-day procedure, for 
threshold temperature, and for melting factor. The param-
eters of the model and their prior ranges utilized in the MCS 

Actual 
evapotranspira�on

Precipita�on

Soil moisture reservoir
(SM, FC, LP, BETA)

Direct runoff 
(Qd)

Capillary 
transport 
(Cf)

Recharge 
(Seepage) 
(Qin)

Quick Runoff Reservoir
(k1, ALFA, UZ)

Quick runoff (Q0)

Percola�on

Base flow 
(Qb)Base flow Reservoir

(k2, LZ)

Rainfall/ Snowfall separa�on

Transforma�on Func�on

Precipita�on 
accoun�ng rou�ne

Soil moisture rou�ne

Quick Runoff rou�ne

Base flow rou�ne

Transforma�on rou�ne

Rou�ng rou�ne
Linking sub-catchment 
flow

Upstream sub-catchment

Fig. 3  The HBV hydrological model structure schematization (based on Lindström et al. 1997)
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procedure are shown in Table 2. For all sets of parameters, 
a uniform distribution has been assumed, and as defined by 
the values of parameter ranges, the values of parameters are 
arbitrarily drawn from the space of the variable.

Results and discussion

Time series patterns of actual evapotranspiration

For the given four major sub-catchments, the daily basis time 
series of SEBS–ETa values were constructed, as shown in 
Fig. 4.

From Fig. 4, the lowest values of ETa were observed dur-
ing the wet season, which shows the planting and growing 

period of crop plants, while the highest values were observed 
during the dry season, which is due to the reduction of the 
upper part of the saturated zone.

For the best performing parameter set, the model output 
of average parameter values for the four major sub-catch-
ments for the given two cases is given in Table 3.

Model calibration and validation on streamflow 
(case 1)

The simulation was initiated with the default parameter 
values. The streamflow hydrographs showed comparatively 
weak matching between the simulated and observed output 
values. The pairing denotes that when the HBV model is 
applied in regions other than it was calibrated, it requires 

Table 2  Model parameters and 
their prior ranges used in the 
MCS procedure

Parameter Description Prior range Unit

TT Threshold temperature − 1.5 to 2.5 °C
FC Maximum soil moisture storage 100–600 mm
ALFA Nonlinearity coefficient 0.1–0.4 –
BETA A parameter that determines the relative contribution to 

runoff from rain or snow
1.0–1.2 –

Lp Soil moisture value above which ETa reaches ETp 0.1–1.0 –
PERC Maximal flow from upper to lower box 0.1–1.1 mm/d
K1 Recession coefficient (upper box) 0.01–0.1 1/d
K2 Recession coefficient (lower box) 0.001–0.15 1/d

Fig. 4  Time series patterns of 
SEBS–ETa for the given four 
major sub-basins
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Table 3  Average parameter 
values for the four major sub-
catchments for the given two 
cases

Parameter TT FC Lp BETA PERC ALFA K1 K2

mm °C mm – – mm/d – 1/d 1/d
 Case 1 0 400 1 1 1 0 0.1 0.05
 Case 2 0 600 1 1 1 0 0.01 0.15
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a new calibration. Model calibration aims to improve the 
accuracy of the model predictions, which was performed in 
the sensitive HBV flow parameters that are already identified 
(Table 2) and are subject to minor changes to ensure a good 
correlation between the observed and the simulated flow. 
First, the most sensitive parameters are modified, employ-
ing a manual calibration process based on the information 
available in the literature. In this process, the values of the 
parameters have been iteratively changed within the appro-
priate ranges to increase the value of NSE (Eq. 12). Auto-
calibration processes that significantly improved model effi-
ciency were then carried out using sensitive parameters that 
were defined during sensitivity analysis.

During the calibration step, the first year, i.e., from Janu-
ary 1, 2000, to December 31, 2000, was considered as a 
model warm-up period to establish proper initial conditions 
and to stabilize the model. Calibration was then performed 
for the next step. Commonly, the trial-and-error methods 
were used to calibrate the HBV light hydrological model 
(Bergström 1992). Therefore, when determining the calibra-
tion result, the subjectivity problem must be addressed. Typ-
ically during the calibration process to get good results from 
the model, the user will start from sensitive parameter values 
that gave good results in a similar catchment and try to main-
tain them within specific ranges. For example, in southern 
Sweden, Bergström (1990) found regional differences for 

the calibrated values of maximum soil moisture storage 
(FC). The results indicated that such regional differences 
occurred may be partially due to what the modeler expects. 
It begins with one value, and since very different FC values 
can produce good matches, it is possible to keep this value 
by adjusting certain parameters. With poorly defined param-
eters, depending on the start values and method of optimiza-
tion, automated calibration methods will often point out to 
different sets of parameters, and the user decides to deter-
mine what parameter set to use (Kite and Kouwen 1992). 
The value of model performance indices obtained for daily 
streamflow predictions during the calibration and verifica-
tion periods is summarized in Table 4.

Measured and simulated flows for daily time steps had a 
favorable comparison during all the four sub-basins (Table 4, 
Fig. 5). This is evident from the values of NSE varied from 
0.79 to 0.97, RVE ranging from 0.06 to 0.48, and Y varied 
from 0.56 to 0.92. Overall, we can say the model perfor-
mance is very good, consistently across calibration and vali-
dation in daily predictions. Figure 5 compares the daily sim-
ulated flows with observed daily flows for four sub-basins. It 
is indicated that simulated flows are consistently more than 
the observed flows. The simulated streamflow values are 
plotted against the observed streamflow values, and their dis-
tribution is approximately 1:1. During the calibration period 
for both higher and lower values of observed streamflow, the 

Table 4  HBV model 
performance evaluation for 
daily streamflow prediction for 
the four major sub-basins

Model perfor-
mance index

Calibration (01/01/2000–31/12/2002) Validation (01/01/2003–31/12/2004)

Sub-basin

Abelti Gibe Gojeb Wabe Abelti Gibe Gojeb Wabe

NSE 0.97 0.79 0.85 0.83 0.86 0.87 0.88 0.76
RVE 0.06 0.40 0.31 0.48 0.43 0.41 0.41 0.56
Y 0.92 0.57 0.63 0.56 0.60 0.62 0.62 0.49

Fig. 5  Time series of observed 
and simulated daily streamflow 
for calibration and validation 
period for Jan 1, 2000–Dec 31, 
2004, for Abelti sub-catchment
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simulated streamflow is distributed uniformly along the 1:1 
line. The mathematical comparison between the observed 
streamflow and the best simulation result showed a good 
agreement.

After the model is calibrated, validation of the model at 
the Omo-Gibe River Basin was performed for an independ-
ent dataset, which is different from the calibration periods 
without further modification of the calibrated parameters. 
The model has been found to have a good predictive capabil-
ity with NSE, RVE, and a Y value ranging from 0.76 to 0.88, 
0.41 to 0.56, and 0.49 to 0.62, respectively, for a daily basis. 
It has been shown that the parameters of the model in the 
catchment area represent the processes taking place to the 
best of their ability. The model validation outcomes for daily 
streamflow showed a good match between the simulated and 
the measured values. Through statistical model efficiency 
during the calibration process, the model performed well. 
Figure 5 shows the time series of simulated and observed 
daily streamflow calibration and verification for the Abelti 
sub-catchment. Therefore, HBV hydrological model can be 
used in basins having similar characteristics.

Similarly, the efficiency values for ETa were performed 
for the major four sub-catchments of the upper Omo-Gibe 
basin. Estimated and simulated ETa values for daily time 
steps had unfavorable comparisons during all of the four sub-
basins (Table 5). Figure 6 shows the time series of observed 
and simulated daily ETa calibration and verification for the 

Abelti sub-catchment. The result indicates that the values 
of NSE varied from 0.18 to 0.28, RVE ranging from 0.05 to 
0.08, and Y varied from 0.16 to 0.27. Likewise, in the veri-
fication periods, the model has been found to have a poor 
predictive capability with NSE, RVE, and a Y value ranging 
from 0.31 to 0.48, 0.04 to 0.09, and 0.28 to 0.51, respec-
tively, for the daily basis. This suggested that the simulated 
HBV-ETa does not fit SEBS–ETa well.

Comparatively, some variations between SEBS–ETa and 
HBV-ETa were observed during the dry seasons, while dur-
ing the rainy season, most of the estimated ETa values have 
the same result of the simulated ETa ones. During the dry 
season, this variation indicates that the HBV-ETa shows 
lower fluxes. Also, the results showed that as the HBV rain-
fall–runoff model helps to solve the water balance, the only 
consideration is on suitably balancing the streamflow. Fur-
thermore, with relatively weak model performance values, 
the simulated ETa has not represented the estimated ETa 
well. Therefore, the overall model performance was not ful-
filled the minimum values recommended in the literature 
during both the wet and dry seasons.

Evaluating the performance of SEBS–ETa using 
multi‑variable (case 2)

In this case, multi-variable model calibration and verifica-
tion were performed for both streamflow and ETa as similar 

Table 5  HBV model 
performance evaluation for 
daily ETa prediction for the four 
major sub-basins

Model perfor-
mance index

Calibration (01/01/2000–31/12/2002) Validation (01/01/2003–31/12/2004)

Sub-basin

Abelti Gibe Gojeb Wabe Abelti Gibe Gojeb Wabe

NSE 0.18 0.22 0.28 0.28 0.48 0.48 0.52 0.31
RVE 0.07 0.08 0.05 0.08 0.05 0.06 0.04 0.09
Y 0.17 0.20 0.27 0.26 0.46 0.46 0.51 0.28

Fig. 6  Time series of observed 
and simulated daily ETa for 
calibration and validation period 
for Jan 1, 2000–Dec 31, 2004, 
for Abelti sub-catchment
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to case 1 to test the effectiveness of SEBS–ETa and with that 
in mind to test the performance of HBV hydrological model. 
For both variables, the objective functions were optimized 
simultaneously and are presented in Table 6.

It was found that the model has a well analytical capa-
bility for streamflow with NSE, value ranging from 0.66 
to 0.69 and 0.62 to 0.66, respectively, for calibration and 
verification. Additionally, calibration and verification values 
range from 0.04 to 0.45 and 0.40 to 0.54, respectively, for the 
objective function RVR. Also, for the objective function, Y 
values range from 0.50 to 0.67 and 0.42 to 0.47, respectively, 
for calibration and verification. Similarly, from the model, 
efficiency values for ETa for the major sub-catchments show 
that NSE varied from 0.56 to 0.60 and 0.64 to 0.73, RVE 
ranging from 0.02 to 0.04 and 0.01 to 0.04, and Y varied 
from 0.54 to 0.65 and 0.62 to 0.70, for the calibration and 
verification period, respectively.

The comparison was executed similarly with case 1 for 
both streamflow and ETa. From the result, it is shown that as 
compared to observed data for both streamflow and ETa, the 
recession and falling limbs were somewhat higher and lower, 
respectively, in the simulated data. This shows both stream-
flow and ETa were well represented in a reasonable match 
for recession and falling limbs. Also, the result shows a good 
fit for ETa during the wet and dry seasons. Furthermore, as 
compared to case 1, the results were much better, not only 
streamflow but also for ETa. This shows the effectiveness 
of multi-variable model calibration for SEBS–ETa. Overall 
the result demonstrated that the parameters of the model in 
the catchment area represent the processes taking place to 
the best of their ability.

Additionally, in this case, the hydrological catchment 
behaviors represented as required, and single-variable 
calibration constraints in case 1 were very weak. Moreo-
ver, the model verification outcomes, both for streamflow 
and for ETa, showed a good match between the simulated 
and measured values. The model performed well, though 

the statistical model efficiency measures are good during 
the calibration process. Furthermore, as shown from all 
maps, the simulations were below the observed value; 
this showed an underestimation of the simulated flow 
over the observed ones. The possibility of underestimat-
ing the streamflow may be due to the fact that, in such a 
complex terrain, rainfall is captured through 23 gauges, 
and the rainfall varies across the catchment from a mini-
mum of 1019 mm to a maximum of greater than 1439 mm. 
Finally, the result suggested that the use of more than one 
water balance term in a hydrological model calibration 
was beneficial.

Parameter estimation and uncertainty of model 
parameters

In the HBV rainfall–runoff, model streamflow simulations 
are directly affected by PERC, K1, K2, and ALFA. Also, 
ETa simulation is directly affected by LP, while the other 
parameters like BETA and FC indirectly affect stream-
flow and ETa simulation. Generally, the spatial variabil-
ity of the parameters is an indicator of the uncertainty of 
measurement data. For some parameters of the model, if 
the number of iteration increases as the spatial parameter 
increases, which means increased from the first iteration to 
second iteration, etc. (Parajka et al. 2007b). In the UOGB, 
the error caused by time series of measured precipitation 
and streamflow and estimated ETa affects the uncertainty 
of parameters of the model. In addition, as compared to 
rain gauge stations, the availability of streamflow gauging 
stations was small (i.e., four streamflow gauging stations). 
This shows that as well as streamflow gauging station, the 
rain gauge station is not spatially distributed well in the 
basin. The study area topography, elevation, and influences 
of cloud affect the accuracy and location of streamflow and 
rain gauge stations.

Table 6  Efficiency evaluation 
for daily streamflow and ETa 
prediction for the four major 
sub-basins

Variables Sub-catchment Performance index

Calibration period
(01/01/2000–31/12/2002)

Validation period
(01/01/2003–31/12/2004)

NSE RVE Y NSE RVE Y

Streamflow (Q) Abelti 0.69 0.04 0.67 0.68 0.40 0.46
Gibe 0.68 0.37 0.49 0.66 0.38 0.47
Gojeb 0.66 0.28 0.52 0.62 0.38 0.45
Wabe 0.68 0.45 0.47 0.65 0.54 0.42

Actual evapotranspiration Abelti 0.56 0.03 0.54 0.70 0.01 0.69
Gibe 0.60 0.04 0.58 0.72 0.03 0.70
Gojeb 0.66 0.02 0.65 0.73 0.01 0.72
Wabe 0.66 0.04 0.64 0.64 0.40 0.62
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Conclusions

In this study, the conceptual semi-distributed HBV light 
rainfall–runoff hydrological model was selected and used 
for calibration and verification based on multi-variable 
evaluation using streamflow and ETa to test the efficiency 
of SEBS–ETa in UOGB, Ethiopia. Based on MCS, the 
model was calibrated and validated in two different cases 
using more than a single variable (i.e., streamflow and 
ETa). The performance and applicability of HBV light 
were successfully evaluated through sensitivity analy-
sis, model calibration, and verification, and reproduc-
ing simulated streamflow and ETa. Also, the efficiency 
of SEBS–ETa using the HBV hydrological model was 
assessed. The study showed that surface and subsurface 
water model parameters are sensitive and have physical 
meaning, especially the FC, LP, BETA, PERC, ALPHA, 
K1, and K2 were the most sensitive parameters with regard 
to streamflow and ETa prediction in the UOGB.

In the first scenario, the calibration and validation pro-
cess is carried out for HBV hydrological model to verify 
whether or not the model is applicable in the study area. 
For calibration and validation of the model, the considera-
tion was only in the streamflow, and the objective function 
NSE, RVR, and Y for daily ETa show low-performance 
values (less than satisfactory) for SEBS–ETa. Though the 
model performance of the HBV for simulating streamflow 
in the UOGB was very good, this shows the model has 
relatively high confidence and gives a very good result 
for the case of streamflow only. Moreover, the simulated 
streamflow peak was well represented in all of the days.

In the second scenario, the aim is to test the efficiency 
of SEBS–ETa in the study area and with that in mind to 
test the performance of the HBV hydrological model. For 
calibration and validation purposes, the consideration was 
given to both in streamflow and in satellite-based ETa in 
multi-variable model calibration. The result shows satis-
factory to good performance for SEBS–ETa as well as 
streamflow. At the same time, the model was well simu-
lated for both streamflow and ETa on the rising and falling 
limbs of the streamflow and ETa hydrograph during cali-
bration and verification periods. However, the streamflow 
and ETa peak were represented well and slightly underesti-
mated the peaks for some days. Additionally, the objective 
function’s result shows satisfactory to good performance 
values contrary to a single-variable calibration for both 
streamflow and ETa.

For model calibration and verification, the efficiency 
of the use of satellite-based ETa was confirmed. How-
ever, to reproduce the best outcomes from the model for 
water balance in the catchment during model calibration 
and verification uses of a combination of streamflow with 

estimated ETa should be necessary. Therefore, to provide 
reasonable solutions to reproduce and close the water bal-
ance in the catchment, it is required to use the preferred 
multi-variable calibration method. Moreover, the HBV 
hydrological model can be used in other basins having 
similar characteristics.
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Abstract
Reduction in sea water level can make services in nearshore structures difficult, and sea water level rise increases the risk to 
residential areas or the surrounding fields. For strategic planning, it is vital to take into account the present and future fluc-
tuations of Caspian Sea water level. In this study, support vector machine and artificial neural network are used to estimate 
water level of the Caspian Sea. A 34-year period dataset is used as input data for water level on the scale based at Anzali, 
Iran. Performances of these two models are compared according to some statistical indices. Results of this study indicate that 
support vector machine with an error of 4.782 mm and r = 0.96 simulated the time series better, as compared with artificial 
neural network with an error of 5.014 mm and r = 0.957; furthermore, the uncertainty of this model is lower than that of the 
artificial neural network, i.e., 0.04 verses 0.22.

Keywords Anzali · Kernel function · Uncertainty

Introduction

Caspian Sea, as the biggest lake in the world, plays its role 
as a sensor which reflects all hydro-climatic changes in its 
basin with its sea level fluctuation (Aladin and Plotnikov 
2004). Sea level indicates the groundwater levels in the low 
land coastal areas (Meyer 1989) as well as hydraulic regime 
of coastal rivers (Thain et al. 2004). Therefore, accurate pre-
diction of sea level in coastal engineering and hydrologi-
cal studies is needed. Besides, when agricultural lands are 
located along rivers and in deltas or coastal areas, sea level 
may temporarily restrict water from draining away. Recently, 
researchers have used past data to predict sea level changes 
instead of inputs related to environmental factors (Imani 
et al. 2014a). Artificial intelligence methods that are used 

most recently to predict sea level have the ability to fill infor-
mation gaps and also estimate future values without the need 
for long-term and extensive observed information (Lee et al. 
2007; Makarynska et al. 2009). In fact, the above-mentioned 
are advantages of intelligent methods in analyzing and pre-
dicting sea level.

Many studies have been conducted to estimate sea level 
with different methods. Ramezani Mouzirji et al. (2011) 
estimated Caspian Sea water level with fuzzy prediction 
system. They used a combination of statistical techniques 
and fuzzy systems for predicting changes in Caspian Sea 
level fluctuation. They could forecast Caspian Sea level 
for a 10-year oncoming period. Their results showed that 
Caspian Sea water level would rise in the future; in fact, 
in the next few years, Caspian Sea water level would drop 
initially and then would come up again. In the 10-year fore-
cast period, the minimum level would be − 26.45 m in year 
2015, and the maximum levels would be − 26.32 m in years 
2017–2011. Rajaei and Shahabi (2014) used wavelet-ANN 
(artificial neural network) hybrid model to predict short-term 
changes in Oman sea level in Chabahar port. They evaluated 
the performance of the combination of ANN and wavelet 
model to predict short-term sea level fluctuations. Results of 
this method were compared with those of ANNs and regres-
sion models. The results showed the superiority of wave-
let-ANN combination outputs compared to the other two 
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methods. Makarynska and Makarynska (2008) forecasted 
sea level in Cocos Islands (Keeling) in India. They used 
ANN to predict water level in case of danger from one hour 
to five days using hourly observed data from a tide gauge. 
They used a 3-layer feed-forward ANN. Results showed 
that the ANNs had an appropriate performance. Sertel et al. 
(2008) estimated daily mean sea level height by applying 
ANNs. They employed five different methods, namely least 
square of sea level, nonlinear regression, and three different 
algorithms of ANNs including feed-forward propagation, 
radial basis function, and generalized regression. They used 
observed data from a tide gauge in Newlin from January 
1991 to December 2005. Results showed that feed-forward 
propagation model was better than other models. Ghorbani 
et al. (2010) predicted sea level by genetic programming and 
compared results with those of ANNs. In that study, genetic 
programming model was used to predict future changes in 
sea level for four time steps, namely 12-h, 24-h, 5-day, and 
10-day intervals. A comparison of the two models showed 
that both of them had favorable performances. Karimi et al. 
(2013) predicted sea level in Darwin Harbour, Australia, by 
employing neuro-fuzzy and ANNs models. Hourly sea level 
changes as well as multiple-linear regression were used to 
select the optimal input combination. They compared results 
of both ANNs and neuro-fuzzy model with the optimized 
ARMA model. Results showed that ANNs and neuro-fuzzy 
model had similar performance, and their results were better 
than those of ARMA model. Imani et al. (2014b) forecasted 
Caspian Sea level by employing satellite altimetry data (June 
1992–December 2013) based on evolutionary support vector 
regression algorithms and gene expression programming. 
They evaluated performances of these two methods. Results 
indicated that the performance of evolutionary support vec-
tor regression algorithm was excellent. Kisi et al. (2015) 
evaluated daily water level changes in Urmia Lake by using a 
hybrid of SVM with firefly algorithm. Results of the selected 
algorithm were compared with those of both genetic pro-
gramming and ANNs. Results showed that the performance 
of the selected algorithm was better than those of other two 
models in predicting Urmia Lake water level.

The use of mean values is one of the innovations of 
this article because the use of mean and month number 
reduces the periodic effects of inlet flows to the lake and 
consequently the periodicity of the lake surface level. 

Awchi (2014) and Ghorbani et al. (2016) also used the 
same method.

With respect to the literature, this study attempts to 
estimate water level of Caspian Sea by SVM and ANN. 
For more accurate assessment of performances of both 
models, SVM with three kernel functions and ANNs with 
1–20 neurons in the hidden layer are evaluated. One of 
the most important factors in modeling is the type and the 
number of model input, whereas in this study, the gamma 
test is used to select the type and number of model input. 
In addition, according to other studies, effects of month’s 
index and average monthly index of water level on model 
performances are evaluated. In the next step, the uncer-
tainty of both models for the determined combinations is 
evaluated. Finally, the best model and input combination 
to estimate Caspian Sea level are determined.

Materials and methods

In this study, data used to estimate sea water level are 
registered in Anzali station. Statistical parameters of time 
series are listed in Table 1. The dataset is divided into two 
parts: training and test parts. Indeed, 80% of sea water 
level data is used for training and 20% is used for test.

Data were standardized before entering the model 
according to Isazadeh et al. (2017); Deo et al. (2018); 
Ashrazfzadeh et al. (2019): Naganna et al. (2019): Aghel-
pour et al. (2019).

Artificial neural network (ANNs)

ANNs are data processing techniques that are essentially a 
collection of basic processing components of input, output, 
and generally one or more concealed layers. Although there 
are different types of neural network architectures, about 90% 
of them are the feed-forward type (Coulibaly et al. 2000; Li 
et al. 2019; Aghelpour et al. 2019). The perceptron, the very 
basic form of an artificial neural network, is a binary classi-
fier and can be described using the following equation:

(1)f (z) =

{
1 if z = w × X + b > 0

0 otherwise

Table 1  Statistical 
characteristics of the input and 
output data

Data Statistical indices

Minimum Average Maximum Standard deviation Skewness Kurtosis

Total − 138.00 − 32.58 52.00 47.17 − 0.78 − 0.60
Calibration − 138.00 − 36.75 52.00 51.22 − 0.55 − 1.10
Validation − 47.20 − 15.84 22.20 16.58 0.06 − 0.57
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where f(z) is the heaviside step function (a hard-limit activa-
tion function), w, the weight vector, and b, the bias, are the 
parameters of the perceptron, and X is the input vector. MLP 
networks learn to simulate the behavior of a complex and 
nonlinear system through learning algorithms and observed 
data. Learning algorithms, such as back-propagation 
(Rumelhart et al. 1988), delta-bar-delta (Jacobs 1988), quick-
prop (Fombellida and Destiné 1992), conjugate gradient 
(Charalambous 1992), and Levenberg–Marquardt (Hagan 
and Menhaj 1994; Deo et al. 2018), are commonly used to 
find an optimal set of parameters of MLP models. In this 
study, the MLP model was used with the Levenberg–Mar-
quardt learning algorithm. One to 20 neurons were used in 
the hidden layer to assess the effect of network structure on 
its performance in simulating the saline water evaporation. 
A sigmoid tangent function was utilized to map information 
from the input layer onto the hidden layer and from hidden 
layers onto the output layer (Lagos-Avid and Bonilla 2017; 
Naganna et al. 2019). Seventy percent of data were used for 
the training period and 20% for the testing period.

Support vector machine

SVM is a popular technique for pattern recognition, classifi-
cation, regression, and function approximation (Vapnik et al. 
1997; Dibike et al. 2001). Vapnik et al. (1997) introduced 
SVMs for dividing a set of vectors into two classes. SVMs 
are based on a hyperplane in the form of w.X + b = 0 that 
optimally separates a set of n-dimensional vectors ( Xi ∈ Rn ) 
into two categories. This optimal hyperplane has the farthest 
distance from support vectors and the nearest data points 
from each class. Finding w is equivalent to solving a quad-
ratic programming problem. To solve this problem, a trade-
off parameter (c > 0) needs to be determined. To categorize 
vectors that are not linearly separable, a kernel function such 
as degree-d polynomial, radial basis, or hyperbolic tangent 
and Linear is used to map the observed multidimensional 
vectors to a space with higher dimensions (Ashrafzadeh 
et al. 2019; Choubin et al. 2019).

The first application of this method to water problems 
was proposed by Dibike et al. (2001) to simulate runoff. The 
support vector machine is an efficient learning system based 
on bounded optimization theory that utilizes the principle 
of structural error minimization and results in an optimal 
solution (Dibike et al. 2001). Figure 1 shows the structure of 
the support vector machine. In the SVM regression model, a 
function related to the dependent variable y, which is itself 
a function of several independent variables x, is estimated. 
Like other regression problems, it is assumed to determine 
the relationship between independent and dependent vari-
ables with an algebraic function such as f(x) plus some per-
turbation (permissible error 1).

If W is the vector of the coefficients a and b of the features 
of the regression function as well as the control function, 
then the objective is to find a functional form for f(x). This 
is accomplished by calibrating the SVM model by a set of 
samples (calibration set). This procedure involves sequen-
tial optimization of the error function. Depending on the 
definition of this error function, two types of SVM models 
are defined: type I regression SVM (also known as ɛ-SVM 
regression); type II regression SVM (also known as regres-
sion ν-SVM). It is worth noting that in this study the ɛ-SVM 
regression model for forecasting of the Caspian Sea water 
level has been used (Dibike et al. 2001).

Therefore, W and b need to be optimized by the error 
function of relation (4) in the ɛ-SVM model, taking into 
account the conditions contained in (5).

In the above equations, C is a positive integer, which is the 
factor determining the penalty when model calibration error 
occurs. Φ is kernel function, N is the number of samples, and 
�i, �

∗
i
 are deficiency variables which specify the upper and 

lower training errors associated with the allowed error value 
(Dibike et al. 2001).

In solving problems, it is predicted that the data will fall 
within the boundary range. Now if the data are out of range, 

(2)f (x) = WT.�(x) + b

(3)y = f (x) + noise

(4)1

2
WT.w + C

N∑

i=1

�i + C

N∑

i=1

�∗
i

(5)

1

2
WT.w + C

N∑

i=1

�i + C

N∑

i=1

�∗
i

WT .�
(
xi
)
+ b − yi ≤ �i + �∗

i

�i, �
∗
i
≥ 0, k i = 1, 2,… ,N

Fig. 1  Structure of support vector machine (x: input vector, x1− xn: 
support vector, K(x, × 1) − K(x, xn): kernel function, f(x): output)
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then there will be an equivalent error. It should also be noted 
that the SVM model solves the problems of underestimation 
and over-fitting by simultaneously minimizing the two terms of 
1

2
WT.w and the instructional error, i.e., C

∑N

i=1
�i + C

∑N

i=1
�∗
i
 

in relation 4. Therefore, by introducing two Lagrangian coef-
ficients of ai and a∗

i
 the optimization problem by numerical 

maximizing of the quadratic function (relation 6) with condi-
tions in relation 7 will be solved.

The objective function of relation 6 is a convex function, 
and therefore, the solution of relation 6 will be unique and 
optimal. After defining the Lagrangian coefficients in relation 
8, characteristics of w and b in the SVM regression model 
were calculated using the conditions of Crash–Cohen–Tucker 
theory, where W =

∑N

i=1

�
ai + a∗

i

�
.�
�
xi
�
 . Consequently, we 

will get a regression SVM model:

It should be noted that Lagrange’s terms can be zero or 
nonzero. Therefore, only datasets whose ai coefficients are 
nonzero were included in the final regression equation, and 
these datasets are the supporting vectors of those data that 
help to structure the regression function. Among the vectors 
mentioned are those whose ||ai|| values are less than C, called 
marginal support vectors. When ||ai|| support vectors are equal 
to C, they are known as error support vectors or boundary 
support vectors. Marginal support vectors are found on the 
non-sensing border margin, while error support vectors are out 
of range. Finally, the regression SVM function can be rewrit-
ten as follows:

In relation 9, ai is the mean of Lagrangian coefficient. 
Computing of the �(x) in its characteristic space can be 
very complex. To solve this problem, the usual process 

(6)

N∑

i=1

yi
(
ai − a∗

i

)
− �i

N∑

i=1

(
ai + a∗

i

)

− 0.5

N∑

i,j=1

(
ai − a∗

i

)
(
(
aj − a∗

j

)
.�(x)T …�

(
xj
)

(7)

N∑

i=1

(
ai + a∗

i

)
= 0

0 ≤ ai ≤ C

0 ≤ a∗
i
≤ C

I = 1, 2,… ,N

(8)
N∑

i=1

(
ai + a∗

i

)
.�(x)T.�

(
xj
)
+ b.

(9)f (x) =

N∑

i=1

ai.�
(
xi
)T
.�(x) + b.

in the regression SVM model is to select a kernel func-
tion. The support vector machine is usually used with three 
radial basis kernel function, d degree and linear polynomi-
als, where the relation used in each of them is as follows 
(Guo et al. 2008; Kavzoglu and Colkesen 2009):

Since the most commonly used kernel functions are 
linear, radial basis, and polynomial kernels (Liu 2011; 
Vapnik et  al. 1997), these three kernel functions have 
been used in this study. It should be noted that the com-
putational vector machine computation process is based 
on coding in MATLAB software and the parameters of 
the kernel functions are optimized through trial and error 
method. Given that each kernel has its own parameters, 
therefore, parameters of each kernel were optimized sepa-
rately. The reason for separately optimizing kernel param-
eters is that each kernel has its own separate parameters, 
and the performance of each kernel is different from other 
kernels as they are known. Therefore, according to the 
kernel function formulas, the parameters C, d, t, and ɛ for 
the polynomial kernel, the parameters C, � and ɛ for the 
radial basis function kernel, and for the linear kernel the 
parameters C and ɛ were optimized.

Gamma test (GT)

GT is a nonlinear method which assumes that the observa-
tion set is described by the following relationship (Durrant 
2001):

where xi is the input observation vector (here, surface water 
temperature, air temperature, …), and yi is the output of 
the GT (here, evaporation rate from a distinct concentra-
tion), and M is the total number of observations (here, total 
days for which evaporation was measured). The relationship 
between the inputs and output can be expressed as:

where f(x) is the smooth variable and r is the error term. It is 
assumed that the mean of the distribution fitted to r is zero 
and its variance is limited. The gamma statistic denoted by 
(Γ) expresses the variance of those observations; the model 

(10)k
(
Xi,Xj

)
= exp

(
−x − x2

i
∕�2

)

(11)k
(
Xi,Xj

)
=
(
t +

(
x, xi

))d

(12)k
(
Xi,Xj

)
= x.xi.

(13){(xi − yi)}, 1 ≤ i ≤ M}

(14)y = f (x) + r
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is incapable of its determination. For a distinct input vector 
xi, the set N [i, k], for (1 ≤ k ≤ p), is called the set of closest 
neighbors.

The gamma test is based on this set (i.e., N [i, k]). The 
term X [I, k] is the closest neighbor for ith x (i.e., xi), such that 
(1 ≤ k ≤ p), and(1 ≤ i ≤ m). Also p is the maximum number of 
neighbors that are usually assumed to be between 10 and 50. In 
order to estimate (Γ) , the values of (�M(k)) should be calculated 
according to the input data (Evans and Jones 2002).

where |…| denotes the Euclidean distance between vector 
xN[i, k] and its neighbors. Also, the value of �M(k) can be esti-
mated using the output data from the following relationship:

where yN[i, k] is the value of output corresponding to the kth 
neighborhood of xi vector. In this manner, the p values for 
�M(k) and the p values for �M(k) can be calculated. Then, a 
relationship between {�M(k), �M(k)} would exist as:

The value of Γ statistic is indeed the intercept of the above-
mentioned regression model. Also, A is the slope of the line 
which shows the complexity of model derived from data 
(Isazadeh et al. 2017; Ashrafzadeh et al. 2019). Another vari-
able usually used in gamma test is dimensionless variable Vratio 
whose value is between zero and one, determined according to 
Eq. 14 (Evans and Jone 2002).

where σ2(y) is the variance of observed data. The closer is 
the value of parameter Vratio to zero, the better is the selected 
combination for modeling. It has been proven that when the 
value is less than one, the amount of model determination 
coefficient is obtained.

Uncertainty

To quantify the uncertainty, p-factor and d-factor coefficients 
were proposed, respectively, to quantify the power of calibra-
tion and uncertainty analyses (Abbaspour et al. 2007; Taorm-
ina et al. 2015). Equation 15 is used to determine the average 
width of the band (d-factor) index.

(15)�M(k) =
1

M

M∑

i=1

||xN[i,k] − xi
||
2
, 1 ≤ k ≤ p

(16)�M(k) =
1

2M

M∑

i=1

||yN[i, k] − yi
||
2
, 1 ≤ k ≤ p

(17)� = A� + Γ

(18)Vratio =
Γ

�2(y)

where σx is the standard deviation of observed data and d 
̅x is the average width of confidence interval that can be 
attained by using Eq. 16.

Percentage of data in the band of 95% (p-factor) confi-
dence interval is computed as follows:

where k is the number of observation data and l is the item 
number from one to k. Xl

L
 and Xl

U
 determine the confidence 

interval bands of 2.5% and 97.5%, respectively, Xl
reg

 is the 
observed value on day l, and j is the counter parameter of the 
number of observed values placed on 95 PPU band. If all 
values are within the confidence band of uncertainty, then 
they are bracketed by 95 PPU (p-factor) = 100 (Ghorbani 
et al. 2016).

Evaluation criteria

Various methods can be used to evaluate and compare the 
performances of models, one of which is the use of evalua-
tion criteria. Among the evaluation criteria widely used in 
water engineering science, correlation coefficients (CC), root 
mean square error (RMSE), and the Nash Sutcliffe (NS) as 
in Eqs. 18, 19 and 20, respectively, are presented herein. The 
most accurate model with respect to these criteria is a model 
for which the values of these three criteria are close to one, 
zero, and one, respectively.

In the above relations, xi, x , yi, y, and N are the observed 
values of the flow, mean of observed values, computed flow, 

(19)d − factor =
dx

�x

(20)dx =
1

n

K∑

t=1

(XU − XL)

(21)
Bracketed by 95 PPU =

1

k
count(j|Xl

L
≤ Xreg

l
≤ Xl

U
)

× 100

(22)CC =

���� (
∑N

i=1
(xi − x)(yi − y))2

∑N

i=1
(xi − x)2

∑N

i=1
(yi − y)2

(23)RMSE =

√√√√ 1

N

N∑

i=1

(xi − yi)
2

(24)NS = 1 −

∑N

i=1
(xi − yi)

2

∑N

i=1
(xi − x)2
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mean of computed flow, and number of data, respectively 
(Misra et al. 2009).

Results and discussion

In this study, Caspian Sea water level parameters with dif-
ferent lags, month number, and monthly mean Caspian Sea 
level were used as input variables. Inlet combinations have 
also been evaluated in four sections. In the first step with 
the gamma test, the best combination was selected using 
Caspian Sea Water Level Lags. In the second section, the 
number of the month was added to the selection of the pre-
vious section. In the third section, the Caspian Sea monthly 
mean water level was selected for the first part of the study, 
and in the last part, two parameters of the month number and 
the Caspian Sea monthly mean were added to the selected 
combination of the first part obtained by gamma test. The 
sections are compared with each other.

After validation of input data by using the gamma test, the 
optimal input composition is used to estimate the sea level. 
Then, by using ANNs and SVM, the calibration and valida-
tion processes of the sea level estimation are performed. In 
the following, different stages of water level estimation are 
described.

Gamma test

Regarding the periodicity of the surface level of Caspian 
Sea, 1–15 delays with respect to the sea level are con-
sidered as the input of gamma test. Therefore, firstly, the 
gamma test is performed for the whole data (row 1), and 

then the test is performed based on the replacement of 
each of the variables from the total of the fifteen input 
variables (rows 2 through 16), which are shown in Table 2. 

According to the gamma test results in Table 2, the 
gamma statistics of the sea level with delays of 8 and 
11 months (rows 6 and 9) are less than the gamma value of 
the whole data (row 1). Therefore, the gamma test identi-
fies the sea level elevation with delays of 8 and 11 months 
as negative inputs parameters. Thus, other input param-
eters can be employed to estimate the level of sea surface. 
The use of the data measurement number according to 
Awchi (2014) and Ghorbani et al. (2016) and application 
of the monthly measurement number and monthly average 
of the data on the basis of Isazadeh (2015) can increase 
the accuracy of model estimation. Therefore, in this study, 
the combinations in Table 3, which are obtained by using 
gamma test and other studies, are used to estimate Caspian 
Sea water level.

In Table 3, h(t − i) is the sea level with the delay of i 
month, NM is the month number of measurement (1 to 
12), and AV is the monthly average of the sea level.

Artificial neural network

In this section, calibration and verification of Caspian Sea 
level estimation are performed by using the proposed input 
combinations in Table 3. The number of optimal neurons 
together with the values of accuracy estimation statistics and 
uncertainty of models are shown in Table 4.

According to results in Table 4, the estimation of sea level 
is carried out by using ANN model with very high preci-
sion, and results of the model with different combinations 

Table 2  Gamma test for all 
input and output data by 
replacing each input

Row number Absent variable Gamma Gradient Error v

1 – 0.000156 0.059235 0.000658 0.000623
2 h(t − 15) 0.000252 0.06295 0.000497 0.0010007
3 h(t − 14) 0.000583 0.057837 0.000449 0.002335
4 h(t − 13) 0.000314 0.060466 0.000461 0.001255
5 h(t − 12) 0.000203 0.062732 0.00547 0.000812
6 h(t − 11) − 0.00021 0.06658 0.000539 − 0.00082
7 h(t − 10) 0.000247 0.062055 0.000557 0.000987
8 h(t − 9) 0.000505 0.059638 0.000453 0.002019
9 h(t − 8) 0.000168 0.063507 0.000515 0.000673
10 h(t − 7) 0.000376 0.031239 0.000495 0.001503
11 h(t − 6) 0.000509 0.059246 0.000478 0.002036
12 h(t − 5) 0.000529 0.059421 0.000668 0.002115
13 h(t − 4) 0.000329 0.061879 0.000668 0.001318
14 h(t − 3) 0.000466 0.060728 0.000476 0.001864
15 h(t − 2) 0.000223 0.066546 0.000493 0.00089
16 h(t − 1) 0.000482 0.077483 0.000643 0.001927
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are close to each other. In general, according to all evalu-
ation statistics, the ANN model by using combination No. 
4 in Table 3 is able to estimate the level of the Caspian Sea 
with less error and high precision. Results also show that 
the use of the month number of measurement (NM) and the 
average monthly sea level (AV) have a positive effect on the 
accuracy of the estimates. Of course, the simultaneous use of 
the month number of measurement and the monthly average 
of the sea level, along with the first input combination, leads 
to the best result. The value of the Nash–Sutcliff coefficient, 
which exceeds 90% during the validation period, also reveals 
a highly accurate estimation of the ANN model. The uncer-
tainty of superior models also shows that combination No. 
3 with a d-factor of 0.22 has the least uncertainty.

Support vector machine

Results of sea level estimation with designated input com-
pounds (Table 3) are shown in Table 5 by using SVM with 
the optimal kernel function.

Due to the negligible error of the SVM in Caspian Sea 
level estimates for each of the four combinations, the per-
formance of this model is very well. According to results 

in Table 5, the support model machine by combination No. 
4 from Table 3 estimates the sea level with better accuracy, 
compared to combinations Nos. 1–3. Also, results show 
that error and accuracy rates of this model are, respec-
tively, lower and higher than those of 2 to 4 combina-
tions as compared with the first combination. Therefore, 
adding the parameters of the month number and the aver-
age monthly sea level reduces the error of this model in 
the estimation of sea level. Given the higher value of the 
Nash–Sutcliffe index compared to a limit of 75% in each 
estimate, the performance of the SVM is proved to be 
excellent. The low value of the d-factor index for each 
estimate suggests low uncertainty of the SVM in estimat-
ing the surface level of Caspian Sea. The lowest uncer-
tainty index also belongs to the second combination with 
d-factor of 0.005. RMSE values used for the verification 
stage of SVM for each of the three kernel functions are 
shown in Fig. 2.

According to Fig. 2, results of all three kernel functions 
with the first, third, and fourth combinations are close to 
each other. Only in combination No. 2, the estimation errors 
of each function are relatively large, necessitating the evalu-
ation of each kernel function by soft computing technique. 
Regarding Fig. 2, in general, the polynomial kernel function 

Table 3  Input combinations in each estimator model

Combination number Input variables

1 h(t − 1), h(t − 2), h(t − 3), h(t − 4), h(t − 5), h(t − 6), h(t − 7), h(t − 9), h(t − 10), h(t − 12), h(t − 13), h(t − 14), h(t − 15)

2 h(t − 1), h(t − 2), h(t − 3), h(t − 4), h(t − 5), h(t − 6), h(t − 7), h(t − 9), h(t − 10), h(t − 12), h(t − 13), h(t − 14), h(t − 15), NM
3 h(t − 1), h(t − 2), h(t − 3), h(t − 4), h(t − 5), h(t − 6), h(t − 7), h(t − 9), h(t − 10), h(t − 12), h(t − 13), h(t − 14), h(t − 15), AV
4 h(t − 1), h(t − 2), h(t − 3), h(t − 4), h(t − 5), h(t − 6), h(t − 7), h(t − 9), h(t − 10), h(t − 122), h(t − 13), h(t − 14), h(t − 15), NM, 

AV

Table 4  The results of Caspian Sea level estimation with artificial neural network model and four selected input combinations

Combination 
number

Optimized neu-
ron number

Calibration CC RMSE (mm) Validation

CC RMSE (mm) NS NS d-factor p-factor (%)

1 12 0.997 4.243 0.993 0.949 5.430 0.893 0.480 50
2 13 0.997 4.173 0.993 0.955 5.030 0.908 0.570 63
3 2 0.996 4.490 0.992 0.950 5.287 0.898 0.220 32
4 16 0.997 4.256 0.993 0.957 5.014 0.909 0.560 58

Table 5  The results of Caspian Sea level estimation with support vector machine with four selected input combinations

Combination 
number

Optimized ker-
nel function

Calibration Validation

CC RMSE (mm) NS CC RMSE (mm) NS d-factor p-factor (%)

1 Linear 0.995 4.917 0.991 0.947 5.428 0.893 0.0012 1.32
2 Polynomial 0.996 4.304 0.993 0.955 5.089 0.906 0.005 1.32
3 Radial basis 0.996 4.428 0.993 0.954 5.115 0.905 0.006 8
4 Radial basis 0.997 4.153 0.993 0.960 4.781 0.917 0.04 4
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has less error than two other kernel functions, as also con-
firmed in the study by Isazadeh et al. (2016).

Performance evaluation of the month 
number of measurement and mean monthly 
sea level as input parameters

In this research, the estimation of the sea level with each 
model according to the combination determined by gamma 
test is considered as the base estimate (combination No. 1). 
In the next step, parameters of the month number of meas-
urement and mean monthly sea level, which are added as the 
month number index and average monthly sea level index 
to the first combination, are evaluated, as shown in Fig. 3.

According to Fig. 3a, better accuracy of Caspian Sea 
level estimation by each of the models is obtained with the 
fourth, second, third, and first combinations. Therefore, it 
can be concluded that the use of month number and aver-
age monthly measurements indices has a positive effect on 
each model for estimating sea level. This result was also 

confirmed by Ghorbani et al. (2016) and Isazadeh (2015). 
Besides, results show that the month number index is more 
effective than average monthly measurement one, which 
improves results of sea level estimation. Finally, perfor-
mances of both models show that the simultaneous use of 
both the month number indices and the average monthly 
measurement index is better than their separate use. This 
is very evident in the performance of the SVM, such that 
the best performance of the total estimates for the use of 
these two indices is made by the SVM. Furthermore, Fig. 3b 
shows that the uncertainty of the SVM is much lower than 
that of the ANN model for each of the four input combina-
tions. The lower uncertainty of the SVM is one of the fea-
tures that surpass this model, compared to the ANN model. 
Figure 4 shows the sea level estimated by SVM and ANN 
for the superior combination of each model (the fourth com-
bination) and their uncertainty during the validation period.

As shown in Fig. 4, the uncertainty band in the estimation 
of the SVM is very narrow, indicating a low or high degree 
of uncertainty in this model. In fact, the difference between 
the d-factor of the ANN (0.56) and that of SVM (0.04) for 
the superior composition (the fourth composition) is quite 
clear in Fig. 4. Results are in agreement with those of Ghor-
bani et al. (2016) and Isazadeh et al. 2017).

In addition to the models used in Imani et al. (2014a, b), 
this study attempts to use different functions of the SVM 
model and to use the gamma test to select the appropriate 
input for the models. Also, the uncertainties of these models 
have been calculated in this research. It should be noted that 
the use of the mean value is another innovation of this arti-
cle. Imani et al. (2014a, b) also used satellite data, whereas 
the ground station data used in the present study have less 
errors.

The use of the gamma test avoids over-fitting (Durrant 
2001; Evans and Jones 2002; Isazadeh et al. 2017; Ashrafza-
deh et al. 2019). Also, the use of the month number and the 
mean value makes the optimization model more than normal 
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to look around the average data for the desired value and 
to avoid over-fitting and low-fitting (Awchi 2014; Ghorbani 
et al. 2016).

Conclusions

The estimation of the Caspian Sea water level is performed 
by using SVM and ANN models. Four selected inputs are 
determined based on the gamma test and performed stud-
ies to determine sea level. Results indicate that the ANN 
and SVM models are very good at sea level estimation. 
Results of the estimations show that the ANN has the best 
estimation for the sea level with the fourth combination 
having an error of 5.014 mm and a correlation coefficient 
of 0.957 in the verification stage. The uncertainty of the 
ANN with the third combination is 0.22, which is less 
than the uncertainty of other combinations. The SVM, 
with the fourth combination having an error and correla-
tion coefficient of 4.782 mm and 0.96, has the best result 
for the sea level estimation. The uncertainty of this model 
is low, equal to 0.04 for the fourth combination. Besides, 
results of SVM with different kernel functions indicate 

better performance of the polynomial kernel function. 
The performance of models has improved by adding the 
auxiliary parameters of the month number of measure-
ment and average monthly sea level indices. Therefore, it 
is possible to use these parameters in other monthly esti-
mates as efficient inputs. Furthermore, results show that 
both models have better performance if both the month 
number of measurement and mean monthly sea level are 
used simultaneously. The comparison between SVM and 
ANN models shows that the SVM has better results than 
any ANN models for each of the four proposed combina-
tions. Moreover, the uncertainty of this model is lower 
than that of the ANN model for all four input combina-
tions. With reference to the above points, the SVM with 
minimal error and very low uncertainty can be considered 
as the superior model in estimating the level of Caspian 
Sea at Anzali station.

Computer code availability

ANN and SVM codes developed in MATLAB are not 
available for readers.

Fig. 4  Observations data of 
Caspian Sea level along with 
uncertainty band of ANN (a) 
and SVM (b) models due to 
fourth input
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Abstract
A hydrological model was applied to select the best infilling method of missing precipitation (1) and to assess the impact 
of the length of deleted and filled precipitation data (2). The model was calibrated and validated using the hourly observed 
discharges from two gauges located in the outlet of the catchment (62.34 km2) and in the inner sub-catchment (2.05 km2). 
Precipitation from four gauges was spatially interpolated over the overall catchment, while the sub-catchment used the pre-
cipitation from one gauge. Four scenarios of different lengths of deletion within three high-intensity events were established 
in the data of this gauge. Three infilling methods were applied and compared: substitution, linear regression and inverse 
distance weighting (IDW). Substitution showed the best results, followed by linear regression and IDW in both scales. Dif-
ferences between methods were significant only in 8.3% and 19.4% of all cases (sub-catchment and catchment, respectively). 
The impact of length was assessed using the substitution only and by comparing differences in discharges and performance 
statistics caused by four scenarios. Higher differences in discharges were found on the catchment scale compared to the inner 
sub-catchment and were insignificant for all events and scenarios. The hypothesis that a longer length of deleted and filled 
data would lead to a greater error in discharges was wrong for 11.1% and 16.7% of all cases (sub-catchment and catchment, 
respectively). In several cases (33.4% sub-catchment, 27.1% catchment), the model produced better results using the time 
series with filled gaps compared to the configuration with observed data.

Keywords Missing values · High-intensity rainfall · Infilling methods · Hydrological model · Scotland

Introduction

Accurate precipitation data are essential for the understand-
ing of hydrological processes, water resources planning, 
proposing flood protection or the mitigation of contamina-
tion (Beven 2012). Furthermore, precipitation data are the 
most important input for the hydrological models (Moulin 
et al. 2008). However, there remain high uncertainties when 
precipitation values in the time series are missing, often due 
to instrument or related failure (Wagner et al. 2012). Infilling 
methods provide a solution to fill in missing data; however, 
the right method has to be selected for each gauge due to 
its unique geographical location (Hwang et al. 2012). Esti-
mations of missing time series are generally based on the 
measured data from gauges surrounding the targeted gauge 
(Cole and Moore 2008). The basic source of precipitation 
data remains the tipping-bucket gauge for the measurement 
of point rainfall depth (Cole and Moore 2008) often com-
bined with the radar outputs (Jurczyk 2008; Pauthier et al. 
2016; Boudevillain et al. 2016).
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Many studies propose different infilling methods for fill-
ing missing values of precipitation and consequently exam-
ine these methods using hydrological models (Heistermann 
and Kneis 2011; Lo Presti et al. 2010; Vicente-Serrano et al. 
2010). Concerning the simple methods, substitution (Lo 
Presti et al. 2010; Vicente-Serrano et al. 2010), IDW (Dirks 
et al. 1998; Jurczyk 2008) and linear regression (Weisberg 
2005) have all been employed for infilling missing values 
of precipitation. Vicente-Serrano et al. (2010) evaluated 
these methods during the homogenization of daily time 
series in north-east Spain and found the substitution as the 
best method, followed by the IDW and linear regression. 
Lo Presti et al. (2010) proposed filling gaps in daily pre-
cipitation time series in Italy by nonparametric regression 
in comparison with parametric regression and simple sub-
stitution. However, they found out the substitution method 
can be acceptable when the similarity value tends to be 
significantly high. Eischeid et al. (2000) used six different 
interpolation methods for completing daily time series in 
dependency of estimation biases for every gauge and every 
month in the western USA. They used, for the most part, 
multiple regression with the least absolute deviation crite-
rion which outperformed IDW from remaining methods. 
Bárdossy and Pegram (2014) compared several methods for 
daily time steps in South Africa and proposed a new cupola-
based method. Among the compared methods were the IDW, 
linear regression and substitution, while the IDW performed 
the best followed by linear regression and substitution. An 
artificial neural network (ANN) method with the regression 
tree was used in the study from the Appalachian Mountain, 
USA (Kim and Pachepsky 2010), where accuracy of the 
SWAT model was significantly improved using these infill-
ing methods. Furthermore, the ANN approach was recently 
used along with the conventional cubic spline algorithm and 
multivariate linear regression method in the catchment of 
Southern England (Song et al. 2017) in high temporal reso-
lution of rainfall rate estimation. As noted above, hydrologi-
cal models were applied in this process, firstly to investigate 
the impact of missing precipitation data on the simulated 
outputs (dominantly discharges) and secondly to select 
the best infilling method (Singh 1997; Arnaud et al. 2002; 
Bárdossy and Das 2008; Moulin et al. 2008; Reusser et al. 
2009; Hwang et al. 2012). Studies from France (Moulin et al. 
2008) and Mexico (Arnaud et al. 2002) showed that by using 
the hydrological model, less detailed hourly rainfall input 
led to biased flow outputs. These biases can be compen-
sated by model calibration applying the effective parameters 
approach (Beven 2006), but it results in higher output uncer-
tainty. Although most of the studies analyse the effect of fill-
ing daily data series (Heistermann and Kneis 2011; Hwang 
et al. 2012; Kim and Pachepsky 2010), in higher temporal 
sub-daily resolution, there is a decrease in spatial correla-
tion between gauges (Blenkinsop et al. 2016; Villarini et al. 

2008; Lewis et al. 2018). Ficchi et al (2016) investigate the 
extent to which the performance of hydrological modelling 
is improved by short time-step data (6 min vs. daily rainfall) 
in the mesoscale French catchment. They reported signifi-
cant improvement in performance with shorter time steps.

Generally, rainfall estimation errors increase with 
decreasing catchment size due to topographic variability, 
so cases of small catchments are the most problematic. This 
was shown in the study by Krajewski et al. (2003), where 
the time interval varied from 1 h to 5 min in the selected 
rain gauges of various environments. Furthermore, the small 
urban catchments also require smaller temporal resolution, 
which was the case of the Twenterand catchment in the 
Netherlands (Cecinati et al. 2017). We followed these studies 
and applied hydrological model MIKE SHE/MIKE11 run-
ning on an hourly time step to select the best infilling method 
for the three high-intensity rainfall events. The model was 
developed in the part of small-scale Eddleston Water catch-
ment and its inner sub-catchment.

Analyses of the extent to which data infilling of precipi-
tation input influences the outputs of hydrological models 
are rare. The study of Teegavarapu and Nayak (2017) exam-
ined the impact of filled precipitation datasets for different 
lengths of gaps. The result for the period from 1901 to 2006 
at 53 rain gauges in south Florida indicated the data infilling 
does not introduce statistically significant bias in total annual 
precipitation values but may lead to underestimation of both 
magnitude and frequency of heavy and very heavy precipita-
tion events. Furthermore, they reported the increase in bias 
with the increase in the amounts of missing data. We follow 
this study and assess the impact of gaps of various lengths 
during three high-intensity rainfall events on the hydrologi-
cal model outputs.

Thus, the aims of this case study were as follows: firstly, 
to select the best (optimal) infilling method of high-intensity 
rainfall events using the hydrological model (1) and, sec-
ondly, to assess the impact of different lengths of infilled 
gaps in high-intensity rainfall events on the outputs of 
hydrological model (2). Both aims were solved on the sub-
catchment and catchment scale to investigate the impact of 
the catchment area.

Study area

The Eddleston Water, near Peebles, Scottish Borders, UK, 
has a topography ranging from 150 to 700 m and the aver-
age rainfall of 980 mm year−1 (Fig. 1). The high-intensity 
rainfall events are primarily caused by frontal precipitation. 
The Kidston Mill stream gauge is located at the main river 
of the Eddleston Water (river kilometre 2.53), which is a 
right (16.39 km long) tributary of River Tweed. The average 
discharge is 1.27 m3 s−1, river slope is equal to 0.0069 m/m, 
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and the sub-catchment area is 62.34 km2 with the slope equal 
to 13.97%. The Middle Burn stream gauge (river kilometre 
2.2) is located at the stream of the identical name with the 
length of 4.1 km, slope equal to 0.0215 m/m and average dis-
charge equal to 0.06  m3 s−1. The stream is a right tributary 
of the Eddleston Water, located in the north-west part of the 
catchment (Fig. 1). The sub-catchment area is 2.05 km2, and 
the sub-catchment slope is 7.59%. Geologically, it is mantled 
by complex post-glacial ice-margin deposits, surface strata 
(O’Dochartaigh et al. 2012) that overlay generally low-
permeability Silurian greywackes (Pearce et al. 2014). The 
main river stem runs, from approximately its catchment mid-
point, down a wide alluvium-infilled valley. Soils within the 
catchment are dominantly sandy loams (53%) followed by 
loamy sands (20%), peats (17%) and loam (10%; JHI 2014). 
Catchment land use is mostly grass (67%) followed by conif-
erous forest (10%, predominantly in the Middle Burn sub-
catchment). Marsh, shrubs and mixed forest each account for 
5% of the total catchment area. Urban development, stripes 

of arable land, water and broadleaf forest cover the remain-
ing area. Since 2011, the catchment has been equipped with 
rain and stream gauges (Fig. 1). Research undertaken under 
the auspices of the Eddleston Water Project (Tweed Forum 
2016) has investigated the effects of catchment management 
and restoration measures that have been implemented for 
both ecological improvements and as a means to alleviate 
local flood risk (Archer et al. 2013; Tweed Forum 2016). 
These measures were implemented at the end of August 
2013 (Tweed Forum 2016) and thus did not influence the 
results of this study.

Methods

Hydrological model set‑up, calibration 
and validation

A coupled rainfall–runoff/hydraulic model of the Eddles-
ton Water catchment was developed using MIKE SHE/
MIKE 11 (DHI 2014). This established modelling system 
has been employed in a wide range of situations from small 
catchments or parts of catchments (e.g. Sahoo et al. 2006; 
Thompson et al. 2014; Thompson 2012) to large river basins 
(e.g. Andersen et al. 2001; Singh et al. 2011; Thompson 
et al. 2013, 2014). A 200 m × 200 m computational grid 
was employed, resulting in the catchment being discretized 
into 8000 cells. A digital terrain model (DTM) at 10 m grid 
resolution was created from contours with root mean square 
error/RMSE/± 2.5 m. The model structure used the gravity 
flow method for the unsaturated zone formulation (MIKE 
SHE 2011). This comprised two layers for soils (JHI 2014) 
and bedrock (Hughes 1996) or superficial geology. A simi-
lar two-layer (upper zone: soils and lower zone: bedrock) 
approach was used in the finite difference saturated zone set-
up with superficial geology represented as lenses. Hydraulic 
parameters for the unsaturated (saturated hydraulic conduc-
tivity, van Genuchten parameters) and saturated (horizon-
tal and vertical hydraulic conductivity, specific storage and 
specific yield) zones were initially taken from the literature 
(Morris and Johnson 1967; O’Dochartaigh et al. 2012; Mac-
Donald et al. 2012; Thompson 2012; Foster and Allen 2015) 
and were subject to manual calibration (Table 1).

The model used the finite difference approach for over-
land flow computation and the Kristensen–Jensen method 
for evapotranspiration. In the latter, a daily time series of ref-
erence evapotranspiration was computed (Allen et al. 1998) 
from the Darnhall meteorological station (as the climate data 
were available only in this station) and uniformly distrib-
uted over the catchment (see Fig. 1). Hourly precipitation 
from the four rain gauges for period 20/3/2011–23/6/2012 
(‘the study period’) within the catchment was distributed 
using Thiessen polygons (Fig. 1). Although other methods 

Fig. 1  Geographical position of the study area. A—localization 
within Western Europe, B—position within south-west Scotland, C—
geographical situation of close surroundings of the Eddleston Water 
catchment. Legend: a—municipalities, b—stream gauges, c—rain 
gauges, d—waterways, e—sub-catchment borders, f—Thiessen poly-
gons. Data sources: Eurostat, Ordnance Survey; Geographic Coordi-
nate System: GCS OSGB 1936
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of spatial interpolation of the precipitation were tried (e.g. 
Kriging), only the Thiessen polygon method allowed the 
overall area of the Middle Burn sub-catchment to gain 
precipitation from a single rain gauge. The MIKE 11 1D 
hydraulic model used the dynamic wave approximation of 
the St. Venant equations. Four branches were delineated 
using the Arc Hydro extension of ArcGIS (Maidment 2002) 
and DTM (Fig. 1). A total of 200 cross-sections were speci-
fied throughout the channel model and were based on the 
topographic survey (June 2013). Stream discharges were 
measured and rated at the Middle Burn and Kidston Mill 
gauge stations. The hydrological model of Middle Burn 
sub-catchment used data from a rain gauge situated directly 
in an adjoining sub-catchment area (the Shiplaw Burn), 
0.9 km away. The second (Kidston Mill) integrates all four 
rain gauges as sources of rainfall. The maximum allowed 
time step for all components of the MIKE SHE model was 
set to one hour, while a fixed time step of 5 s was applied in 
the MIKE 11 hydraulic model. Due to the relatively short 
length of the simulation period and the limited availability 
of hydrological data to drive the model, period of 1.3 years 
(20/3/2011–23/6/2012) of rainfall and reference evapotran-
spiration inputs were repeated for a warm-up period imme-
diately prior to the simulation period in order to establish 
initial conditions.

The calibration strategy was aimed to build the hydro-
logical model able to reflect the hydrological response of 
the catchment not only during high-intensity events but 

also for the study period. The calibration procedure was 
as follows: the overall data for rainfall and discharge were 
subdivided into calibration (20/3/2011–19/3/2012) and vali-
dation (20/3/2012–23/6/2012) periods. The model was run 
and manually calibrated. The Nash–Sutcliffe efficiency index 
(NSE) was set as an objective function and was computed 
using the following equation:

where Qm is simulated discharge, Qo is observed discharge 
and Qo is average observed discharge. Following Ritter 
and Muñoz-Carpena (2013), a threshold for satisfactory 
model performance, the value of NSE equal to 0.65 was 
deemed acceptable. This threshold was evaluated also for 
the selected events. During the calibration and validation, 
the modified Nash–Sutcliffe efficiency index (MNSE) and 
absolute total difference error were also assessed:

The ATD % provides information about the volume 
changes and is crucial for flood volume balance. The MNSE 
uses the power of one, having a higher sensitivity to system-
atic errors (Krause et al. 2005). Furthermore, during every 
model run, water balance error (WBE) was calculated by 
the model as an additional measure of model performance.

Selection of the best gap‑filling method and impact 
of the length of deleted and filled precipitation data

The Shiplaw rain gauge station was selected as a source of 
precipitation data for further steps. Three events of different 
lengths were chosen from the study period, using the criteria 
of maximal hourly rainfall, aiming for a spread of both dura-
tion and intensity. Based on this, three events with the maxi-
mal hourly rainfall over the study period were selected. The 
shortest was event 1 (63 h), followed by the lower-intensity 
multi-peak event 2 (366 h) and event 3 (72 h; Table 2). The 
event 1 produced the highest peak discharge equal to 20-year 
recurrence interval at Eddleston Village.

Four scenarios of data deletion within these events were 
established, to make the proportion deleted equally to 10%, 
30%, 50% and 70% from the event total length. Deleted data 
were afterwards filled using the three methods of filling 
missing values of precipitation. In the simple substitution 
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Table 1  Principal calibrated parameter values used in the model

SHC saturated hydraulic conductivity, HHC horizontal hydraulic con-
ductivity, VHC vertical hydraulic conductivity

Parameter Average Min Max

Grid resolution (m) 200 – –
Overland flow
Manning M 3.0 1.0 20.0
Root depth (m) – 0.0 1.5
Leaf area index – 1.0 7.0
Crop coefficient – 1.0 1.1
Detention storage (mm) 5.0 – –
Unsaturated zone
Saturated moisture content 0.4 0.4 0.5
Residual moisture content 0.0 0.0 0.1
Alpha 0.1 1.0E−02 0.4
N 1.6 1.5 1.8
SHC (m s−1) 1.8E−05 1.0E−13 7.0E−05
Saturated zone
HHC (m s−1) 4.8E−06 1.9E−13 1.3E−05
VHC (m s−1) 9.7E−07 1.9E−13 3.7E−06
Specific yield 0.1 0.0 0.2
Specific storage 3.1E−02 1.0E−05 0.1
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method, gaps were filled directly, using data obtained from 
the most similar station. Station similarity was assessed by 
correlation between stations expressed using Pearson’s coef-
ficient values (Lo Presti et al. 2010). For the linear regres-
sion, a substitute station was found using the same method 
as above. This station was then used as an explanatory vari-
able for fitting a linear function by the least-squares method, 
and the equation obtained was then used for missing data 
prediction (Weisberg 2005). In the case of IDW, missing 
values were obtained as a weighted mean from all surround-
ing gauges, where the weight is proportional to the distance. 
The power value of three has been found most suitable for 
hourly data (Dirks et al. 1998), so this was adopted.

Four scenarios of synthetically deleted and filled precipita-
tion time series of three events were varied in the hydrological 
model. While the start of the simulation for each of the events 
was the same as for the study period, the end of the simulation 
was set to the end of the particular event. The same model 
performance statistics (NSE, MNSE, and ATD%) were applied 
as for the model calibration and validation periods to select 
the best method of filling missing values of precipitation and 
to assess the impact of the event total length. However, three 
types of performance statistics were computed. The first type 
(T1) was calculated using Eqs. (1)–(3), applying the observed 
discharges and discharges produced by the hydrological model, 
which used four scenarios of synthetically deleted and filled 
precipitation data. Instead of using the observed discharges 
in Eqs. (1)–(3), the simulated discharges produced by the 
hydrological model using gap-free precipitation time series 
were applied for the second type (T2). The last type (T3) was 
calculated using Eqs. (1)–(3), but applying the observed and 
synthetically deleted and filled precipitation data instead of 
discharges. While the first two types (T1 and T2) allowed us to 
distinguish between the errors caused by inaccurate model and 
errors caused by each method of filling missing values of pre-
cipitation, the latter type was used to assess the transfer of the 
precipitation error to the model results. Performance statistics 
of all types were computed for the overall event length, not just 
for the deleted part. To select the best method of filling missing 
values of precipitation, all scenarios and events were evaluated 
together and median and interquartile ranges of performance 
statistics (Lo Presti et al. 2010) were compared. The impact 

of length was assessed for the best method of filling missing 
values of precipitation only. Mann–Whitney test was applied 
to the discharges to judge whether the differences caused by 
four scenarios of synthetically deleted and filled precipitation 
were significant.

Results

Hydrological model calibration and validation

While overall fits between the modelled and observed data 
were qualitatively good, simulated peaks were characteristi-
cally advanced compared with the observed flows (Fig. 2). 
These shifts in the timing of peak flows were higher in the 
Kidston Mill record; thus, better performance statistics were 
reported for the Middle Burn.

The NSE was equal to 0.84 (calibration) and 0.85 (valida-
tion) for the Middle Burn sub-catchment. Lower values were 
found for the Kidston Mill, when the NSE of all methods 
was equal to 0.74 and 0.73 for calibration and validation, 
respectively. Higher ATD% was found in Kidston Mill com-
pared to Middle Burn, with the highest value for calibration 
equal to 22.8%. The best NSE values were reported for the 
event 3, followed by event 2 and event 1 in the Middle Burn, 
while the change in the second and third places occurred for 
the Kidston Mill. Detailed information for all performance 
statistics for the calibration and validation period and also 
for the three events is shown in Table 3. The average value 
for WBE was computed from all of the simulations. This 
was equal to 1.74% for the Middle Burn and 0.27% for the 
Kidston Mill catchment, indicating a lower computational 
error for the larger catchment.

Selection of the best filling method and evaluation 
of the impact of the length of deleted and filled 
precipitation data

The selection of the best method was based on the median 
and interquartile range of the NSE, MNSE and ATD% 
(Fig. 3). Substitution was found to be the best method, fol-
lowed by linear regression and IDW for Middle Burn using 
the median as the criterion. All three types of performance 

Table 2  Observed 
characteristics of three events 
used in the study

Max maximal hourly variable (rainfall/discharge), Cum cumulative value of a variable over the event

Event No. of hours Kidston Mill Middle Burn

Rainfall 
(mm h−1)

Discharge 
 (m3 s−1)

Rainfall 
(mm h−1)

Discharge 
 (m3 s−1)

Max Cum Max Cum Max Cum Max Cum

1 (10/08/2011–11/08/2011) 63 6.6 56.7 16.6 500.3 6.6 60.2 1.1 28.8
2 (19/11/2011/–04/12/2011) 366 6.4 85.8 8.7 832.2 6.4 103 0.6 42.1
3 (02/01/2012/–05/01/2012/) 72 7.4 30.9 13.4 316 7 41.6 0.8 15.4
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statistics (T1, T2 and T3) agreed in this result. However, 
different results were found comparing the performance 
statistics T1 and T2 in the case of Kidston Mill. Applying 
the T1, the linear regression was favoured, while the T2 

marked the substitution as the best method on the catch-
ment scale.

Contradictory results among the best method selection 
were found applying the IQR criterion. For the Middle Burn, 
assessing the NSE, substitution produced the lowest IQR 
for all three types of performance statistics. Using IQR of 
MNSE and ATD%, the substitution was the best for the T2 
and T3; however, IDW performed best for the T1 statistic. 
Similar contradictory outputs occurred on the catchment 
level: using the NSE and MNSE, the IDW performed the 
best applying the T1, while substitution was the best apply-
ing the T2. For the ATD%, the linear method produced the 
lowest IQR using the T1, but the substitution was the best 
applying the T2.

High Pearson’s correlation coefficients (minimal value 
0.95, maximal 0.99 from all events) were found when the 
three methods of filling missing values of precipitation were 
compared. The Mann–Whitney test showed the differences 
between methods were significant (p < 0.005) only in 8.3% 
of all of scenarios and events for the Middle Burn. These 
significant differences occurred during the longest event 2 
between the IDW and linear regression for the scenarios 
50% and 70% and between the IDW and substitution for 
the scenario 70%. Higher numbers of significant differ-
ences between the methods (19.4% of all cases) were found 
at Kidston Mill and occurred during the event 2, between the 

Fig. 2  Observed and simulated discharges in Middle Burn and Kidston Mill for three high-intensity events simulated by the hydrological model. 
Legend: a—observed, b—simulated, c—rainfall

Table 3  Hydrological model performance

Performance 
statistics

Period/event Catchment

Middle Burn Kidston Mill

NSE Calibration 0.84 0.74
Validation 0.85 0.73
Event 1 0.94 0.65
Event 2 0.93 0.74
Event 3 0.97 0.86

MNSE Calibration 0.65 0.49
Validation 0.66 0.50
Event 1 0.73 0.43
Event 2 0.79 0.57
Event 3 0.84 0.63

ATD% Calibration 6.57 22.83
Validation 6.72 12.18
Event 1 7.09 9.27
Event 2 0.82 24.49
Event 3 5.93 23.54



571Acta Geophysica (2020) 68:565–576 

1 3

substitution and linear regression, IDW and linear regression 
for the scenarios 30, 50 and 70% and between the IDW and 
linear regression for the scenario 10%.

The transfer of precipitation error to the simulated dis-
charges is visible in Fig. 3, by comparing three types of 
performance statistics (T1, T2 and T3). The performance 
statistics computed from precipitation data (T2) were 
generally better than statistics computed using observed 
and simulated discharges (T2), but worse than statistics 

computed using simulated discharges. Thus, the hydro-
logical model lowered the error in the precipitation (T1 
and T3).

The impact of the length of deleted and filled precipita-
tion data was assessed using the substitution method only 
as this provided the best results. Differences between the 
simulation with observed precipitation data and four sce-
narios of deleted and filled precipitation data are visual-
ized in Fig. 4. Higher differences in discharges were found 
on the catchment scale compared to the inner sub-catch-
ment. Differences in performance statistics were higher 
on the sub-catchment scale and are shown in Fig. 5. These 
were caused by various scenarios of synthetically deleted 
and filled precipitation data for three high-intensity events 
and three infilling methods.

By assessing all events and performance statistics on 
the sub-catchment scale, in 33.4% of cases, the model pro-
duced better results when synthetically deleted and filled 
gaps were used in the hydrological model compared to 
the configuration with the observed precipitation data. 
Amount of cases was lower (27.1%) on the catchment 
scale. Most of these situations occurred for the event 3, 
followed by the event 2.

Furthermore, the higher length of deleted and filled data 
produced better results compared to the shorter length. This 
happened for 27.1% of all cases for the Middle Burn, while 
lower values (6.3%) were calculated for the Kidston Mill. 
This happened mainly during the event 3 on both scales. 
The most sensitive performance statistic for this detection 
was the ATD%.

Significant differences were reported for the event 2 and 
event 3 by the Mann–Whitney test for the Kidston Mill 
catchment, while all differences were marked as insignifi-
cant for the Middle Burn. This test used the simulated dis-
charges produced by the model set-up with the four scenar-
ios of deleted and filled precipitation data and the observed 
discharges.

Differences in performance statistics of the second type 
(T2) are shown in Fig. 6. Similarly, in results in Fig. 5, 
higher differences were reported for the Middle Burn than 
for the overall catchment and differences for the event 1 were 
the highest.

We further found out in several cases (11.1% of all cases 
for the Middle Burn) greater length of deleted and filled data 
led to better results compared to the shorter length. Higher 
values (16.7%) were calculated for the Kidston Mill. This 
happened dominantly during the event 3 on both scales. The 
most sensitive performance statistic for this detection was 
again the ATD%.

Differences were insignificant comparing discharges pro-
duced by four scenarios to the discharges simulated by the 
model with observed precipitation data for all events and 
scenarios.

Fig. 3  Comparison of performance statistics of three methods infill-
ing missing values of precipitation. Single box plot was created using 
the performance statistic of all events and all scenarios (n = 12 for 
every single box plot; Whiskers = Max and Min). The best method 
based on the median is marked by the dotted rectangle. Numbers 
denote the values of IQR. Bolded values denote the lowest IQR 
among three methods
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Discussion

In this study, we applied the precipitation data to a fully dis-
tributed, physically based hydrological model. This type of 
modelling is based on the main premise; a high level of spa-
tial resolution should lead to both improved representation 
of catchment behaviour and better simulation of the effects 
of changes in catchment processes and characteristics. As 
noted by Beven (2012), every single model requires its own 
model structure and own effective parameters (Vázquez and 
Hample 2014). Various models could produce different out-
puts as shown in the study of Huisman et al. (2009), where 
the effect of land cover change was examined; thus, results 
of this study (selection of the optimal infilling method) 
should be confirmed by different hydrological models.

Following the NSE criteria of model evaluation defined 
by Ritter and Muñoz-Carpena (2013), the model applied 
in this study was ‘good’ on the sub-catchment scale and 
‘acceptable’ on the catchment scale for both the calibration 
and validation periods. All three events used in this study 
were marked as very good in the Middle Burn, while event 
3 was good, and event 1 and event 2 were acceptable in 
the Kidston Mill. The computational error (WBE) for the 
Kidston Mill catchment were comparable to other studies 

(Foster and Allen 2015; Rahim et al. 2012). Higher errors 
in the WBE for Middle Burn could be caused by coarse-
grid resolution (200 m), which might have been unable 
to account for sub-catchment hydrological processes. The 
length of the validation period was restricted to 3 months 
due to the hydrological data availability. Although a longer 
period (several years) would be essential to model variabil-
ity of flood regime, we believe the results of this case study 
were not influenced by the length of the validation period 
as documented by fulfilling the criteria of model evalua-
tion defined by Ritter and Muñoz-Carpena (2013). Various 
lengths of the IQR in the results could be caused by the 
model sensitivity of the input data reported by Beven (2006) 
and Vázquez and Hample (2014).

Three widely used methods for filling synthetically cre-
ated gaps in the precipitation time series were assessed. Of 
the three methods used, the simple substitution produced 
the best results, followed by linear regression and IDW. 
This result is in agreement with the work of Lo Presti et al. 
(2010), where authors reported acceptable results by using 
the substitution when similarity among gauges was high. 
This can be a consequence of high correlation coefficient 
of the surrounding gauges. The correlation coefficient may 
be used as a weight in the IDW method rather than the 

Fig. 4  Differences in discharges for four scenarios. Differences were 
computed between the simulation with observed precipitation data 
and four scenarios of deleted and filled precipitation data using the 

substitution. Legend: a—10% of deleted and filled data, b—30%, 
c—50%, d—70%, e—length of a particular scenario
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Fig. 5  Differences in performance statistics of type 1. Grey areas and percentage mark the simulations when the model produced better results 
using the time series with filled gaps compared to the set-up with gaps-free data

Fig. 6  Differences in performance statistics of type 2



574 Acta Geophysica (2020) 68:565–576

1 3

distance (Vicente-Serrano et al. 2010) to improve results 
of this method.

Three performance statistics (NSE, MNSE and ATD%) 
were applied for both aims of this study. Contradictory con-
clusions were drawn in the selection of the best method and 
in assessing the impact of the length of deleted and filled 
precipitation data in the several cases using these statistics. 
This happened because each of the statistics was sensitive 
to different model (catchment) behaviour (e.g. high errors, 
water balance). This emphasizes the necessity of application 
of several performance statistics to obtain a holistic view of 
the outputs of the hydrological model (Moriasi et al. 2007; 
Ritter and Muñoz-Carpena 2013).

We computed three different types of performance sta-
tistics (T1, T2 and T3). While two of them were used for 
the hydrological model (T1 and T2), the latter was applied 
to the precipitation only. Transfer of precipitation errors to 
the results of the hydrological model was shown compar-
ing all types of statistics. This is in agreement with other 
studies (Sun et al. 2000; Kuczera and Williams 1992; Kim 
and Pachepsky 2010). The model configured to use the syn-
thetically deleted and filled precipitation data produced bet-
ter performance than the model configured to use observed 
precipitation data, in several cases. In other words, the low-
quality data lead to better model performance than high-
quality input. This was revealed applying the T1, and it is a 
consequence of the effective parameters (Beven 2006) which 
were able to balance the inadequate representation of input 
data (Vázquez and Hample 2014; Alvarenga et al. 2016). 
Contradictory output in the selection of the best infilling 
method was found, comparing the T1 and T2 on the catch-
ment scale. One remark needs to be done concerning the T1, 
T2 and T3. While T1 is independent of calibration results, 
T2 is based on the quality of the calibration (the better the 
calibration, the better the performance statistic). We pro-
pose to apply the T2 to select the best infilling method, as 
this type is using the simulated discharges produced by the 
model configured to use observed precipitation instead of 
the observed discharge.

Typically, distributed models employ the highest resolu-
tion of spatial data. However, the resolution of spatial data 
varies through the model (e.g. hydraulic properties of sedi-
ment and rocks, soils, land use data, digital terrain model, 
etc.) and is based purely on the data availability. The level 
of this availability allows the modeller to select more or less 
sophisticated model structure (Beven 2012). Furthermore, 
the application of the finest scale data does not necessar-
ily provide the best agreement with observation. This was 
shown in the studies of Vázquez and Hample (2014) and 
Alvarenga et al. (2016), where datasets of lower quality 
(evapotranspiration in the first case and land cover in lat-
ter) produced superior model outputs over the higher quality 
data. In this study, the longer period of deleted and filled 

precipitation data used in the model leads to better model 
performance compared to shorter period in several cases, 
again because of effective parameters. Although it is highly 
possible, the more detailed calibration would eliminate 
this conflict; results of this study confirmed the problems 
associated with calibration of physically based, distributed 
hydrological models (Freeze and Harlan 1969; Beven 1993; 
Walker et al. 2003; Fatichi et al. 2016).

The length of deleted and filled precipitation data was 
assessed using four scenarios for three events of different 
lengths and rainfall intensities. In a majority of cases, we 
reported increase in bias with the increase in length of gaps, 
which is in agreement with the study of Teegavarapu and 
Nayak (2017). When comparing three infilling methods, sig-
nificant differences were reported only for the longest event 
2. Assessing the impact of the length, significant differences 
were reported for the longest event 2, followed by event 3. 
Thus, the length of the event had a crucial bearing to the 
modelled discharges. We further suppose the low magnitude 
of the events leads to the conclusion of this study: the impact 
of the length of deleted and filled precipitation data on the 
outputs of hydrological model is insignificant in a majority 
of cases. More events of higher recurrence interval should 
be applied to correctly investigate the impact of the length 
of deleted and filled precipitation data. This remark is based 
also on the study of Teegavarapu and Nayak (2017), where 
authors mark the events of heavy and very heavy rainfall as 
the most problematic.

The aims of the study were solved on two scales: overall 
catchment and inner sub-catchment. On the catchment scale, 
the differences between the simulated discharges produced 
by a model with a ‘gaps-free’ configuration and with four 
scenarios of deleted and filled precipitation data were higher 
than on the sub-catchment scale because of a larger area 
(Thiessen polygon), from where the information about the 
precipitation was spatially interpolated. Differences in per-
formance statistics of both types (T1 and T2) were higher 
on the sub-catchment scale compared to the overall catch-
ment. This is because the inner sub-catchment had the only 
one source of precipitation—the Shiplaw rain gauge sta-
tion, from which data were synthetically deleted and filled. 
The overall catchment also used data from this station, but 
another three rain gauges with observed data were applied 
and spatially interpolated. Thus, the influence of missing 
precipitation data on the result of the hydrological model 
is greatest at the sub-catchment level and decreases with 
increasing catchment area due to synergic effects of other 
gauging stations. This finding is in agreement with the con-
clusion of Krajewski et al. (2003). However, more catch-
ments should be examined in order to evaluate the impact of 
the length of deleted and filled precipitation data.

We applied a manual calibration strategy and approach 
of optimal parameter set to calibrate the model to hourly 
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observed discharges in two gauging stations. Indeed, manual 
calibration remains a subjective approach, and a series of 
drawbacks in this approach were reported (Boyle et al. 2001; 
Vázquez and Hample 2014); the advantages of this approach 
are also known (Vaze et al. 2012). In the study of Vázquez 
and Hample (2014), authors found contrasting results for the 
manual and automatic calibration procedures.

Conclusion

We compared three infilling methods of precipitation for fill-
ing missing precipitation data. Our results showed the substi-
tution provided the best results followed by linear regression 
and IDW, probably as a consequence of high correlation coef-
ficient among rain gauges. Thus, in the case of gauges with 
the high correlation coefficient, the substitution can be used.

In our case study, the length of the event had a crucial 
bearing on the outputs of the hydrological model. However, 
only in a minority of cases, significant differences were 
reported between four scenarios of deleted and filled data, 
probably as a consequence of low magnitude of the events. 
Further analyses with events of higher magnitude should be 
carried out, and longer events should be evaluated to fully 
support this hypothesis.

Our results further indicate the data of lower quality 
(deleted and filled time series of precipitation) led to better 
model performance in several cases than the higher-quality 
data (original precipitation time series). This happened firstly 
when the hydrological model was fed by the original data and 
model performance was compared with the four scenarios 
and, secondly, when four scenarios of deleted and filled time 
series were compared between each other. Both cases were 
connected with the uncertainty associated with hydrological 
models, and modellers should be aware of this uncertainty 
and should carefully explain the results when the aim of the 
study is to compare the data of different qualities (not only 
the precipitation but also static catchment characteristics such 
as land use, soil texture and geological characteristics).

Lastly, the impact of the deleted and filled data on the 
model performance was higher on the sub-catchment scale. 
This is because the source of the precipitation data for this 
sub-catchment was from the gauge when the time series was 
deleted and filled. On the catchment scale, the impact was 
reduced by the synergic effect of four gauges. This empha-
sizes the necessity of close investigation of precipitation 
quality for the catchment where the source of data comes 
from the only single rain gauge.
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Abstract
This paper investigates the lunar subsurface heat flow using data from the recent Chinese lunar orbiting spacecrafts Chang’e 
1 and 2 to explore variations in the subsurface temperature of the Moon. These variations include heat flow information of the 
subsurface and the interior of the Moon. This research aims to develop a radiative transfer forward model for an airless body 
and then utilize microwave radiometer (MRM) data to study an observed anomaly of elevated 2-m-deep TB measurements 
in the Oceanus Procellarum region on the lunar subsurface. After initial comparison of the data from MRM with that from 
instruments and modelling of the lunar regolith parameters, a multi-layer radiative transfer forward model has been derived 
using the fluctuation dissipation theorem. The forward model was then used to invert the MRM-measured TB data to generate 
temperature profiles of 2-m-deep subsurface. The provisional results show that, as expected, the temperature of 2-m subsur-
face is potentially correlated with the distribution of radioactive elements such as uranium and thorium in the lunar crust. 
The temperature map of 2-m subsurface was then converted to a lunar heat flow map, which was validated by the Apollo 15 
and 17 measurements. Inspecting this heat flow map, abnormal high heat flow in the Oceanus Procellarum KREEP Terrain 
(PKT) region was noticed. The PKT is enriched with a high abundance of radioactive elements such as uranium and thorium. 
Hence, a heat flow model based on radioactive elements as well as internal cooling was built to investigate such a finding.

Keywords Lunar subsurface · Heat float mapping, radiative transfer forward model · MRM

Introduction

Importance of studying lunar subsurface 
temperature and heat flow

Missions exploring the lunar surface have greatly improved 
our understanding of the Moon’s composition, origin and 
evolution. However, information about the properties of 
the lunar subsurface, deep structural features and thermal 
environment is hard to determine, except for measurements 
obtained at the Apollo and Luna landing sites and returned 

lunar samples (Heiken et al. 1991) and a number of gravity 
experiments in missions subsequent (Andrews-Hanna et al. 
2014). Geochemical surveys of returned lunar samples can-
not provide direct information on the global composition and 
physical properties of the subsurface. As a result, knowl-
edge of the Moon’s basic geophysical properties including 
its internal structure which can help in constraining theories 
about its formation and evolution remains lacking, and our 
understanding of the lunar origin and evolution is still limited 
(Hartmann et al. 1986). Due to these limitations, the lunar 
subsurface, deep structural features and thermal environ-
ment are still not fully understood. For example, the Moon 
that once thought to be cold and dead may have experienced 
recent volcanic eruptions in the last tens of millions of years 
(Braden et al. 2014) and hence some parts of the Moon may 
be warmer than previously thought (Braden et al. 2014).

The thermal evolution and current thermal state of the 
Moon is a very important active area of research. By meas-
uring the internal heat flow and the deep subsurface tem-
perature profile (1–5 m) of the Moon, this paper can trace 
back and estimate the lunar core’s thermal flow. The results 
are important for developing theories about the Moon’s crust 
and any residual activity in its core. Specifically:
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(a) Modelling the heat flow of the Moon as part of diag-
nostic tests for thermal evolution models.

(b) Using the distribution of radioactive elements to con-
strain the evolution of the lunar crust and its connec-
tion to differentiation processes during the Moon’s for-
mation. This can help us understand the quantity and 
distribution of radioactive elements between the crust 
and mantle, part of its differentiation story (Warren and 
Rasmussen 1987).

(c) To understand the nature of the Procellarum KREEP 
Terrane (PKT).1

Geochemical surveys have shown (Haskin 1998) that 
KREEP mainly occurs in the north-west quadrant of the 
Moon (Haskin 1998). The thermal modelling by Wieczorek 
and Phillips (2000) showed that the high radioactivity of 
PKT could contribute as much as 20 mW/m2 of heat flow 
at the centre of PKT, so it is a significant energy source that 
needs to be quantified. By comparing the heat flow at the 
centre of the PKT with the average heat flow of the Moon, 
the overall abundance of radioactive materials can be esti-
mated. The Apollo measurements were made at only two 
locations, so the available samples may not reasonably rep-
resent the concentration of radioactive elements in KREEP 
(Korotev 1998).

(d) Understanding the lunar subsurface temperature distri-
bution is also critical in studying the timing and evolu-
tion of lunar volcanism (Andrews-Hanna et al. 2014). 
The detection of any anomalous hot spots not corre-
lated with KREEP terrain needs to be investigated.

The advantages of microwave remote sensing 
measurements for determining lunar heat flow

Global measurements of lunar heat flow are required for 
understanding the Moon. Subsurface heat flow can gener-
ally be estimated in two ways, in situ measurements and 
by remote sensing. In situ measurements involve drilling a 
hole in the lunar surface and determining the temperature at 
specific depths.

Measurements at the Apollo 15 and 17 sites are com-
plicated to interpret because of experimental difficulties, 
including making sure the regolith was not compacted prior 
to inserting the heat probe (Heiken et al. 1991). In addition, 
both the Apollo 15 and 17 heat measurement sites were in 
Maria regions near the lunar equator and thus cannot be 
easily compared with other areas. More importantly, the 

Apollo 15 and 17 sites are in or nearby KREEP rich terrain. 
Therefore, they cannot represent the lunar crust as whole 
(Hagermann and Tanaka 2006).

The second way to measure temperature profiles is by 
remote sensing. Since September 2009, the Diviner Lunar 
Radiometer Experiment (Diviner) on the Lunar Reconnais-
sance Orbiter (LRO) (Paige et al. 2010) has been acquiring 
an extensive set of thermal emission measurements from 
the lunar surface at infrared wavelengths generating global 
bolometric maps of the temperatures of the top 2 mm sur-
face. Remote sensing techniques such as Diviner that use 
thermal infrared or visible wavelengths can only provide 
compositional and temperature information to a depth of a 
few millimetres. As a result, data on the global, deep (50 cm 
or more) lunar subsurface temperature structure, mineralogy 
and heat flow are limited.

Longer electromagnetic wavelengths in microwave region 
of the spectrum (> 1 mm) have much greater penetration 
depths and so can potentially probe at greater depths than 
infrared techniques alone, thereby revealing the lunar rego-
lith’s deeper (> 50 cm) temperature structure. In addition 
to regolith temperature, microwave remote sensing meas-
urements can also potentially give information about other 
properties such as dielectric constant and density.

Microwave remote sensing aims to look into the shape 
and structure of an object by detecting radiation reflected 
or emitted at wavelengths that are typically > 1 mm. Micro-
wave remote sensing techniques developed for Earth meas-
urements in the late twentieth century can also be applied 
to other planets and extraterrestrial bodies, including the 
Moon. Using these longer wavelengths, temperatures at 
depths of several metres can then be estimated. Therefore, 
microwave remote sounding can compensate for the short-
comings of other remote sensing techniques (which can 
only penetrate < 2 cm), providing additional data. However, 
the modelling of microwave remote sensing is challenging 
because there is a dependence on many parameters including 
mineralogy, density, heat capacity, dielectric constant, etc.

Both CE-1 and CE-2 lunar orbiters were equipped with 
a passive microwave radiometer (MRM) to measure the 
brightness temperature of the lunar surface (Li et al. 2010). 
The measured lunar brightness temperature (TB) can then 
be used to determine the lunar subsurface temperature after 
taking into account certain lunar regolith properties (e.g. 
density, heat capacity, mineralogy, dielectric constants, 
etc.). Data in the microwave region of the electromagnetic 
spectrum measured by instruments, such as the MRM on 
CE-1 and CE-2, can penetrate deeper (up to 5 m) into the 
lunar subsurface than visible or thermal infrared instruments 
(~ 2 mm). This opens a window into deep lunar subsurface 
temperature and heat flow, which presents a ‘microwave 
moon’.1 KREEP is an acronym built from the letters K (potassium), REE 

(rare Earth elements) and P (phosphorus).
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MRM data validation

Both CE-1 and CE-2 MRMs have been used to detect the 
brightness temperature (TB) of lunar surface and retrieve 
lunar regolith thickness, temperature, dielectric constant and 
other related properties (Wang et al. 2008). Details of the 
instrument and ground calibrations are described by Wang 
et al. (2010).

The temperature variations in all operational orbits were 
between 12 and 23 K, with no more than 0.5 K temperature 
variation for each detected orbit period receiver (Wang et al. 
2010). The performance was then acceptable to meet the 
radiometric accuracy requirement of < 0.5 K.

Assuming a nominal lunar regolith mineral content of 
S = 10% (S is defined as S = Ti% + Fe% by mass fraction) 
and density of 1.9  g/cm3, predicted penetrating depths 
are < 0.5, < 1.0, < 2.0 and ≥ 5  m at 37.0, 19.35, 7.8 and 
3 GHz, respectively (Wang et al. 2008; Li et al. 2010).

The 3.0 GHz channel of the MRM can sense temperatures 
from depths of approximately 5 m below the lunar surface. 
Therefore, comparing data obtained from MRM with those 
gathered from instruments, such as the Diviner radiometer 
(which can sense temperatures to depths of 2 mm) of the 
LRO, is of great interest (Paige et al. 2010).

The Diviner Lunar Radiometer Experiment is a mul-
tichannel solar reflectance and infrared radiometer with 
high-frequency channels of the microwave instrument, of 
which three spectral filters are near 8 μm wavelengths and 
four filters cover approximately 13–23, 25–41, 50–100 and 
100–400 µm wavelengths (Paige et al. 2010). Data are col-
lected in a push-broom configuration across the surface of 
the Moon. The radiometer charts the temperature of entire 
lunar surface at approximately 500 m horizontal scales. To 

identify potential ice deposits, Diviner has been mapping the 
global thermal state of the Moon since July 2009.

The data from the high-frequency channel characterize 
the surface and can be compared with the Diviner data. 
Overlaps between CE-1 and Diviner data at specific local 
times were checked to verify the validity of both the Diviner 
and CE-1 MRM data as an independent inter-comparison of 
both data sets. CE-1 data were checked against the Diviner 
results when sampled on a similar spatial grid (Fig. 1). The 
effects of topography and local time were minimized by 
extracting Diviner data with local times and latitude/longi-
tude coordinates within the region with the most CE-1 flyby 
times, e.g. 0° to 5° N and 40°–35° W for midday (11 a.m. 
to 1 p.m. local time) and 0° to 5° N and 140° to 145° E for 
midnight (11 p.m. to 1 a.m.). Data of two spacecraft were 
consistent, as their TBs matched within expected variation 
(±  5 K) (Fig. 1).

Numerical model of lunar regolith and lunar 
soil

Given that, to a first order at least, the MRM instruments 
are measuring the thermal–physical properties of the lunar 
regolith. It is important to define the controlling physical 
parameters such as density, permittivity and specific heat 
capacity as well as the sources of input energy. By com-
bining these sources of information, it is then possible to 
start modelling the expected lunar subsurface temperature 
structure using thermal transfer models appropriate for the 
analysis of microwave remote sensing data.

Fig. 1  Temperature measured 
by Diviner at 50 random equato-
rial lat/lon points was compared 
against the MRM data
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Bulk density

The depth profile of the lunar surface and subsurface can be 
divided into three parts (Heiken et al. 1991) (Fig. 2):

1. A 2-cm dust layer on the surface;
2. A 5–10-m soil layer just below the dust layer;
3. A thick lunar bedrock layer below the soil layer (Fa and 

Jin 2007);

The top two parts of the lunar regolith are referred to as 
the upper lunar regolith.

Due to the lack of atmosphere and erosion processes on 
the lunar surface, individual grains that make up the upper 
lunar regolith layers have a ‘pointy’ structure. This com-
bined with the low gravity of the Moon (1/6 that of Earth’s) 
results in the upper lunar regolith layers being highly porous 
with large spaces between individual grains or agglomer-
ates of grains. The bulk densities of the upper lunar regolith 
layers are defined as the mass per unit volume of the lunar 
regolith including these spaces.

Vasavada et al. (1999) assumed that the bulk density of 
the top 2-cm lunar dust layer is 1.3 g/cm3 and of lunar soil 
layer is 1.6–2.1 g/cm3 (Heiken et al. 1991). The relationship 
of the lunar soil layer bulk density profile with depth can be 
described as follows (Heiken et al. 1991):

where ‘z’ is the lunar regolith depth, in centimetres.
Measurements of the Apollo core samples show that the 

average density of the upper lunar regolith layer increases 
with depth (Cartier et al. 1973). Knowledge of the density 
profile allows the study of another important factor, the 
dielectric permittivity.

Dielectric permittivity

The dielectric permittivity constant is important for mod-
elling the MRM data because it determines from what 
depth the received radiance was emitted. The results of 

(1)� = 1.92
z + 12.2

z + 18
,

measurements on lunar samples from the Apollo and Luna 
missions (Heiken et al. 1991) show that when the frequency 
is greater than 1 MHz, the real part of the permittivity (die-
lectric constant) of the lunar regolith is dependent on the 
density of the lunar regolith assuming a nominal chemical 
composition (Heiken et al. 1991). Hence, the permittivity �′

r
 

can be estimated using an empirical relationship:

The imaginary part �′
r
 of permittivity of the lunar soil is 

the product of the real part of the permittivity and the loss 
angle tangent2 of lunar soil (Heiken et al. 1991; Olhoeft and 
Strangway 1975),

where tan δ is the dielectric loss angle tangent of the lunar 
soil.

The current well-accepted theory (Olhoeft and Strangway 
1975) is that the loss tangent is not only a function of the 
density of the lunar soil, but also related to the  TiO2 and FeO 
abundance (expressed by S). This can be modelled using a 
three-dimensional regression equation with mass fraction, 
which was derived from the lunar soil samples (Olhoeft and 
Strangway 1975):

where %TiO2 and %FeO are  TiO2 and FeO abundances in 
the lunar soil, respectively.

We define S as sum of  TiO2 and FeO content present in 
minerals found in lunar soil.

Thermal conductivity

According to the Heiken et al. (1991), the upper 2-cm layer 
of lunar regolith (dust layer) has an extremely low thermal 

(2)��
r
= 1.919�.

(3)���
r
= ��

r
× tan �,

(4)tan � = 100.038⋅(%TiO2+%FeO)+0.312�−3.260,

Fig. 2  Depth profile of the lunar 
surface and subsurface

2 Dielectric loss angle tangent: dielectric loss measures a dielectric 
material’s inherent dissipation of electromagnetic energy into heat, 
usually parameterized in loss angle tangent tan δ.
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conductivity (1.5 × 10−5 W/cm2 measured at the Apollo 15 
Landing Site). Below the dust layer, the soil layer has a much 
larger thermal conductivity (7.5 × 10−5 W/cm2 ~ 10.5 × 10−5 
W/cm2). This is because thermal conductivity is dependent 
on density and lunar dust layer has a much lower density of 
1.3 g/cm3 compared to the soil layer density of 2.1 g/cm3. 
The variation with depth of thermal conductivity of lunar 
soil can be expressed as (Mitchell and Pater 1994) follows:

where kc is the phonon conductivity, χ is the ratio of ‘radia-
tive conductivity’ to phonon conductivity at 350 K, T is the 
subsurface temperature in kelvin which varies with the lunar 
regolith depth ‘z’, and T350 is 350 K. Vasavada et al. (1999) 
gave the coefficients of kc and χ for lunar dust and soil layers 
as: kc = 9.22 × 10−4 W m−1  K−1, χ = 1.48 for the dust layer, 
and kc = 9.3 × 10−3 W m−1  K−1, χ = 0.073 for the soil layers.

Specific heat capacity

Horai and Fujii (1972) found that the specific heat (C) of 
the lunar regolith varies with temperature. Later, Jones et al. 
(1975) provided an empirical third-degree polynomial for-
mula (determined by the least-squares technique based upon 
Apollo 11 regolith sample data) that determined its depend-
ence on temperature (70–400 K):

where C is in units of J g−1 K−1. Urquhart and Jacksky (1997) 
found that c1= 5.19 × 10−9 J  g−1  K−4, c2 = −8.20 × 10−6 
J g−1 K−3, c3 = 4.98 × 10−3 J g−1 K−2, c4 = −15.48 × 10−2 
J g−1 K−1.

Vertical distribution of lunar subsurface 
temperature as the first estimate

Previous thermal diffusion modelling work

There are currently no conclusive data on the Moon’s verti-
cal temperature distribution. The subsurface heat flow has 
been measured at only two landing sites (Apollo 15 and 
Apollo 17), and these results show that the temperature fluc-
tuations due to the diurnal wave decrease with depth until 
at about ~ 0.8 m below the lunar surface where they become 
negligible (Heiken et al. 1991; Horai and Fujii 1972).

One-dimensional thermal diffusion models such as Vasa-
vada et al. (1999) predict the surface and subsurface profile 
of the lunar soil. The predicted surface and subsurface tem-
perature structure can then be used in a microwave radiative 

(5)k = kc

[
1 + �

(
T

T350

)3
]
,

(6)C(T) = c1T
3 + c2T

2 + c3T + c4,

transfer forward model to predict the TB observed by the 
MRM instrument.

Microwave radiative transfer in lunar surface layers can 
generally be modelled with the use of multi-layer models 
(Shrestha 2007). A detailed multi-layer model can more 
accurately reflect the change in the parameters with depth 
(e.g. density, permittivity, conductivity) and obtain good 
results. However, the computing complexity will increase 
proportional to the number of layers, which will complicate 
the inversion of lunar subsurface temperature. Therefore, we 
should consider the instrument details and number of avail-
able microwave channels to make a compromise before the 
construction of a model.

Six‑layer thermal diffusion simulation model

All four MRM channels should be included to invert the 
MRM data effectively, and therefore this model should be a 
multi-layer model (assuming that each channel has a differ-
ent maximum penetration depth). However, a trade-off exists 
with complexity. Hence, a total of six layers are considered 
in the model, as follows: the top 2-cm lunar dust layer, fol-
lowed by four layers between 2 cm and 5 m (with a greater 
number of layers in the top 20 cm where the temperature 
changes most rapidly) and a deepest layer at 5 m (bedrock 
layer). The depth of four layers between 2 cm and 5 m was 
set by taking into account the predicted penetration depth 
of each of the four MRM channels using a nominal lunar 
soil composition. Hence, the following stratification is used:

In the model, Zarr is the array of depths from the surface 
to base of each layer (not layer thicknesses) in centimetres 
and z is the symbol representing the depth in this work. An 
illustration is plotted in Fig. 3.

Subsurface microwave radiative transfer 
model

Although some preliminary results were derived, these only 
represent a qualitative first-order analysis of the Chang’e 
MRM data, for lunar subsurface temperature sounding. To 
exploit fully the measurements made by the MRM instru-
ment and future microwave radiometers, the establishment 
of a lunar regolith microwave radiative transfer forward 

(7)Zarr =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

2, lunar dust d1
3, lunar soil d2
5, lunar soil d3
10, lunar soil d4
480, lunar soil d5
Infinity, lunar regolith d6

.
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model is required. This will allow quantitative insights into 
the subsurface temperature and compositional structure to 
be included when interpreting the MRM data. In turn, this 
is the key to exploiting the information on subsurface heat 
flow and its possible connection to the large-scale evolution 
of the lunar crust.

By considering the main factors affecting the measured 
brightness temperature with depth within the lunar rego-
lith, we have developed a non-uniform multi-layer lunar soil 
radiative transfer model. This new model is entirely differ-
ent to the models of Spencer et al. (1989) or Vasavada et al. 
(1999), because it is not an energy balance (thermal diffu-
sion) model, but a microwave radiative transfer model using 
input data from the MRM measurements, effectively model-
ling the global subsurface radiative transfer for the time of 
the remote sensing observation. According to microwave 
radiative transfer theory (Jin 1993; Ulaby et al. 1981), the 
Chang’e MRM measurements of lunar regolith contain TB 
contributions from different layers within a certain depth 
of the subsurface. Physical properties of different depths of 
lunar soil, such as different temperature, dielectric constant, 
density, thermal conductivity and specific heat parameters, 
will be reflected in the microwave radiation transport model 
and thus the TB measured by the instrument.

The radiative transfer forward model is used to calcu-
late contributions from different depths to the TB measured 
by the MRM radiometer’s four channels. This can then be 
compared with other models and methods such as Keihm’s 
model (1973) or Spencer et al. (1989), assuming a known 
vertical temperature distribution. Furthermore, to try and 

understand if there is correlation with the Fe/Ti content and 
the effective emission depth for the different MRM channels, 
a sequence of more complex models investigating radiative 
and conductive heating measured by each of the MRM chan-
nels has been developed.

Radiative transfer forward model derivation

The first step in developing the thermal transfer model is 
determining the contributions from each layer to the sub-
surface microwave propagation that is then received by the 
instrument. In this initial analysis, a six-layer model has 
been used for the reasons listed below.

The rationale for using a total of six layers is described in 
part 3, but to a first order is due to the number of available 
channels (4) of MRM data, assuming that each channel is 
sounding to a different depth. The number of required lay-
ers is equal to the number of channels plus a top layer and 
a bottom layer. The top layer is constrained by the surface 
temperature data from the Diviner instrument on the Lunar 
Reconnaissance Orbiter (Paige et al. 2010) (i.e. layer 1), 
the four MRM channels potentially provide measurements 
at four different depths (i.e. layers 2–5), and the bedrock 
temperature can be considered as a constant (i.e. layer 6). 
This allows the number of unknowns to equal the number 
of equations, making the problem pseudo-exact due to the 
presence of measurement and modelling error.

Existing microwave propagation models developed for 
the Earth’s subsurface are not appropriate. The microwave 
propagation in the Earth’s subsurface is heavily attenuated 

Fig. 3  Lunar soil layers for 
the thermal simulation model 
(which will also be used in the 
microwave radiative transfer 
model, Sect. 3.2)
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by the presence of moisture (Jin 1993; Zhang et al. 2008), so 
existing terrestrial models are not applicable for the analysis 
of data from desiccated airless bodies such as the Moon. 
Therefore, we have constructed our own model using under-
lying principles of microwave radiative transfer theory. This 
approach will be summarized below, with references to the 
individual model components cited as required unless it is 
an original derivation.

Any substance with a temperature above absolute zero 
has a large number of charged particles that constantly col-
lide with one another, causing the charged particles to be 
in a state of motion. Such changes in motion (i.e. accel-
eration) generate electromagnetic radiation, and different 
wavelengths of non-correlated wave components constitute 
emission of electromagnetic wave radiation. In electromag-
netic terminology, the frequency range from 1000 MHz to 
300 GHz is called microwave radiation. (This will be Planck 
radiation modified by the material if it is not transparent to 
its own radiation.)

A microwave radiometer is a high-sensitivity receiver 
designed to receive and record low-emission random micro-
wave noise3 radiation from a material. Objects in thermo-
dynamic equilibrium have an emission power (in radio 
frequency microwave language this is referred to as the 
transmission power) P, which is a function of their physical 
temperature T. In the microwave range, P is proportional to 
T (the long-wave limit of the Planck function) (Ulaby et al. 
1981). This is expressed as

(8)P = �eTΔ�,

where σ is the Boltzmann constant, T is the thermodynamic 
temperature of the object, e is the emissivity of the mate-
rial and ∆ν is the radiometer bandwidth. This relationship 
between power and temperature defines the brightness tem-
perature (TB), which is characterized by the power received 
in a real scene:

Since e (the emissivity of the material) is dependent on the 
dielectric constant, it is also dependent on density, elemen-
tal composition, etc. The observed microwave TB is thus 
dependent on these characteristics (e.g. density, elemental 
composition, etc.), so we could, in principle, derive these 
lunar subsurface parameters, based on the MRM remote 
measurements of lunar surface brightness temperature using 
Eq. 9.

Figure 4 is a schematic diagram of the microwave radia-
tion from a typical three-layer lunar regolith and bedrock 
structure (after Li et al. 2010). In addition to the micro-
waves being attenuated by medium during their propaga-
tion through the lunar surface, they will also be affected by 
changes in the medium. For example, if the lunar regolith 
comprises three layers with different dielectric properties 
and temperatures (T0, T1, T2, T3), then the emitted micro-
wave radiation from each layer will be affected by reflection 
and transmission at every interface.

The total amount of radiation received by the microwave 
detector from the lunar surface is expressed by (Ulaby et al. 
1981) as Eq. 10:

where Ts is the thermodynamic temperature of the sur-
face, es is the emissivity of the surface and rs is the surface 

(9)TB = eT =
P

�Δ�
.

(10)TB = TSes = Ts(1 − rs),

Fig. 4  Schematic diagram of 
microwave radiation emitted 
from a three-layer lunar regolith 
and bedrock structure. The  TB 
received by the MRM contains 
direct emission from each layer, 
as well as reflected beams 
at layer interfaces, although 
multiple reflections will not be 
considered in this model

3 ‘Noise’ in this case implies that the radiation is not coherent, in 
contrast, for example, to a microwave receiver as used in communica-
tions or similar.
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reflectivity. rs can be calculated according to Fresnel’s law 
of reflection:

where εrs is the relative permittivity of the surface.
In the case of normal incidence, the reflectivity then 

becomes

The subsurface temperature profile is given by T(z), the 
absorption coefficient profile is α(z), and the permittivity 
profile is ε(z), all are functions of the depth z. The depth 
profile of the layer dielectric constant ε(z) is given by Tsang 
et al. (1975), and the absorption coefficient profile of the 
electric field intensity α(z) is expressed as

where λ is the wavelength, �′
r
 is the real part of the relative 

permittivity, while �′′
r
 is the imaginary part and μr is the 

real part of the magnetic permittivity. The power absorption 
coefficient �(z) is twice that of α(z), as expressed by

where �(z) and α(z) units are both in nepers (Np) per metre. 
(Neper is defined as 1 Np/m = 8.686 dB/m.) If the dielectric 
of each layer is the same and µr(z)= 1, then the absorption 
coefficient �(z) can be expressed as

We need to define the difference between real tempera-
ture, effective temperature and brightness temperature:

1. Real temperature is the thermodynamic temperature 
of the regolith. This is the temperature that would be 
measured by an in situ temperature probe. In this model, 
it is assumed that each layer is isothermal at one real 
temperature.

2. The lunar surface has many areas of different tempera-
tures, i.e. across a horizontal 2-cm space on the lunar 

(11)rs =

||||||||
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√
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surface the temperature can vary by up to 100 K. The 
temperature in the subsurface of the moon can vary by 
150 K to depths of 5 m. The MRM instrument can sound 
to depths of 5 m, and its footprint is 18 km at its best 
resolution, so it contains a scene composed of many dif-
ferent temperatures both vertically and horizontally. The 
effective temperature can be thought of as the average 
temperature in such a scene.

3. Brightness temperature is the effective temperature mul-
tiplied by the effective emissivity of lunar regolith as 
measured by a microwave radiometer.

The model calculates the real temperatures of each layer. 
The real temperature from each layer is then multiplied by 
a weighting which is the power coefficient and the expo-
nential of the negative power coefficient (Eq. 16). The real 
temperature multiplied by the weighing coefficient for each 
layer is then added together to give the effective temperature 
(Eq. 16). This effective temperature is then multiplied by the 
effective emissivity to give the TB that is measured by the 
MRM instrument. Then, Eq. 9 transforms into Eq. 16:

where Teff is the effective temperature, eeff is the effective 
emissivity and represents the ratio of Teff to TB measured by 
MRM. Here, the κ(z)e−κ(z) weighting term comes from the 
derivative of exp(− κ(z)).

Microwave radiation in the media can be simulated 
using two methods. The first is the coherent method based 
on Maxwell’s equations and the fluctuation dissipation 
theorem (FDT). The coherent method considers the effects 
of reflection on both the amplitude and phase. The coher-
ent method must be solved using Maxwell’s equations to 
calculate electromagnetic field vectors and obtain radia-
tion intensity. This approach requires that the medium is 
uniform as the scattering within each layer is ignored. The 
dielectric constant of each layer is also considered to be 
constant (Jin 1993).

The second method is the incoherent approach based on 
the vector radiative transfer theory, which only considers 
the amplitude and not the phase. This approach requires a 
large amount of scattering bodies whose dimensions are 
comparable to the wavelength of radiation (Ulaby et al. 
1981). The random distribution of such scattering bodies 
generates random phase functions in wave transmission 
between two points, thus making the transmission an inco-
herent process.

Considering the nature of the lunar soil (e.g. the layers 
are almost level and uniform and each layer has a constant 

(16)TB = eT = eeffTeff = eeff

0

∫
−∞

T(z)�(z)e−�(z)dz,
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dielectric constant) and the wavelengths measured by the 
MRM, the coherent method was chosen for this work. In 
coherent methods, the microwave radiation of the medium 
is caused by charged particles’ fluctuating in the microscopic 
scale, that is, the fluctuant electromagnetic radiation. The 
expected relationship between the value of the electric cur-
rent source (generated by the movement of charged particles) 
and TB is described by the fluctuation dissipation theorem 
(FDT). Details of this theorem are explained in Jin (1993) 
and are summarized below.

The fluctuation–dissipation theorem relies on the assump-
tion that the response of a system in thermodynamic equilib-
rium to a small applied force is the same as its response to a 
spontaneous fluctuation.4 Therefore, the theorem connects 
the linear response relaxation of a system from a prepared 
non-equilibrium state to its statistical fluctuation properties 
in equilibrium. According to FDT,

where J̄l(r̄,𝜔) is the heat source of layer l among all N layers, 
� is the heat radiation’s angular frequency, r is the displace-
ment vector, � is the Boltzmann constant, and Tl(z) is the real 
temperature distribution of layer l and ���

l
(z) is the imaginary 

part of permittivity (dielectric constant); the term I in Eq. 17 
is defined as follows:

Therefore, by the definition of TB and Eqs. 16–18, the 
polarized radiation TB can be written as Eq. 19:

where p̂ is the polarization sense, p̂ = (v̂,ĥ ), ĥ is the horizon-
tal polarization vector, v̂ is the vertical polarization vector, 
c is the light speed, ω is the frequency, r is the distance 
vector and �0 is the vacuum permittivity. Also, by using the 
parallel-layered media dyadic Green’s function (Jin 1993) 
the electric field intensity (E) can be written as follows:

(17)

(J̄l(r̄,𝜔) ∗ J̄l(r̄
�

,𝜔
�

)) =
4

𝜋
𝜔𝜀

��

l
(z)𝜎Tl(z) ⋅ Ī𝛿(𝜔 − 𝜔

�

)𝛿(r − r
�

),

(18)Ī = x̂x̂ + ŷŷ + ẑẑ

(19)

TP
B
(k̂,𝜔) =

(2𝜋)3

B

(
c

𝜔

)
1

2
c𝜀0

∞

∫
0

d𝜔�

∞

∫
0

k2dk ∫ dk�

×
{
p̂ ⋅

(
Ē(k,𝜔)Ē�(k�,𝜔�)

)
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⋅

(
r − i(𝜔 − 𝜔�)t

)
]
}
,

(20)
⇀

E
(
r⃗,𝜔

)
=

N+1∑
l=1

∫
∞

−∞

d𝜌
� ∫

−dl−1

−dl

dz�G0l

(
r, r

�)
⋅ Jl

(
r
�)
𝜔�.

In Eq. 20, Jl is the heat source and ρ is the x–y plane of 
the lth layer, representing the longitudinal coordinates of 
the lth layer; dyadic Green function in the region l can be 
written as

where subscript 0 l indicates that the observation point ̄r is in 
area 0 and the microwave emission source is located in area 
l. kρ is the wavenumber on the x/y plane, kx is the wavenum-
ber projected into the x-axis, and ky is the wavenumber pro-
jected into the y-axis, k2

�
= k2

x
+ k2

y
 . � is the vacuum magnetic 

permittivity; Al, Bl, Cl and Dl can be derived by tangential 
continuous boundary constraints at layer interfaces. For an 
N-layer unevenly paralleled dissipation medium, when the 
observation angle is � , the zero-order p-polarization TB of 
layered lunar soil medium measured by MRM can be trans-
formed into Eq. 22:

where k is the wavenumber, kiz is the projection on z direc-
tion of the i layer’s wavenumber, di is the thickness of the 
i layer, Tr is the temperature of the lunar rock layer and the 
superscript ″ means the imaginary part. The transmission 
coefficient (Qij) is

And the reflection coefficient is

Therefore, for a six-layer non-uniform parallel-layered 
dissipative media, when the observation angle is zero, as 
in the CE MRM data, based on Eq. 22, the layered medium 
polarized radiation brightness temperature measured by the 
microwave radiation detector can be deduced as

(21)

G0l

(
r, r

�)
= −

��

8�2 ∫ dk�
[
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√
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]
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)
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(
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)
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(
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(
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]}
,

(22)
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Tr,

(23)Qij = 1 + Rij.

(24)Rij =
kiz − kjz

kiz + kjz
.

4 Another example is Einstein’s model of Brownian motion, also the 
use of fluctuation/dissipation theorem and derivation of refractive 
index.
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Equation 25 is the core of the model. Each term in this 
equation corresponds to a layer’s contribution to the received 
TB (of specific wavelength) and is calculated based on 
Eq. 22. The first term corresponds to the lunar dust layer’s 
radiation, and the last term corresponds to the lunar bed-
rock layer’s radiation, while the other four terms correspond 
to each layer of the lunar soil. Except for the last term, all 
the other five terms contain both upwards radiation and 
downwards-reflected radiation. Equation 25 calculates the 
zero-order radiation TB, e.g. the effect of scattering is not 
considered. Other assumptions include: T6 = 250 K (bedrock 
temperature), the vacuum permittivity is unity, and the bed-
rock layer permittivity is 8.0 + 0.5i (Heiken et al. 1991). To 
determine the wavenumber k, we can write

Then, according to Burke et al. (1979), the dispersion 
relation gives:

Equations 23–24 are widely used in microwave remote 
sounding, including moisture estimation of terrestrial soil 
(Zhang et al. 2008). Equations 26–28 are also used in the 
inversion model developed in paper to allow estimation of k.

(25)
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.

Inverting vertical subsurface temperatures 
of the equatorial region from MRM data and using 
the microwave forward model

The lunar subsurface is not isothermal, so the microwave 
radiation of the lunar surface is also affected by the actual 
temperature distribution of the subsurface of the Moon. By 
solving the radiation transmission equations (Eqs. 8–28), 
this paper will establish a lunar subsurface temperature 
inversion model, using the CE MRM measurements. To 
study the typical vertical distribution of the lunar subsurface 
temperature, this work will use the analytical microwave 
radiative transfer model to attempt an inversion of the equa-
torial region subsurface temperatures at different depths, 
based on the MRM data (Sect. 4.1).

What MRM ‘measured’ is then numerically studied: 
using the inverse method to retrieve the subsurface tem-
peratures (T2–T5), defined as the unknown matrix x in the 
following discussion. To set up the basic equations for the 
inversion, the measurement vector should be the four MRM-
measured brightness temperatures in each channel, e.g. 
TB1 (3 GHz), TB2 (7.8 GHz), TB3 (19.35 GHz) and TB4 
(37 GHz), each with a measurement error of ± 0.5 K, respec-
tively. The unknown vector x should be made of the real 
subsurface temperatures, T2 (5 cm), T3 (10 cm), T4 (20 cm) 
and T5 (2 m).

According to the inverse method (e.g. Rodgers 2000), the 
measurement vector (y) is equal to the vector of unknowns 
(x) multiplied by the weighting function matrix (K) plus 
the error matrix (y = Kx + error). The matrix of unknowns 
is defined by x = [T2, T3, T4, T5] and y is defined in Eq. 29 
derived from Eq. 25, which is the net TB contribution of 
each lunar soil layer excluding the contribution of dust and 
rock layer to TB. The dust and rock layer are excluded due 
to the fact that values of T1 (Diviner data) and T6 are known 
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(250 K, Apollo measurement, Lunar Sourcebook 1991), 
making the contribution from these two layers calculable.

where CTB is the contribution of dust and rock layer to the 
TB measured by the MRM instrument. Note that the CTB is 
a known quantity as it is set by Diviner and Apollo measure-
ments. Q is the transmission coefficient (Eq. 23), and R is 
the reflection coefficient (Eq. 24).

According to the temperature uncertainty of the MRM 
instrument (± 0.5 K), the measurement uncertainty covari-
ance matrix is then:
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where the diagonal elements are given as the square of the 
error of the MRM instrument. And according to Eq. 25, the 
weighting function matrix is

where 
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Fig. 5  Based on Chang’e 1 MRM data and our radiative transfer 
model, the ‘measured’ mean vertical temperature profile beneath the 
lunar equatorial surface, at the lunar midday, was inverted
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According to the inverse theory (Rodgers 2000),

and the expression for the error covariance of the state x 
vector is

The vector of unknowns (x) and its associated error covari-
ance (Sx) can therefore be estimated. However, this Sx is the 
model calculation error, without the parameter modelling 
error included.
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(36)x = (KTS−1
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�
y

(37)Sx = (KTS−1
�
K)−1.

A simple test of Eq. 36 was done to generate a vertical 
temperature profile for the lunar equator. When assuming 
a value of S = 15 (typical for the lunar equatorial region—
according to Heiken et al. 1991), a rough average subsurface 
temperature curve for the Moon’s equatorial region can be 
generated using the radiative transfer model and inverting 
the equatorial MRM data (Fig. 5). The surface temperature 
points are constrained by Diviner measurements (Paige et al. 
2010). The stated error of the Diviner data is within ± 2 K 
(Paige et al. 2010). The bedrock temperature is taken from 
the Apollo experiment with ± 10 K error (Heiken et  al. 
1991), and the other points have been derived from the 
Chang’e MRM measurements. The error is within ± 6 K. The 
model shows that the lunar soil temperature changes signifi-
cantly within the top 2 cm and becomes stable below 20 cm. 
Comparing it with the theoretical thermal simulations, we 
notice that they agree to within the stated uncertainties. The 

Table 1  Data used in forward model calculation are an average of CE-1 and CE-2; details are given in this table

CE-1 microwave brightness temperature data set CE-2 microwave brightness temperature data set

Size details (MB) 346 992
Time span 2007.11.27–2008.06.30 2010.10.15–2011.05.20
Space resolution 3 GHz channel space resolution is 50 km. All other channels 

had a spatial resolution of ~ 35 km
3 GHz channel space resolution is 25 km. 

All other channels had a spatial resolution 
of ~ 17.5 km

Fig. 6  (Top) Retrieved FeO 
content from  M3 over plotted 
on a Clementine base map. Fe 
content is between 0 and 20% 
in this map. Several artefacts 
remain in this plot; they come 
from the  M3 optical period. 
(Bottom) Clementine FeO map
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data used for this forward model calculation are summarized 
in Table 1.

Both the thermal simulation and the MRM data (Fig. 5) 
show that the surface temperature at the lunar equator at 
noon is ~ 390 K and drops significantly within 20 cm and 
then is almost stable at ~ 240 K at depths below 20 cm 
to 50 cm. This is also described in the lunar source book 
(220 < T < 255 K (Heiken et al. 1991)).

In the model covariance matrix, it was noticed that the 
first three off-diagonal elements are quite large (e.g. ± 20 K), 
but the fourth off-diagonal element (T5 error) was below 
2–10 K. The MRM signal mainly comes from the lunar soil 
at a depth of  > 50 cm (Figs. 6, 7). 

Preliminary subsurface temperature maps

Mineralogy data sources for inclusion 
in the improved forward model

Mineralogy can significantly change the penetration depth 
of microwave signals. The sensitivity analysis in the previ-
ous section indicates that knowledge of the Fe/Ti abundance 
(particularly Ti) and bulk density is particularly important 
to the proposed forward model.

Based on data in Zhang (2014), mineralogical and bulk 
density information is added to the thermal transfer model, 
including the effects of varying Fe/Ti composition and vary-
ing density profiles across the Moon.

The Zhang (2014)’s paper is concerned with the develop-
ment of a method for deriving FeO and  TiO2 content from 
the data measured by the Moon Mineralogy Mapper  (M3) 
instrument on the Chandrayaan-1 mission.

Zhang (2014) analysed the FeO content based on  M3 data 
and Lucey et al. (1995, 1998)’s approach.

The derived Fe distribution from the  M3 data has also 
been compared with the Lunar Prospector Fe mapping 
results, and they have been found to agree within ± 6%. 
Such consistency validates the methods used. Several small 
features that are noticeable on the  M3 are not seen on the 
Clementine or Lunar Prospector results, as the  M3 has a 
much higher spatial resolution than the other two data sets.

For the  TiO2 content retrieval, Lucey’s method (1998) 
also introduces a simple relation between the UV/VIS ratio 
(415/750 nm) and  TiO2 content. However, an alternative 
method is required because the  M3 does not include a 415-
nm band. The 256 channels that are available in the  M3 data 
allowed for investigation of other approaches that were inac-
cessible from the Clementine data, which were more spec-
trally limited. Two different  TiO2 analysis techniques were 
applied to the data and are described in Zhang (2014).

Fig. 7  (Top) Retrieval result 
of  TiO2 content derived using 
the Shkuratov model from the 
 M3 FeO map, over plotted on 
a Clementine base map; (Bot-
tom) Clementine titanium map 
(Korokhin et al. 2008)
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The content of surface  TiO2 based on  M3 data according 
to Zhang (2014) is given as follows:

The result is then used in this section to model spatial 
variations in lunar subsurface temperatures. We conduct two 
procedures before the inversion. First, abnormal MRM data 
are eliminated. Even in the gridded-level 2C microwave radi-
ometer data used in this research, problematic measurements 
still exist, such as negative and unphysically large values. To 
remove them, we set threshold values for the brightness tem-
perature in the equatorial region (14° S to 14° B) at local noon 
time. A brightness temperature greater than 360 K or less than 
40 K is judged as abnormal and is excluded in the inversion.

Second, as we are retrieving the base regolith temperature 
value, the depth value for this inverted temperature needs to 
be determined. The lunar regolith was divided into six lay-
ers (i.e. lunar dust layer, lunar soil layer 1, lunar soil layer 
2, lunar soil layer 3, lunar soil layer 4, and lunar rock layer) 
in Sect. 3. The temperature (T5, note that in this scheme the 
lunar dust layer is layer 1; therefore, lunar soil layer 4 is 
actually the fifth layer) of the lowest soil layer during lunar 
midday (representing a depth of 0.2–5 m) is derived because 
it represents a stable temperature that does not vary with 
insolation. In addition, according to error analysis, the error 
covariance suggests that the inverse error of T5 is the small-
est among T2 − T5. Due to the above reasons, this section will 
solely focus on T5, 0.2 to 5 m temperature inversion.

In addition, temperature T5 should be interpreted as a tem-
perature value at the median depth of the fifth layer rather than 
a temperature for all soils ranging from 0.2 to 5 m. Although 
the temperature is almost stable below 20 cm, it still slightly 
increases with depth (Fig. 8). The representative depth of this 
inversion result can be estimated by the following method: 
within the fifth layer (ranging from 0.2 to 5 m), the stable 

temperature slightly increases with depth, but the temperature 
gradient becomes shallower after 2 m (Fig. 8), probably due to 
more compact soils which could conduct heat easier; hence, 
as we can notice from Fig. 8, 2 m is an approximate median 
value of the fifth layer (0.2–5 m); here, we use a depth of 2 m 
to interpret the inverted temperature T5.

Inversion result

We selected midday local observation times (0° < solar 
angle < 14°), and we inverted the MRM data to reveal the 
2 m depth temperature (T5) from 0° to ± 14° N for the lunar 
nearside (Fig. 9b).

This research did not invert data from the lunar farside 
because the farside region dielectric constant and density 
depth profiles have not been studied and may have added 
complications. By putting the lunar regolith (Sect. 3), min-
eralogy S-parameter and density values (Sect. 5) into the 
forward model (Sect. 4) equations, i.e. Eqs. 29 and 36, it is 
possible to get an estimate of the fifth layer’s temperature 
(T5) at midday. However, the addition of extra a priori infor-
mation and the quantification of its associated error into the 
inversion modify the approach in Sect. 3, so Eq. 3.29 will 
be replaced as described below.

First, we calculated T5 without a priori for a small sam-
ple region. We improved the density profile with geographi-
cal information from Sect. 5 (e.g. highland, Maria, etc.). 
We then calculated T5 again with a priori error covariance 
included to account for the forward model uncertainty. Then, 
with a priori, Eq. 36 becomes Eq. 38:

(38)ximproved = (KTS−1
�
K + S−1

a
)−1(KTS−1

�
y + S−1

a
Xa),

Fig. 8  (Left) Temperature fluctuations in the lunar regolith as a func-
tion of depth (from Langseth et al. 1976). Note that the small temper-
ature scale at the bottom of the diagram does not permit the extreme 
temperature fluctuation at depths less than ~ 30 cm to be plotted; this 

region is left blank. Hatched areas show day–night temperature fluc-
tuations below ~ 30–70 cm. Below the blue line is the T5 layer. (Right) 
Layer stratification used in the microwave radiative transfer forward 
model described in Sect. 4
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where the newly added Sa is the error covariance matrix of 
our a priori guess.

By combining the a priori information with the lunar 
regolith parameters derived in Sect. 3 (dielectric constant, 
specific heat and thermal conductivity) and Sect. 5 (miner-
alogy and bulk density) with the model outlined in Sect. 4 
(Eqs. 29 and  38), we can get an inversion result for the lunar 
soil layer 5 temperature at midday as shown in Fig. 9b. The 
inversion result Fig. 9b is shown with (a) a geographic map, 
(c) a uranium distribution map and (d) a thorium distribution 
map for comparison.

The above results indicate a strong connection between 
the subsurface temperature and the U/Th distribution. U and 
Th are both radioactive elements that produce heat in the 
lunar mantle (Hagerty et al. 2009). Both elements are found 
in the KREEP regions, and the KREEP regions have the 
highest subsurface temperature across the Moon. (The aver-
age temperature across the KREEP region is ~ 260 ± 6 K.) 
The regions with the lowest U/Th distribution, such as Mare 

Tranquillitatis (and all purple regions on map c), have the 
lowest 2-m-subsurface temperature (~ 240 ± 4 K), which 
agrees with Keihm et al.’s (1973) and Keihm (1984) model. 
Outside the KREEP region, the average 2-m-subsurface 
temperature is 246 ± 4 K, so there is a significant subsur-
face temperature elevation of 14 ± 10 K inside the KREEP 
region.

It is possible that the elevated temperature in the KREEP 
region is caused by factors other than the heating from radio-
genic elements. Two other possible factors are geographic, 
i.e. differences between the highland and Maria regions and 
differences between the input mineralogy parameter, S. Geo-
graphic factors were excluded because in our inversion result 
Maria regions show both very high subsurface temperature 
(KREEP region—260 K) and very low subsurface tempera-
tures (Maria outside of KREEP region—240 K).

The influence of the input mineralogy parameter can 
also be excluded. The two Maria regions, namely the West 
(Oceanus Procellarum) and East parts (Mare Tranquillitatis, 

Fig. 9  Map of the inversion result of the 2-m-subsurface tempera-
ture (layer 5) (b) with relevant lunar surface properties (a, c, d) for 
comparison. a Shaded relief map of the corresponding area; b T5: 
subsurface temperature at a 2  m depth from the inverted CE MRM 
data. This figure is the direct output of our work. T5 is the median 
temperature of the fifth layer (2 m). ‘Stripy’ artefacts can be seen in 

the T5 map because it is derived from the FeO/TiO2 maps from  M3 
data; c lunar uranium (U) concentration levels on the lunar surface 
as measured by the Kaguya mission (Adapted from Yamashita et al. 
2010); d lunar thorium (Th) distribution. Adapted from Yamashita 
et  al. 2010. Abbreviations: Copern is the short form for Copernicus 
crater; Korolev, for Korolev Crater; and Tran, for Mare Tranquillitatis
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Mare Serenitatis, Mare Nectaris and Mare Crisium), exhib-
ited extremely different subsurface temperatures although 
they have highly similar FeO and  TiO2 distributions (Shku-
ratov et al. 1999; Korokhin et al. 2008). Overall, no obvious 
connections are evident in the derived temperature at 2 m 
depth when it is compared with the Fe or Ti distribution 
map (Fig. 10c, d).

As shown in Figs. 9 and 10, the KREEP region has a 
considerably higher subsurface temperature than other mare 
regions, indicating an additional source of heat. The 1 sigma 
error in the inversion is ± 6 K inside the equatorial KREEP 
region and is ± 4 K across the global lunar subsurface.

For the non-KREEP regions, our result agrees with the 
Keihm et al.’s (1973) and Keihm (1984) model. Keihm et al. 
(1973) and Keihm (1984) predicted the central lunar equato-
rial subsurface temperature at a 2 m depth to be 250 ± 7 K, 
assuming that the only heating source was solar radiation. 
Our derived temperature is in agreement with Keihm’s 
model, providing a non-KREEP average result of 246 ± 4 K.

Inversion of lunar heat flow

Introduction and background to the heat sources 
of the Moon

Lunar heat flow is defined as the heat released from the lunar 
interior per unit area per unit time. Through an evolution 

spanning 4.6 billion years, most of the internal heat of the 
Moon has been dissipated; however, residual heat of forma-
tion is still present, thereby providing information on the 
origin and evolution of the Moon.

Lunar heat flow contains two endogenic sources, radio-
genic heat flow and lunar mantle cooling heat flow. Neither 
the tenuous  (10−14 atm) lunar atmosphere nor the static litho-
sphere contribute to heat redistribution. Consequently, the 
Moon is in a steady state, and the internal lunar heat flow 
should be approximately equal to the sum of heat produced 
by radioactive elements, mainly uranium (U), thorium (Th) 
and potassium (K), as well as lunar mantle heat flow, which 
comes from the long-term cooling process of the interior 
(Korotev 1998).

According to Langseth et al. (1976), the heat flow of the 
long-term cooling process is approximately 4 mW/m2. The 
ratio of lunar interior cooling heat to overall heat is called 
the Urey coefficient. Spohn and Breuer (2002) reported that 
about 50% of Moon’s heat comes from the decay of radio-
active elements, and the remaining 50% is caused by the 
cooling process inside the Moon, which corresponds to a 
Urey coefficient of 0.5. A Urey coefficient of 0.5 can be 
applied to the Earth and Earth-like planets. A coefficient 
of 0.5 is consistent with the estimate based on geochemi-
cal data measured for the Earth. The Earth’s bulk heat flow 
is 44.2 ± 1.0 TW in total, and 24.0 ± 8.8 TW is estimated 
to be contributed by the radiogenic heat production (The 
KamLAND Collaboration, 2011). Unlike heat released by 

Fig. 10  a Corresponding area’s shaded relief map; b T5—subsurface temperature inverted at 2 m depth from CE MRM data; c lunar titanium 
distribution from the Clementine data (Korokhin et al. 2008); d lunar iron distribution from the Lunar Prospector data (Lawrence et al. 2002)
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cooling from the interior, radiogenic heat production varies 
as a result of local geology.

On the lunar surface, the distribution of radioactive ele-
ments, including uranium, thorium and potassium, is con-
centrated in the Procellarum KREEP Terrane (PKT). The 
PKT is the distinct geochemical crustal province formed by 
the Procellarum and Imbrium regions. According to geo-
chemical studies (Spudis and Schultz 1985), a large portion 
of the lunar crust in this locale consists of a material that is 
similar in composition to Apollo 15 KREEP basalt. KREEP 
basalt consists of about 300-fold more uranium and thorium 
than highland material, implying that a large portion of the 
heat-producing elements of the Moon are located within this 
single crustal province.

To date, the only lunar surface heat flow experiments 
were conducted at the Apollo 15 and 17 landing sites. Drill-
ing experiments measured the thermal conductivity and heat 
flow. After correcting for the influence of the astronauts on 
modifying the top layers of regolith, Langseth et al. (1972) 
found heat flow of 21 mW/m2 and 14 mW/m2 for the Apollo 
15 and 17 sites, respectively.

Despite a lack of other in situ measurements, some stud-
ies have made early attempts to model the average lunar 
heat flow. For example, Krotikov and Troitski (1964) used 
ground-based radio astronomy observations and estimated 
the average heat flow value to be 54.4 mW/m2; however, this 
value is higher than the Apollo measurements (Langseth 
et al. 1972). According to ground observations of micro-
wave brightness temperature and reanalysis of Apollo 17 

data, Langseth et al. (1976), this value was later reduced to 
give an estimate of the approximate average heat flow of the 
nearside of 30 mW/m2.

Heat flow based on MRM‑derived temperature

Lunar heat flow may be calculated using the subsurface tem-
peratures from the CE MRM data, as derived in Sect. 5. By 
definition, lunar heat flow can be represented as the product 
of conductivity and temperature gradient given by

where Q is the heat flow, T is the temperature, z is the depth 
and k is the thermal conductivity.

Using the previously derived 2-m-subsurface tempera-
ture, Eq. 5 is used to obtain the thermal conductivity k val-
ues. The derived k value and temperature gradient are then 
substituted into Eq. 39, to calculate the heat flow.

Before applying this method to all the data, it may be 
tested by comparison with the in situ measurements made at 
the Apollo 15 and 17 landing sites. The subsurface tempera-
tures of the Apollo 15 and 17 sites are not directly obtained, 
because they are on the edge of the MRM-derived tem-
perature map (Fig. 11). Therefore, their derived subsurface 
temperatures are derived by elongation interpolation. The 
interpolated values for the Apollo 15 and 17 landing sites 
are 255 and 256 K, respectively. The surface temperature at 

(39)Q = −k
dT

dz
,

Fig. 11  Plot of the modelled 
present-day surface heat flow 
as a function of distance from 
the approximate centre of the 
Procellarum KREEP Terrane 
(solid line). Also shown are 
the Apollo heat flow measure-
ments, grey boxes show the 
measurements after correction 
by Langseth et al. (1972), while 
the dotted boxes are after cor-
rection for any enhancement 
due to their location at a mare/
highlands boundary (Warren 
and Rasmussen 1987). Figure 
cited from Wieczorek and Phil-
lips (2000)
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the Apollo 15 and 17 landing sites was obtained from the 
Diviner measurements and is 250 and 253 K, respectively.

Thus, the derived heat flow at the Apollo 15 site  (HFA15) 
by this thesis is given by:

Similarly, the heat flow at the Apollo 17 landing site 
 (HFA17) is estimated as

The calculated heat flow at the Apollo 15 site is 23.9 ± 1.8 
mW/m2 and the heat flow at the Apollo 17 landing site is 
14.3 ± 1.1 mW/m2. These estimates of the heat flow are 
based on the derived subsurface temperature and tempera-
ture gradients from Chang-E,  M3 and Diviner measurements.

Figure 11 shows the theoretical model by Wieczorek and 
Phillips (2000) of the lunar heat flow in the KREEP Ter-
rane compared with direct measurements from the Apollo 
heat flow experiments. The heat flow model by Wieczorek 
and Phillips (2000) indicates that KREEP regions have a 
significantly higher heat flux (34 mW/m2) than non-KREEP 
regions (11 mW/m2) in the Moon. As shown in Fig. 11, the 
calculated heat flow at the Apollo 15 and 17 landing sites 
estimated in this thesis agrees with the previous model 
by Wieczorek and Phillips (2000) and with the Apollo 
measurements.

After performing the validation using the Apollo 15 and 
17 site data, this method can be applied to the rest of the 
Moon. However, the farside value of dz (T5 depth) in Eq. 39 
cannot be estimated; hence, we only calculated the nearside 
heat flow. A heat flow map of the nearside (latitude 14° S 
to 14° B) from the CE data and using  M3 measurements for 
mineralogy is overlaid on the Clementine shaded relief map, 
as shown in Fig. 12.

(40)HFA15 = −k
dT

dz
= −Kc

[
1 + �

(
T

T350

)3
]
⋅

dT

dz
.

(41)HFA17 = −k
dT

dz
= −Kc

[
1 + �

(
T

T350

)3
]
⋅

dT

dz
.

The inverted 2-m lunar subsurface heat flow ranges from 
2 to 68 mW/m2, which is in the same order of magnitude 
as earlier ground-based remote sensing measurements, as 
well as the estimates based on radioactive elements (Little 
et al. 2003). This also compares well in non-KREEP regions 
with the model by Wieczorek and Phillips (2000) which pre-
dicts a heat flow of 11 mW/m2, in agreement with this thesis 
which predicts a heat flow of 11 ± 4 mW/m2. However, in the 
KREEP region this work predicts a heat flow of 45 ± 6 mW/
m2 compared to the Wieczorek and Phillips (2000) predic-
tion of 34 mW/m2. Although there is a slight difference in 
the two values, this difference is small and can be explained 
by a small error (± 5 mW/m2) in Wieczorek and Phillips 
(2000) model. Unfortunately, no error analysis was provided 
(Wieczorek and Phillips 2000).

Results of this section provide clues to the lunar geo-
logic history. First, as shown in Fig. 12 in which MRM 
shows the inverse subsurface heat flow result, we can see 
that although there is a large error range of ± 6 mW/m2, it is 
still clear that the KREEP regions, especially the Oceanus 
Procellarum region, have particularly high subsurface heat 
flow (45 ± 6 mW/m2), while for the non-KREEP terrain the 
average is only 11 ± 4 mW/m2. Even in KREEP regions, the 
subsurface heat flow seems to rise towards the centre of the 
region. For instance, the Apollo 15 site, which is closer to 
KREEP centre areas, has a subsurface heat flow of 24 ± 1.8 
mW/m2, while the Apollo 17 site, further from the centre 
of the KREEP region, has a lower subsurface heat flow of 
14.34 ± 1.1 mW/m2. These values are in accordance with the 
Apollo in situ measurements, which suggest 22 mW/m2 for 
Apollo 17 and 14 mW/m2 for Apollo 15.

This result is important to our understanding of the 
KREEP terrain. Because if the centre of KREEP has higher 
subsurface heat flow than neighbouring KREEP regions 
around it, and the entire KREEP terrain as a whole has 
a much higher average subsurface heat flow than other 
non-KREEP lunar regions, then this would imply that the 
potential origin of the PKT is a large-scale volcanic event, 
such as a mantle plume (Campbell 2005). Mantle plumes 
are believed to start at the core–mantle boundary and 
rise through the lunar mantle, pushing KREEP materials 
upwards and forming the distinct region of KREEP terrain 
that we observe on the Moon today.

Evidence for a volcanic rather impact-driven process to 
form the PKT can be found in deep surface gravity anoma-
lies measured by recent GRAIL gravity gradient mapping 
mission. GRAIL also found a polygon-like formation resem-
bling a system of rift valleys surrounding the region beneath 
the lava plains, suggesting that the basin was formed by heat-
ing and cooling of the lunar surface by internal processes 
rather than by an impact, which would have left deep struc-
tures more typical of a large impact basin (Andrews-Hanna 
et al. 2014).

Fig. 12  CE and  M3 measurement heat flow map of the lunar nearside 
overlaid on Clementine shaded relief map
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Secondly, another implication of this result is that the 
Moon may still be geologically active. Based on the CE 
MRM inverted subsurface heat flow results, average non-
KREEP region subsurface temperature is 11 ± 4 mW/m2. 
However, if we only consider the cooling process due to a 
completely geologically inactive solid core, then this value 
should be ~ 4 mW/m2 (Langseth et  al. 1976). This also 
explains some recent finding that some parts of the Moon 
may be warmer than previously thought (Braden et al. 2014). 
Volcano activity at Ina ended about 33 million years ago, 
and at another irregular mare patch, Sosigenes, it stopped 
only about 18 million years ago.

The lunar surface temperature has been measured using 
the Diviner lunar radiometer; however the subsurface tem-
perature had only been measured directly at the Apollo 15 
and 17 landing sites before the launch of Chang’e 1 (CE-1) 
and Chang’e 2 (CE-2).

In this paper, firstly, using the parameters derived in the 
previous step for the one-dimensional thermal diffusion 
model, a microwave radiative transfer model was estab-
lished to interpret the MRM data according to the coher-
ent approach of microwave transmission theory and fluc-
tuation–dissipation theorem. To test the forward model, the 
subsurface variation of the lunar temperature with depth at 
a single point in the equatorial region was derived and com-
pared with the theoretical predictions of the one-dimensional 
thermal diffusion model.

The global subsurface temperature at 2 m depth was 
derived by inverting the MRM brightness temperatures using 
the newly developed thermal transfer model with new miner-
alogy and density inputs from Zhang (2014). Comparisons 
of uranium, thorium and potassium abundance maps show 
that there is spatial correlation between the temperature of 
2 m depth subsurface and the distribution of the abundances 
of these elements. These radioactive elements would provide 
a local radiogenic heating source that would elevate the tem-
perature at a depth of 2 m. The regions with the lowest heat-
ing source (i.e. the lowest abundance of uranium, thorium 
and potassium) have the lowest temperature of 2-m subsur-
face (approximately 240 ± 4 K). This finding is in agreement 
(to within 3%) with the model used by Keihm et al. (1973), 
which did not consider radiogenic heating. By contrast, 
the region with the highest heating source (KREEP) has 
the highest temperature of 2-m subsurface (approximately 
260 ± 6 K). The KREEP region on the lunar surface contains 
the greatest abundance of uranium, thorium and potassium. 
The average temperature of 2-m subsurface in non-KREEP 
regions is 246 ± 4 K. The difference between the KREEP 
region and the non-KREEP is supported by Wieczorek’s 
KREEP heat flow model (Wieczorek and Phillips 2000), 
which predicts a 10 K difference between the KREEP centre 
and non-KREEP regions.

Finally, the lunar heat flow was calculated based on the 
subsurface temperature result obtained from the MRM data 
inversion. According to the inversion result, the heat flow 
at the Apollo 15 landing site was 23.9 ± 4 mW/m2 and the 
heat flow at the Apollo 17 landing site was 14.3 ± 4 mW/m2. 
Such values are in good agreement (< 10% deviation) with 
Apollo heat flow measurement results (Warren and Rasmus-
sen 1987). A heat flow map of 2-m-deep lunar subsurface 
was also derived from the MRM data. The heat flow of 2-m 
subsurface was found to range from 2 to 68 mW/m2 and 
was found to have a strong correlation with the radioactive 
elements distribution.
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